JP4552913B2 - Isolated operation detection device - Google Patents

Isolated operation detection device Download PDF

Info

Publication number
JP4552913B2
JP4552913B2 JP2006225016A JP2006225016A JP4552913B2 JP 4552913 B2 JP4552913 B2 JP 4552913B2 JP 2006225016 A JP2006225016 A JP 2006225016A JP 2006225016 A JP2006225016 A JP 2006225016A JP 4552913 B2 JP4552913 B2 JP 4552913B2
Authority
JP
Japan
Prior art keywords
moving average
average value
reactive power
deviation amount
isolated operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006225016A
Other languages
Japanese (ja)
Other versions
JP2008054366A (en
Inventor
雅夫 馬渕
康弘 坪田
伸一 細見
和由 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2006225016A priority Critical patent/JP4552913B2/en
Publication of JP2008054366A publication Critical patent/JP2008054366A/en
Application granted granted Critical
Publication of JP4552913B2 publication Critical patent/JP4552913B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、分散型電源及び商用系統間に無効電力を注入する無効電力注入回路と、この無効電力注入回路にて注入した前記無効電力の周波数変動を検出する周波数変動検出回路と、この周波数変動検出回路にて検出した前記周波数変動に基づき、前記分散型電源の単独運転を検出する単独運転検出回路とを有する単独運転検出装置に関する。   The present invention relates to a reactive power injection circuit that injects reactive power between a distributed power source and a commercial system, a frequency fluctuation detection circuit that detects a frequency fluctuation of the reactive power injected by the reactive power injection circuit, and the frequency fluctuation. The present invention relates to an isolated operation detection device having an isolated operation detection circuit for detecting isolated operation of the distributed power source based on the frequency fluctuation detected by a detection circuit.

従来、このような単独運転検出装置としては、分散型電源の直流電力を商用系統の交流電力に変換し、この変換した交流電力を商用系統と連系して負荷に供給するインバータ回路を備え、このインバータ回路のインバータ出力波形に、単独運転時に出力周波数に変動が生じる歪を与え、この歪で生じる周波数変動、若しくは周波数変動に起因する変動を検出して単独運転を検知するようにしたものが知られている(例えば特許文献1参照)。   Conventionally, such an isolated operation detection device includes an inverter circuit that converts DC power of a distributed power source into AC power of a commercial system, and supplies the converted AC power to a load connected to the commercial system. The inverter output waveform of this inverter circuit is distorted to produce fluctuations in the output frequency during single operation, and the single operation is detected by detecting the frequency fluctuation caused by this distortion or the fluctuation caused by the frequency fluctuation. It is known (see, for example, Patent Document 1).

また、特許文献1の単独運転検出装置によれば、一般的に商用系統側では系統電圧や系統周波数を一定に保つために、需要家の負荷変動に応じて商用系統側の発電所の発電量を調整するため、低周期の揺れが発生することになるが、この低周期の揺れが発生するときは小さな周波数変化(偏差量変化)が生じるため分散型電源及び商用系統間に無効電力を注入しないように不感帯範囲を設定するようにしたので、低周期の揺れ発生時による分散型電源の単独運転の誤検出を確実に防止することができる。   Further, according to the isolated operation detection device of Patent Document 1, in order to keep the system voltage and system frequency constant on the commercial system side, the amount of power generated by the power station on the commercial system side according to the load fluctuation of the consumer. However, when this low-frequency fluctuation occurs, a small frequency change (deviation amount change) occurs, so reactive power is injected between the distributed power supply and the commercial system. Since the dead zone range is set so as not to occur, it is possible to reliably prevent erroneous detection of isolated operation of the distributed power source due to the occurrence of low-cycle fluctuations.

また、従来の単独運転検出装置によれば、単独運転発生から単独運転検出までの単独運転検出時間に0.5秒〜1.0秒を要しているが、近年では同単独運転検出時間を、例えば0.1秒以内に短縮する高速検出技術が望まれるようになっている。   Further, according to the conventional isolated operation detection device, the isolated operation detection time from the isolated operation occurrence to the isolated operation detection requires 0.5 seconds to 1.0 seconds. For example, a high-speed detection technique that shortens within 0.1 seconds is desired.

そこで、本出願人は、このような要望に応えるべく、単独運転検出時間を0.1秒以内にした、分散型電源の単独運転を高速検出する単独運転検出装置を考案している(例えば特許文献2参照)。
特開平9−322554号公報(段落番号「0043」〜「0083」及び図1、図12参照) 特願2006−6108号(要約書及び図2参照)
Therefore, in order to meet such a demand, the present applicant has devised an isolated operation detection device that detects an isolated operation of a distributed power source at a high speed with an isolated operation detection time within 0.1 seconds (for example, a patent). Reference 2).
Japanese Patent Laid-Open No. 9-322554 (see paragraph numbers “0043” to “0083” and FIGS. 1 and 12) Japanese Patent Application No. 2006-6108 (see abstract and figure 2)

しかしながら、特許文献2の単独運転検出装置によれば、分散型電源の単独運転の高速検出に適した無効電力を注入するために、例えば商用系統が50Hzの場合、20m秒相当の系統周期を20m秒単位で順次計測し、これら順次計測した20m秒単位の系統周期に基づき、連続した所定移動平均時間分の系統周期の移動平均値を順次算出し、最新の移動平均値及び過去の移動平均値の偏差量を算出し、この偏差量に基づき無効電力量を算出することを想定した場合、次のような課題が想定できる。   However, according to the isolated operation detection device of Patent Document 2, in order to inject reactive power suitable for high-speed detection of isolated operation of a distributed power source, for example, when a commercial system is 50 Hz, a system period corresponding to 20 milliseconds is set to 20 m. Sequentially measured in seconds, based on these sequentially measured system cycles in units of 20 milliseconds, the moving average value of the system cycle for a continuous predetermined moving average time is calculated sequentially, and the latest moving average value and past moving average value Assuming that the amount of deviation is calculated and the amount of reactive power is calculated based on this amount of deviation, the following problems can be assumed.

例えば20m秒相当の系統周期を20m秒単位で順次計測し、これら順次計測した20m秒単位の系統周期で移動平均値を算出した場合、図3(b)に示すように移動平均値の変動は急峻になるため滑らかにすることができず、分散型電源の単独運転を高速に検出するために注入すべき無効電力の無効電力量を大きくした場合、無効電力注入装置(インバータ回路)に供給する電流波形の急変が生じ、系統への影響が懸念される。   For example, when a system period corresponding to 20 milliseconds is sequentially measured in units of 20 milliseconds, and the moving average value is calculated in the system period of 20 milliseconds unit which is sequentially measured, as shown in FIG. If the reactive power amount of reactive power to be injected in order to detect a single operation of the distributed power source at a high speed is increased, it is supplied to the reactive power injection device (inverter circuit). A sudden change in the current waveform occurs, and there is concern about the impact on the grid.

また、移動平均値は所定移動平均時間分の系統周期に基づき算出することになるが、同所定移動平均時間内に、図4(b)に示すように通常運転中のA状態から分散型電源の単独運転状態のBを含む場合、所定移動平均時間が長過ぎて、分散型電源の単独運転状態が発生しているにもかかわらず、順次計測した所定移動平均時間分の系統周期が平均化されて移動平均値の変動が軽微となると、単独運転時及び通常運転時の分別は難しくなる。また、反対に図5(b)に示すように、所定移動平均時間が短過ぎると、単独運転発生時に周波数の揺れが生じた場合、順次計測した所定移動平均時間分の系統周期が平均化されて移動平均値の変動が軽微となると、単独運転時の分別は難しく、その結果、単独運転の高速検出を実現することができない。   In addition, the moving average value is calculated based on the system cycle for a predetermined moving average time, and within the predetermined moving average time, as shown in FIG. When the single operation state B is included, the system period for the predetermined movement average time sequentially measured is averaged even though the predetermined movement average time is too long and the single operation state of the distributed power source is generated. If the fluctuation of the moving average value becomes small, it becomes difficult to separate the single operation and the normal operation. On the other hand, as shown in FIG. 5 (b), if the predetermined moving average time is too short, the frequency of the system will be averaged for the predetermined moving average time sequentially measured when the frequency fluctuation occurs at the time of isolated operation. When the fluctuation of the moving average value is small, it is difficult to separate during the single operation, and as a result, high-speed detection of the single operation cannot be realized.

さらに、無効電力量の基礎となる偏差量は、最新の移動平均値及び、この最新の移動平均値から所定時間後の過去の移動平均値に基づき算出することになるが、例えば所定時間が長過ぎると、所定時間内に、図4(b)に示すように通常運転中のA状態から分散型電源の単独運転状態のBを含む場合、分散型電源の単独運転状態が発生しているにもかかわらず、移動平均値の変動が軽微となるため偏差量が生じず、その結果、単独運転の高速検出を実現することができない。   Further, the deviation amount that is the basis of the reactive power amount is calculated based on the latest moving average value and the past moving average value after a predetermined time from the latest moving average value. After that, within a predetermined time, as shown in FIG. 4 (b), when the A state during the normal operation includes the B of the single operation state of the distributed power source, the single operation state of the distributed power source has occurred. Nevertheless, since the fluctuation of the moving average value is small, no deviation occurs, and as a result, high-speed detection of an isolated operation cannot be realized.

また、特許文献1の単独運転検出装置によれば、図6(b)に示すように、周波数変動(偏差量)が小さい不感帯範囲(X1〜X2)内では、分散型電源及び商用系統間に無効電力を注入しないため、分散型電源の単独運転が発生したとしても、周波数変動が小さい不感帯範囲内では、分散型電源の単独運転を検出することができない。   Further, according to the isolated operation detection device of Patent Document 1, as shown in FIG. 6B, within the dead band range (X1 to X2) where the frequency fluctuation (deviation amount) is small, between the distributed power source and the commercial system. Since reactive power is not injected, even if a single operation of the distributed power source occurs, it is not possible to detect the single operation of the distributed power source within the dead band range where the frequency fluctuation is small.

本発明は上記点に鑑みてなされたものであり、その目的とするところは、分散型電源の単独運転を高速検出するのに適した無効電力の高速注入を実現できる単独運転検出装置を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide an isolated operation detection device capable of realizing high-speed injection of reactive power suitable for detecting an isolated operation of a distributed power source at high speed. There is.

また、本発明の目的とするところは、偏差量が小さい不感帯範囲内であっても、分散型電源の単独運転を高速検出すべく、分散型電源及び商用系統間に無効電力を高速注入することができる単独運転検出装置を提供することにある。   In addition, an object of the present invention is to inject reactive power at high speed between the distributed power source and the commercial system in order to detect the single operation of the distributed power source at high speed even in the dead zone range where the deviation amount is small. An object of the present invention is to provide an isolated operation detection device capable of

上記目的を達成するために本発明の単独運転検出装置は、分散型電源及び商用系統間に無効電力を注入する無効電力注入回路と、この無効電力注入回路にて注入した前記無効電力の周波数変動を検出する周波数変動検出回路と、この周波数変動検出回路にて検出した前記周波数変動に基づき、前記分散型電源の単独運転を検出する単独運転検出回路とを有する単独運転検出装置であって、前記商用系統の系統周期の1/3以下に相当する計測周期単位で、前記商用系統の系統周期を計測する系統周期計測手段と、この系統周期計測手段にて順次計測した計測周期単位の系統周期に基づき、連続した所定移動平均時間分の系統周期の移動平均値を順次算出する移動平均値算出手段と、この移動平均値算出手段にて順次算出した移動平均値を順次記憶する移動平均値記憶手段と、この移動平均値記憶手段に記憶中の最新の移動平均値及び、同最新の移動平均値から所定時間前の過去の移動平均値を読み出し、これら読み出した最新の移動平均値及び過去の移動平均値の偏差量を前記計測周期単位の系統周期毎に算出する偏差量算出手段と、この偏差量算出手段にて算出した前記偏差量に基づき、前記無効電力注入回路で注入する前記無効電力の無効電力量を算出する無効電力量算出手段とを有するようにした。   In order to achieve the above object, the isolated operation detection device of the present invention includes a reactive power injection circuit for injecting reactive power between a distributed power source and a commercial system, and a frequency variation of the reactive power injected by the reactive power injection circuit. A single operation detection device comprising: a frequency fluctuation detection circuit for detecting a single operation detection circuit for detecting a single operation of the distributed power source based on the frequency fluctuation detected by the frequency fluctuation detection circuit, The system cycle measuring means for measuring the system cycle of the commercial system in a measurement cycle unit corresponding to 1/3 or less of the system cycle of the commercial system, and the system cycle of the measurement cycle unit sequentially measured by the system cycle measuring means Based on the moving average value calculating means for sequentially calculating the moving average value of the system period for the continuous predetermined moving average time, and the moving average value sequentially calculated by the moving average value calculating means The stored moving average value storage means, the latest moving average value stored in the moving average value storage means, and the past moving average value of a predetermined time before from the latest moving average value, are read, and the latest Deviation amount calculating means for calculating a deviation amount of the moving average value and the past moving average value for each system cycle of the measurement cycle unit, and the reactive power injection circuit based on the deviation amount calculated by the deviation amount calculating means And reactive power amount calculating means for calculating the reactive power amount of the reactive power injected in step (b).

従って、本発明の単独運転検出装置によれば、前記商用系統の系統周期の1/3以下に相当する計測周期単位で前記商用系統の系統周期を順次計測し、この順次計測した前記計測周期単位の系統周期に基づき、連続した所定移動平均時間分の系統周期の移動平均値を順次算出し、この順次算出した移動平均値を順次記憶し、この記憶中の最新の移動平均値及び、同最新の移動平均値から所定時間前の過去の移動平均値を読み出し、これら読み出した最新の移動平均値及び過去の移動平均値の偏差量を算出し、この算出した偏差量に基づき、前記無効電力注入回路で注入する前記無効電力の無効電力量を算出するようにしたので、前記商用系統の系統周期の1/3以下に相当する計測周期単位の系統周期で、前記無効電力量を算出する偏差量の基礎となる前記移動平均値を算出することで、きめ細かい移動平均値の変動、すなわち偏差量の変動を滑らかにすることができるため、前記分散型電源及び商用系統間に注入すべき無効電力の無効電力量を大きくしたとしても、前記無効電力注入装置に供給する電流波形の急変を防止することができ、その結果、前記分散型電源の単独運転を高速に検出するのに適した無効電力の高速注入を実現することができる。   Therefore, according to the isolated operation detection device of the present invention, the system cycle of the commercial system is sequentially measured in a measurement cycle unit corresponding to 1/3 or less of the system cycle of the commercial system, and the measurement cycle unit that is sequentially measured. Based on the system cycle, the moving average value of the system cycle for a continuous predetermined moving average time is sequentially calculated, the sequentially calculated moving average value is sequentially stored, and the latest moving average value stored in the memory and the latest The past moving average value of a predetermined time before is read out from the moving average value of, the latest moving average value read out and the deviation amount of the past moving average value are calculated, and the reactive power injection is based on the calculated deviation amount Since the reactive power amount of the reactive power injected by the circuit is calculated, the deviation amount for calculating the reactive power amount in the system cycle of the measurement cycle corresponding to 1/3 or less of the system cycle of the commercial system of By calculating the basic moving average value, fine fluctuations of the moving average value, that is, fluctuations in the deviation amount can be smoothed, so the reactive power to be injected between the distributed power source and the commercial power system is invalid. Even if the amount of power is increased, it is possible to prevent a sudden change in the current waveform supplied to the reactive power injection device, and as a result, high speed reactive power suitable for detecting single operation of the distributed power source at high speed. Injection can be achieved.

また、本発明の単独運転検出装置の前記無効電力量算出手段は、前記偏差量が小さい不感帯範囲を予め設定し、前記偏差量算出手段にて算出した前記偏差量が前記不感帯範囲内の場合、前記偏差量が大きい前記不感帯範囲以外の場合に比較して、前記無効電力注入回路で注入する前記無効電力の無効電力量の絶対値を小さく補正して前記無効電力量を算出するようにしても良い。   Further, the reactive power amount calculating means of the isolated operation detecting device of the present invention presets a dead band range where the deviation amount is small, and the deviation amount calculated by the deviation amount calculating means is within the dead band range, The reactive power amount may be calculated by correcting the absolute value of the reactive power amount of the reactive power injected by the reactive power injection circuit to be smaller than that when the deviation amount is outside the dead zone range. good.

従って、本発明の単独運転検出装置によれば、前記偏差量が小さい不感帯範囲を予め設定し、前記偏差量算出手段にて算出した前記偏差量が前記不感帯範囲内の場合、前記偏差量が大きい前記不感帯範囲以外の感帯範囲の場合に比較して、前記無効電力注入回路で注入する前記無効電力の無効電力量の絶対値を小さく補正して前記無効電力量を算出するようにしたので、前記偏差量が小さい不感帯範囲内であっても、前記分散型電源の単独運転を検出すべく、前記無効電力を注入することができ、さらには、この無効電力量の絶対値、すなわち注入量の絶対値を、前記偏差量が大きい感帯範囲に比較して小さくすることで、系統電圧側の低速な周波数の揺れの影響を受けることなく、前記偏差量が小さい不感帯範囲での前記無効電力注入の周波数変動による単独運転の誤検出を確実に防止することができる。   Therefore, according to the isolated operation detection device of the present invention, when the dead zone range in which the deviation amount is small is set in advance, and the deviation amount calculated by the deviation amount calculation means is within the dead zone range, the deviation amount is large. Since the reactive power amount is calculated by correcting the absolute value of the reactive power amount of the reactive power injected by the reactive power injection circuit to be smaller than that in the case of the sensitive band range other than the dead zone range, Even if the deviation amount is within a small dead band range, the reactive power can be injected in order to detect isolated operation of the distributed power source. Furthermore, the absolute value of the reactive power amount, that is, the injection amount By making the absolute value smaller than the sensitive band range where the deviation amount is large, the reactive power injection in the dead band range where the deviation amount is small without being affected by the slow fluctuation of the frequency on the system voltage side. No lap It is possible to reliably prevent erroneous detection of the islanding operation due to several variations.

また、本発明の単独運転検出装置の前記計測周期単位は、前記商用系統の系統周期の1/3以下である5m秒単位にしても良い。   Moreover, you may make the said measurement period unit of the isolated operation detection apparatus of this invention into 5 msec unit which is 1/3 or less of the system period of the said commercial system.

従って、本発明の単独運転検出装置によれば、前記商用系統の系統周期を5m秒単位で順次計測するようにしたので、5m秒単位の系統周期で、前記無効電力量を算出する偏差量の基礎となる前記移動平均値を算出することで、きめ細かい移動平均値の変動、すなわち偏差量の変動を滑らかにすることができるため、分散型電源及び商用系統間に注入すべき無効電力の無効電力量を大きくしたとしても、前記無効電力注入装置に供給する電流波形の急変を防止することができ、その結果、例えば100m秒程度で分散型電源の単独運転を高速に検出するのに適した無効電力の高速注入を実現することができる。   Therefore, according to the isolated operation detection device of the present invention, the system cycle of the commercial system is sequentially measured in units of 5 milliseconds, so the deviation amount for calculating the reactive power amount in the system period in units of 5 milliseconds. By calculating the above-mentioned moving average value that is the basis, it is possible to smooth out fine fluctuations of the moving average value, that is, deviation amount deviations, so reactive power of reactive power to be injected between the distributed power source and the commercial system Even if the amount is increased, it is possible to prevent a sudden change in the current waveform supplied to the reactive power injection device. As a result, for example, the invalidity suitable for detecting a single operation of a distributed power source at high speed in about 100 milliseconds. High speed injection of power can be realized.

また、本発明の単独運転検出装置の前記所定移動平均時間分は、前記商用系統の系統周期よりも長く、かつ前記単独運転検出回路の前記単独運転の高速検出を可能にする時間である40m秒分にしても良い。   Further, the predetermined moving average time of the isolated operation detection device of the present invention is longer than the system cycle of the commercial system and is a time that allows the isolated operation detection circuit to detect the isolated operation at a high speed. It can be divided.

従って、本発明の単独運転検出装置によれば、5m秒単位で順次計測した系統周期に基づき、連続した40m秒分の系統周期の移動平均値を順次算出するようにしたので、移動平均値を算出するための処理に要する時間を考慮して、所定移動平均時間分は40m秒分に設定することで、例えば100m秒程度で分散型電源の単独運転を高速検出することができる。   Therefore, according to the isolated operation detection device of the present invention, the moving average value of the continuous 40 msec system cycle is sequentially calculated based on the system cycle sequentially measured in 5 msec units. In consideration of the time required for the calculation process, the predetermined moving average time is set to 40 milliseconds, so that the isolated operation of the distributed power source can be detected at high speed in about 100 milliseconds, for example.

本発明の単独運転検出装置の前記所定時間前の過去の移動平均値は、前記単独運転検出回路の前記単独運転の高速検出を可能にする時間である、前記最新の移動平均値から200m秒前の過去の移動平均値にしても良い。   The past moving average value before the predetermined time of the isolated operation detection device of the present invention is a time enabling high-speed detection of the isolated operation of the isolated operation detection circuit, 200 ms before the latest moving average value. The past moving average value may be used.

従って、本発明の単独運転検出装置によれば、移動平均値記憶手段に記憶中の最新の移動平均値及び、同最新の移動平均値から200m秒前の過去の移動平均値を読み出し、これら読み出した最新の移動平均値及び200m秒前の過去の移動平均値の偏差量を5m秒単位の系統周期毎に算出するようにしたので、過去の移動平均値を最新の移動平均値から200m秒前の移動平均値にすることで、単独運転時及び通常運転時の分別がし易くなることはもちろんのこと、商用系統の停電発生時の周波数の乱れを確実に認識することができるため、分散型電源及び商用系統間に注入すべき無効電力の無効電力量を大きくしたとしても、前記無効電力注入装置に供給する電流波形の急変を防止することができ、その結果、例えば100m秒程度で前記分散型電源の単独運転を高速に検出するのに適した無効電力の高速注入を実現することができる。   Therefore, according to the isolated operation detection device of the present invention, the latest moving average value stored in the moving average value storage means and the past moving average value 200 msec before the latest moving average value are read and read. Since the deviation amount of the latest moving average value and the past moving average value 200 msec before is calculated for each system cycle in 5 msec units, the past moving average value is calculated 200 msec before the latest moving average value. By using the moving average value of, it is easy to separate during normal operation and normal operation, as well as to reliably recognize frequency disturbances when a power failure occurs in commercial systems. Even if the reactive power amount of the reactive power to be injected between the power source and the commercial system is increased, it is possible to prevent a sudden change in the current waveform supplied to the reactive power injection device. The independent operation of the dispersed type power supply it is possible to realize high-speed injection of the reactive power that is suitable for detecting high speed.

上記のように構成された本発明の単独運転検出装置によれば、前記商用系統の系統周期の1/3以下に相当する計測周期単位で前記商用系統の系統周期を順次計測し、この順次計測した前記計測周期単位の系統周期に基づき、連続した所定移動平均時間分の系統周期の移動平均値を順次算出し、この順次算出した移動平均値を順次記憶し、この記憶中の最新の移動平均値及び、同最新の移動平均値から所定時間前の過去の移動平均値を読み出し、これら読み出した最新の移動平均値及び過去の移動平均値の偏差量を算出し、この算出した偏差量に基づき、前記無効電力注入回路で注入する前記無効電力の無効電力量を算出するようにしたので、前記商用系統の系統周期の1/3以下に相当する計測周期単位の系統周期で、前記無効電力量を算出する偏差量の基礎となる前記移動平均値を算出することで、きめ細かい移動平均値の変動、すなわち偏差量の変動を滑らかにすることができるため、分散型電源及び商用系統間に注入すべき無効電力の無効電力量を大きくしたとしても、前記無効電力注入装置に供給する電流波形の急変を防止することができ、その結果、前記分散型電源の単独運転を高速に検出するのに適した無効電力の高速注入を実現することができる。   According to the isolated operation detecting device of the present invention configured as described above, the system cycle of the commercial system is sequentially measured in a measurement cycle unit corresponding to 1/3 or less of the system cycle of the commercial system, and this sequential measurement is performed. Based on the system cycle of the measurement cycle unit, the moving average value of the system cycle for a continuous predetermined moving average time is sequentially calculated, the sequentially calculated moving average value is sequentially stored, and the latest moving average in the storage The previous moving average value of a predetermined time ago is read from the value and the latest moving average value, and the deviation amount of the read latest moving average value and the past moving average value is calculated, and based on the calculated deviation amount Since the reactive power amount of the reactive power injected by the reactive power injection circuit is calculated, the reactive power amount at a system cycle in a measurement cycle unit corresponding to 1/3 or less of the system cycle of the commercial system. Calculate By calculating the moving average value that is the basis for the amount of deviation to be performed, it is possible to smooth the fluctuation of the moving average value, that is, the fluctuation of the deviation amount. Even if the reactive power amount of the power is increased, it is possible to prevent a sudden change in the current waveform supplied to the reactive power injection device, and as a result, the invalidity suitable for detecting single operation of the distributed power source at high speed. High speed injection of power can be realized.

以下、図面に基づいて本発明の単独運転検出装置の実施の形態を示す分散型電源システムについて説明する。図1は本実施の形態を示す分散型電源システム内部の概略構成を示すブロック図である。   Hereinafter, a distributed power supply system showing an embodiment of an isolated operation detection device of the present invention will be described based on the drawings. FIG. 1 is a block diagram showing a schematic configuration inside a distributed power supply system according to the present embodiment.

図1に示す分散型電源システム1は、直流電力を発電する、例えば太陽光発電機やガスエンジン発電機等の分散型電源2と、この分散型電源2と連系接続する商用系統3と、分散型電源2及び商用系統3間に配置され、電力変換機能を備えたパワーコンディショナ装置4と、パワーコンディショナ装置4及び商用系統3間に配置され、商用系統3停電時の分散型電源2の単独運転を検出する単独運転検出装置5とを有し、パワーコンディショナ装置4は、電力変換機能を通じて、分散型電源2にて発電した直流電力を商用系統3の交流電力に変換し、この変換した交流電力を一般家電機器等の負荷6に供給するものである。   A distributed power system 1 shown in FIG. 1 generates direct-current power, for example, a distributed power source 2 such as a solar power generator or a gas engine generator, and a commercial system 3 connected to the distributed power source 2. A power conditioner device 4 disposed between the distributed power source 2 and the commercial system 3 and having a power conversion function, and a distributed power source 2 disposed between the power conditioner device 4 and the commercial system 3 in the event of a power failure at the commercial system 3 The power conditioner device 4 converts the DC power generated by the distributed power source 2 into the AC power of the commercial system 3 through the power conversion function. The converted AC power is supplied to a load 6 such as a general household electrical appliance.

単独運転検出装置5は、分散型電源2及び商用系統3間に無効電力を注入するインバータ回路11と、インバータ回路11からの無効電力の高周波成分をカットするフィルタ回路12と、商用系統3の系統電圧を検出する電圧検出回路13と、電圧検出回路13を通じてインバータ回路11で注入した無効電力の周波数変動を分散型電源2及び商用系統3間で検出し、この周波数変動に基づき、商用系統3停電時の分散型電源2の単独運転を検出する単独運転検出回路14と、分散型電源2及び商用系統3間で検出した無効電力の周波数変動に基づき、インバータ回路11の無効電力の注入量(無効電力量)を算出し、この算出した注入量に基づきインバータ回路11を制御するインバータ駆動制御回路15と、分散型電源2及び商用系統3間の連系接続を遮断する連系リレー回路16と、分散型電源2及び商用系統3間のライン及びインバータ回路11間の接続を遮断するリレー回路17と、この単独運転検出装置5全体を制御する制御回路18とを有している。   The isolated operation detection device 5 includes an inverter circuit 11 that injects reactive power between the distributed power source 2 and the commercial system 3, a filter circuit 12 that cuts high-frequency components of reactive power from the inverter circuit 11, and a system of the commercial system 3. A voltage detection circuit 13 for detecting the voltage, and a frequency fluctuation of the reactive power injected by the inverter circuit 11 through the voltage detection circuit 13 is detected between the distributed power source 2 and the commercial system 3, and based on this frequency fluctuation, a commercial system 3 power failure Independent operation injection circuit (invalid amount of reactive power) of inverter circuit 11 based on frequency variation of reactive power detected between distributed power source 2 and commercial system 3 The inverter drive control circuit 15 for controlling the inverter circuit 11 based on the calculated injection amount, the distributed power source 2 and the commercial system 3 The interconnection relay circuit 16 that cuts off the interconnection connection of the power source, the line between the distributed power source 2 and the commercial system 3, and the relay circuit 17 that cuts off the connection between the inverter circuits 11 and the entire independent operation detection device 5 are controlled. And a control circuit 18.

フィルタ回路12は、リアクトル12A及びコンデンサ12Bで構成し、インバータ回路11で注入した無効電力の高周波成分をカットするものである。   The filter circuit 12 includes a reactor 12A and a capacitor 12B, and cuts high frequency components of reactive power injected by the inverter circuit 11.

インバータ駆動制御回路15は、電圧検出回路13を通じて検出した系統電圧から商用系統3の系統周期を計測周期単位で順次計測する周波数計測部21と、この周波数計測部21にて順次計測した計測周期単位の系統周期に基づき、連続した所定移動平均時間分の系統周期の移動平均値を順次算出する移動平均値算出部22と、この移動平均値算出部22にて移動平均値を順次記憶する移動平均値記憶部23と、この移動平均値記憶部23に記憶中の最新の移動平均値及び、この最新の移動平均値から所定時間前の過去の移動平均値を読み出し、これら読み出した最新の移動平均値及び過去の移動平均値の偏差量を計測周期単位の系統周期毎に算出する偏差量算出部24と、この偏差量算出部24にて算出した偏差量をゲイン調整するゲイン部25と、ゲイン調整した偏差量を所定入力範囲に抑制するリミッタ部26と、リミッタ部26で抑制した偏差量に基づき、定期変動部27からの定期無効電力量を補正して、インバータ回路11で注入する無効電力の無効電力量を算出する無効電力量演算部28と、この無効電力量演算部28にて算出した無効電力量に基づき、インバータ回路11を駆動する出力電流を制御する出力電流制御部29とを有している。   The inverter drive control circuit 15 includes a frequency measurement unit 21 that sequentially measures the system cycle of the commercial system 3 from the system voltage detected through the voltage detection circuit 13 in units of measurement cycles, and a measurement cycle unit that is sequentially measured by the frequency measurement unit 21. Based on the system cycle, a moving average value calculation unit 22 that sequentially calculates a moving average value of a system cycle for a continuous predetermined moving average time, and a moving average that sequentially stores the moving average value in the moving average value calculation unit 22 The value storage unit 23, the latest moving average value stored in the moving average value storage unit 23, and the past moving average value a predetermined time ago from the latest moving average value are read out, and the read out latest moving average And a deviation amount calculation unit 24 that calculates a deviation amount of a moving average value in the past and a system cycle of a measurement cycle unit, and a gain that adjusts the gain of the deviation amount calculated by the deviation amount calculation unit 24 25, a limiter unit 26 that suppresses the gain adjustment-adjusted deviation amount to a predetermined input range, and a periodic reactive power amount from the periodic variation unit 27 is corrected based on the deviation amount suppressed by the limiter unit 26, and the inverter circuit 11 The reactive power amount calculation unit 28 that calculates the reactive power amount of the reactive power injected in step S3, and the output current that controls the output current that drives the inverter circuit 11 based on the reactive power amount calculated by the reactive power amount calculation unit 28 And a control unit 29.

周波数計測部21は、電圧検出回路13を通じて系統電圧から商用系統3の系統周期を計測周期単位、例えば5m秒単位で順次計測するものである。尚、商用系統3の系統周期を50Hz(1系統周期は20m秒)とした場合、その計測周期単位は、商用系統3の系統周期の1/3以下、例えば5m秒単位にすることが望ましい。   The frequency measuring unit 21 sequentially measures the system period of the commercial system 3 from the system voltage through the voltage detection circuit 13 in units of measurement periods, for example, 5 milliseconds. In addition, when the system period of the commercial system 3 is 50 Hz (one system period is 20 milliseconds), the measurement period unit is desirably 1/3 or less of the system period of the commercial system 3, for example, 5 milliseconds unit.

移動平均値算出部22は、周波数計測部21にて順次計測した5m秒単位の系統周期に基づき、連続した所定移動平均時間分、例えば40m秒分の系統周期の移動平均値を順次算出するものである。尚、所定移動平均時間は、系統周期の一周期、例えば20m秒よりも長く、かつ所望する検出速度、例えば100m秒よりもできるだけ短い時間を条件とするため、例えば40m秒にすることが望ましい。   The moving average value calculation unit 22 sequentially calculates the moving average value of the system cycle for a predetermined predetermined moving average time, for example, 40 msec, based on the system cycle of 5 msec units sequentially measured by the frequency measurement unit 21. It is. The predetermined moving average time is preferably set to 40 ms, for example, because it is longer than one cycle of the system cycle, for example, 20 ms and as short as possible for a desired detection speed, for example, 100 ms.

偏差量算出部24は、移動平均値記憶部23に記憶中の最新の移動平均値及び、この最新の移動平均値から所定時間前、例えば200m秒前の過去の移動平均値を読み出し、これら読み出した最新の移動平均値及び過去の移動平均値の偏差量を5m秒単位の系統周期毎に算出するものである。尚、所定時間前の過去の移動平均値は、所望する検出速度、例えば100m秒よりも長く、かつできるだけ短い期間を条件とするため、例えば200m秒にすることが望ましい。   The deviation amount calculation unit 24 reads out the latest moving average value stored in the moving average value storage unit 23 and the past moving average value of a predetermined time before, for example, 200 msec from the latest moving average value. The deviation amount between the latest moving average value and the past moving average value is calculated for each system cycle in units of 5 milliseconds. Note that the past moving average value before the predetermined time is preferably set to, for example, 200 milliseconds because it is longer than the desired detection speed, for example, 100 milliseconds and is as short as possible.

図2は周波数計測部21、移動平均値算出部22及び偏差量算出部24に関わる、後述の無効電力量算出処理に関わるアルゴリズムを端的に示す動作説明図である。   FIG. 2 is an operation explanatory diagram briefly showing an algorithm related to a reactive power amount calculation process described later, which is related to the frequency measurement unit 21, the moving average value calculation unit 22, and the deviation amount calculation unit 24.

図2に示すC0は周波数計測部21で現在計測した系統周期、C1が5m秒前に計測した系統周期、Cnはn*5m秒前の系統周期の計測値を示す。従って、移動平均値算出部22は、最新の移動平均値は、C0〜C7分の40m秒分の系統周期を移動平均化して5m秒単位で順次算出するものである。尚、図3(a)に示すように5m秒単位で移動平均値を算出することになるため、図3(b)に比較して滑らかな移動平均値の変動、すなわち周波数変動を得ることができるものである。また、図4(a)及び図5(a)に示すように所定移動平均時間を40m秒にすることで、図4(b)に比較して所定移動平均時間を短くし、図5(b)に比較して所定移動平均時間を長くし、現在の動作状況を反映した移動平均値を得ることができるものである。   C0 shown in FIG. 2 is a system cycle currently measured by the frequency measuring unit 21, C1 is a system cycle measured 5 ms before, and Cn is a measured value of the system cycle n * 5 ms before. Therefore, the moving average value calculation unit 22 calculates the latest moving average value sequentially in units of 5 milliseconds by moving average the system period for 40 milliseconds from C0 to C7. Since the moving average value is calculated in units of 5 milliseconds as shown in FIG. 3A, smooth moving average value fluctuation, that is, frequency fluctuation can be obtained as compared with FIG. 3B. It can be done. Also, as shown in FIGS. 4A and 5A, the predetermined moving average time is set to 40 milliseconds, so that the predetermined moving average time is shortened compared to FIG. 4B, and FIG. The moving average value reflecting the current operation state can be obtained by extending the predetermined moving average time as compared with (1).

また、過去の移動平均値は、図2に示すように、C0〜C7の最新の移動平均値とした場合、C0から200m秒前のC40〜C47の40m秒分の系統周期を移動平均化して5m秒単位で順次算出したものである。また、現在の偏差量は、過去の移動平均値(C40〜C47)−最新の移動平均値(C7〜C0)で算出するものである。尚、偏差量は、図4(a)に示しように最新の移動平均値及び、最新の移動平均値から200m秒前の過去の移動平均値に基づき順次算出することになるため、図4(b)に比較しても、現在の動作状況を反映した偏差量を取得することができるものである。   In addition, as shown in FIG. 2, when the past moving average value is the latest moving average value of C0 to C7, the moving period of 40 msec of C40 to C47 200 msec before C0 is moved and averaged. These are calculated sequentially in units of 5 milliseconds. The current deviation amount is calculated by the past moving average value (C40 to C47) −the latest moving average value (C7 to C0). The deviation amount is sequentially calculated based on the latest moving average value and the past moving average value 200 msec before the latest moving average value as shown in FIG. Even in comparison with b), it is possible to acquire a deviation amount that reflects the current operation status.

無効電力量演算部28は、図6(a)に示す無効電力量−偏差量特性を使用して、偏差量算出部24にて算出した偏差量に基づき無効電力量を算出し、この無効電力量を出力電流制御部29に通知するものである。尚、図6(a)に示す無効電力量−偏差量特性は、偏差量が小さい不感帯範囲(第1所定値X1〜第2所定値X2)と、偏差量が大きい不感帯範囲以外の感帯範囲(第1所定値X1未満又は第2所定値X2超え)とを設定し、例えば現在偏差量が第1所定値X1未満になると、無効電力量を減少し、現在偏差量が第2所定値X2を超えると、無効電力量を増加するのに対し、現在偏差量が小さく不感帯範囲内の場合、偏差量が感帯範囲の場合に比較して、無効電力量の絶対値を小さく補正するものである。すなわち、偏差量(周波数変動)が小さい不感帯範囲内であっても、分散型電源2の単独運転を検出すべく、無効電力を注入することができ、さらには、無効電力量の絶対値を感帯範囲の場合に比較して小さくすることで、系統電圧の低速な周波数の揺れの影響を受けることなく、単独運転の誤検出を確実に防止することができるものである。   The reactive power amount calculation unit 28 calculates the reactive power amount based on the deviation amount calculated by the deviation amount calculation unit 24 using the reactive power amount-deviation amount characteristic shown in FIG. The amount is notified to the output current control unit 29. Note that the reactive power amount-deviation amount characteristic shown in FIG. 6A has a dead zone range (first predetermined value X1 to second predetermined value X2) with a small deviation amount and a dead zone range other than the dead zone range with a large deviation amount. (Less than the first predetermined value X1 or more than the second predetermined value X2) is set. For example, when the current deviation amount becomes less than the first predetermined value X1, the reactive power amount is decreased, and the current deviation amount becomes the second predetermined value X2. If the current deviation amount is small and within the dead band range, the absolute value of the reactive power amount is corrected to be smaller than when the deviation amount is within the dead band range. is there. That is, even when the deviation amount (frequency fluctuation) is within a small dead band range, reactive power can be injected to detect the isolated operation of the distributed power source 2, and the absolute value of the reactive power amount can be sensed. By making it smaller than in the case of the band range, it is possible to reliably prevent erroneous detection of an isolated operation without being affected by the slow fluctuation of the system voltage.

単独運転検出装置5の制御回路18は、単独運転検出回路14を通じて分散型電源2の単独運転を検出すると、連系リレー回路16を通じて、分散型電源2及び商用系統3間の連系接続を遮断すると共に、リレー回路17を通じて、分散型電源2及び商用系統3間のライン及び、インバータ回路11間の接続を遮断するものである。   When the control circuit 18 of the isolated operation detection device 5 detects the isolated operation of the distributed power supply 2 through the isolated operation detection circuit 14, the connected connection between the distributed power supply 2 and the commercial system 3 is cut off through the connected relay circuit 16. At the same time, the connection between the distributed power source 2 and the commercial system 3 and the inverter circuit 11 is cut off through the relay circuit 17.

尚、請求項記載の単独運転検出装置は単独運転検出装置5、分散型電源は分散型電源2、商用系統は商用系統3、無効電力注入回路はインバータ回路11、周波数変動検出回路は電圧検出回路13及び周波数計測部21、単独運転検出回路は単独運転検出回路14、系統周期計測手段は電圧検出回路13及び周波数計測部21、移動平均値算出手段は移動平均値算出部22、移動平均値記憶手段は移動平均値記憶部23、偏差量算出手段は偏差量算出部24、無効電力量算出手段は無効電力量演算部28に相当するものである。   The isolated operation detection device according to the claims is the isolated operation detection device 5, the distributed power supply is the distributed power supply 2, the commercial system is the commercial system 3, the reactive power injection circuit is the inverter circuit 11, and the frequency fluctuation detection circuit is the voltage detection circuit. 13 and the frequency measurement unit 21, the isolated operation detection circuit is the isolated operation detection circuit 14, the system cycle measurement means is the voltage detection circuit 13 and the frequency measurement unit 21, the moving average value calculation means is the moving average value calculation unit 22, and the moving average value storage The means corresponds to the moving average value storage unit 23, the deviation amount calculation means corresponds to the deviation amount calculation unit 24, and the reactive power amount calculation means corresponds to the reactive power amount calculation unit 28.

次に本実施の形態を示す分散型電源システム1の動作について説明する。図3は本実施の形態に関わる単独運転検出装置5の無効電力量算出処理に関わるインバータ駆動制御回路15内部の処理動作を示すフローチャートである。   Next, the operation of the distributed power supply system 1 showing this embodiment will be described. FIG. 3 is a flowchart showing the processing operation inside the inverter drive control circuit 15 related to the reactive power amount calculation processing of the isolated operation detection device 5 according to the present embodiment.

図7に示す無効電力量算出処理は、分散型電源2の単独運転を高速に検出するのに対応した、分散型電源2及び商用系統3間に注入すべき無効電力の無効電力量を算出するための処理である。   The reactive power amount calculation process shown in FIG. 7 calculates the reactive power amount of reactive power to be injected between the distributed power source 2 and the commercial system 3 corresponding to the high speed detection of the isolated operation of the distributed power source 2. Process.

図7において単独運転検出装置5のインバータ駆動制御回路15内部の周波数計測部21は、電圧検出回路13を通じて商用系統3の系統電圧を検出すると、この系統電圧の系統周期を5m秒単位で順次計測し(ステップS11)、この5m秒単位の系統周期を移動平均値算出部22に順次記憶する(ステップS12)。   In FIG. 7, when the frequency measuring unit 21 in the inverter drive control circuit 15 of the isolated operation detection device 5 detects the system voltage of the commercial system 3 through the voltage detection circuit 13, the system period of this system voltage is sequentially measured in units of 5 milliseconds. (Step S11), the system cycle in units of 5 milliseconds is sequentially stored in the moving average value calculation unit 22 (Step S12).

移動平均値算出部22は、記憶中の連続した40m秒分の系統周期に基づき移動平均値を順次算出し(ステップS13)、これら移動平均値を移動平均値記憶部23に順次記憶する(ステップS14)。   The moving average value calculation unit 22 sequentially calculates the moving average value based on the system cycle for 40 milliseconds that is being stored (step S13), and sequentially stores these moving average values in the moving average value storage unit 23 (step S13). S14).

偏差量算出部24は、移動平均値記憶部23に記憶中の最新の移動平均値及び、この最新の移動平均値から200m秒前の過去の移動平均値を読み出し、これら読み出した最新の移動平均値及び過去の移動平均値に基づき偏差量を順次算出する(ステップS15)。   The deviation amount calculation unit 24 reads the latest moving average value stored in the moving average value storage unit 23 and the past moving average value 200 msec before the latest moving average value, and these read latest moving average values. Deviation amounts are sequentially calculated based on the value and the past moving average value (step S15).

ゲイン部25は、偏差量算出部24にて算出した偏差量をゲイン調整すると共に(ステップS16)、リミッタ部26は、このゲイン調整した偏差量が無効電力量演算部28の入力範囲に収まるように抑制する(ステップS17)。   The gain unit 25 performs gain adjustment on the deviation amount calculated by the deviation amount calculation unit 24 (step S16), and the limiter unit 26 ensures that the gain adjustment-adjusted deviation amount falls within the input range of the reactive power amount calculation unit 28. (Step S17).

無効電力量演算部28は、図6(a)に示す無効電力量−偏差量特性に基づき、リミッタ部26を通じて抑制した偏差量に対応する無効電力量を算出する(ステップS18)。   The reactive power amount calculating unit 28 calculates a reactive power amount corresponding to the deviation amount suppressed through the limiter unit 26 based on the reactive power amount-deviation amount characteristic shown in FIG. 6A (step S18).

無効電力量演算部28は、この現在偏差量に対応した無効電力量と、定期変動部27の無効電力量とを加算して、インバータ回路11が注入すべき、注入無効電力量を算出し(ステップS19)、この算出した注入無効電力量を出力電流制御部29に通知することで、この処理動作を終了する。   The reactive power amount calculating unit 28 adds the reactive power amount corresponding to the current deviation amount and the reactive power amount of the periodic variation unit 27 to calculate the injected reactive power amount that the inverter circuit 11 should inject ( In step S19), the calculated injection reactive power amount is notified to the output current control unit 29, thereby ending this processing operation.

出力電流制御部29は、注入無効電力量に対応した出力電流を生成し、この出力電流をインバータ回路11に供給することで、同インバータ回路11から分散型電源2及び商用系統3間のラインに注入無効電力量に対応した無効電力を注入する。その結果、分散型電源2の単独運転の高速検出に対応した、分散型電源2及び商用系統3間のラインに無効電力の高速注入を実現することができる。   The output current control unit 29 generates an output current corresponding to the injected reactive energy, and supplies this output current to the inverter circuit 11, so that a line between the distributed power source 2 and the commercial system 3 is supplied from the inverter circuit 11. Reactive power corresponding to the injected reactive power amount is injected. As a result, high-speed injection of reactive power to the line between the distributed power source 2 and the commercial system 3 corresponding to the high-speed detection of the single operation of the distributed power source 2 can be realized.

本実施の形態によれば、商用系統3の系統周期の1/3以下に相当する5m秒単位で商用系統3の系統周期を順次計測し、この順次計測した5m秒単位の系統周期に基づき、連続した40m秒分の系統周期の移動平均値を順次算出し、この順次算出した移動平均値を順次記憶し、この記憶中の最新の移動平均値及び、同最新の移動平均値から200m秒前の過去の移動平均値を読み出し、これら読み出した最新の移動平均値及び過去の移動平均値の偏差量を算出し、この算出した偏差量に基づき、インバータ回路11で注入する無効電力の無効電力量を算出するようにしたので、商用系統3の系統周期の1/3以下に相当する5m秒単位の系統周期で、無効電力量を算出する偏差量の基礎となる移動平均値を算出することで、きめ細かい移動平均値の変動、すなわち偏差量の変動を滑らかにすることができるため、分散型電源2及び商用系統3間に注入すべき無効電力の無効電力量を大きくしても、インバータ回路11に供給する電流波形の急変を防止することができ、その結果、分散型電源2の単独運転を高速に検出するのに適した無効電力の高速注入を実現することができる。   According to the present embodiment, the system period of the commercial system 3 is sequentially measured in units of 5 milliseconds corresponding to 1/3 or less of the system period of the commercial system 3, and based on the system period in units of 5 milliseconds measured sequentially, The moving average value of the system cycle for continuous 40 milliseconds is sequentially calculated, and the sequentially calculated moving average value is sequentially stored, and the latest moving average value stored in the memory and the latest moving average value 200 ms before The past moving average value is read out, the latest moving average value read out and the deviation amount of the past moving average value are calculated, and the reactive power amount of the reactive power injected by the inverter circuit 11 based on the calculated deviation amount By calculating the moving average value that is the basis of the deviation amount for calculating the reactive power amount in the system cycle of 5 milliseconds corresponding to 1/3 or less of the system cycle of the commercial system 3. Fine-grained movement Since the fluctuation of the average value, that is, the fluctuation of the deviation amount can be smoothed, even if the reactive power amount of the reactive power to be injected between the distributed power source 2 and the commercial system 3 is increased, it is supplied to the inverter circuit 11. A sudden change in the current waveform can be prevented, and as a result, high-speed injection of reactive power suitable for detecting single operation of the distributed power source 2 at high speed can be realized.

また、本実施の形態によれば、偏差量算出部24にて算出した偏差量が小さい不感帯範囲を予め設定し、現在の偏差量が不感帯範囲内の場合、現在偏差量が大きい感帯範囲の場合に比較して、インバータ回路11で注入する無効電力の無効電力量の絶対値を小さく補正して無効電力量を算出するようにしたので、偏差量が小さい不感帯範囲内であっても、分散型電源2の単独運転を検出すべく、無効電力を注入することができ、さらには、この無効電力量の絶対値、すなわち注入量の絶対値を、偏差量が大きい感帯範囲に比較して小さくすることで、偏差量が小さい不感帯範囲での無効電力注入の周波数変動による単独運転の誤検出を確実に防止することができる。   Further, according to the present embodiment, a dead zone range in which the deviation amount calculated by the deviation amount calculation unit 24 is small is set in advance, and when the current deviation amount is within the dead zone range, Compared to the case, since the reactive power amount is calculated by correcting the absolute value of the reactive power amount of the reactive power injected by the inverter circuit 11 to be small, even if the deviation amount is within a small dead band range The reactive power can be injected to detect the isolated operation of the power source 2, and the absolute value of the reactive power amount, that is, the absolute value of the injected amount is compared with the sensitive range with a large deviation amount. By making it smaller, it is possible to reliably prevent erroneous detection of isolated operation due to frequency fluctuations of reactive power injection in the dead zone range where the deviation amount is small.

また、本実施の形態によれば、商用系統3の系統周期を5m秒単位で順次計測するようにしたので、5m秒単位の系統周期で、無効電力量を算出する偏差量の基礎となる移動平均値を算出することで、きめ細かい移動平均値の変動、すなわち偏差量の変動を滑らかにすることができるため、分散型電源2及び商用系統3間に注入すべき無効電力の無効電力量を大きくしたとしても、インバータ回路11に供給する電流波形の急変を防止することができ、その結果、例えば100m秒程度で分散型電源2の単独運転を高速に検出するのに適した無効電力の高速注入を実現することができる。   Further, according to the present embodiment, since the system cycle of the commercial system 3 is sequentially measured in units of 5 milliseconds, the movement that is the basis of the deviation amount for calculating the reactive power amount in the system period in units of 5 milliseconds. By calculating the average value, it is possible to smooth the fluctuation of the fine moving average value, that is, the fluctuation of the deviation amount, so that the reactive power amount of the reactive power to be injected between the distributed power source 2 and the commercial system 3 is increased. Even so, it is possible to prevent a sudden change in the current waveform supplied to the inverter circuit 11, and as a result, for example, high-speed injection of reactive power suitable for detecting single operation of the distributed power source 2 at high speed in about 100 milliseconds. Can be realized.

また、本実施の形態によれば、5m秒単位で順次計測した系統周期に基づき、連続した40m秒分の系統周期の移動平均値を順次算出するようにしたので、移動平均値を算出するための処理に要する時間を考慮して、所定移動平均時間分は40m秒分に設定することで、例えば100m秒程度で分散型電源2の単独運転を高速検出することができる。   Further, according to the present embodiment, since the moving average value of the continuous system period for 40 milliseconds is sequentially calculated based on the system period sequentially measured in units of 5 milliseconds, the moving average value is calculated. In consideration of the time required for this processing, the predetermined moving average time is set to 40 milliseconds, so that the isolated operation of the distributed power source 2 can be detected at high speed in about 100 milliseconds, for example.

また、本実施の形態によれば、記憶中の最新の移動平均値及び、同最新の移動平均値から200m秒前の過去の移動平均値を読み出し、これら読み出した最新の移動平均値及び200m秒前の過去の移動平均値の偏差量を5m秒単位の系統周期毎に算出するようにしたので、過去の移動平均値を最新の移動平均値から200m秒前の移動平均値にすることで、単独運転時及び通常運転時の分別がし易くなることはもちろんのこと、商用系統3の停電発生時の周波数の乱れを確実に認識することができるため、分散型電源2及び商用系統3間に注入すべき無効電力の無効電力量を大きくしたとしても、インバータ回路11に供給する電流波形の急変を防止することができ、その結果、例えば100m秒程度で分散型電源2の単独運転を高速に検出するのに適した無効電力の高速注入を実現することができる。   Further, according to the present embodiment, the latest moving average value being stored and the past moving average value 200 msec before the latest moving average value are read, and the read latest moving average value and 200 msec are read out. Since the deviation amount of the previous past moving average value is calculated for each system cycle in units of 5 ms, by setting the past moving average value to the moving average value 200 ms before the latest moving average value, In addition to facilitating separation during single operation and normal operation, it is possible to reliably recognize frequency disturbance when a power failure occurs in the commercial system 3. Even if the reactive power amount of the reactive power to be injected is increased, a sudden change in the current waveform supplied to the inverter circuit 11 can be prevented. As a result, for example, the isolated operation of the distributed power source 2 can be performed at high speed in about 100 milliseconds. Inspection It is possible to realize a high-speed injection of the reactive power that is suitable for.

尚、上記実施の形態においては、パワーコンディショナ装置4及び商用系統3間に単独運転検出装置5を別体配置するようにしたが、当然ながら、パワーコンディショナ装置4内部に同単独運転検出装置5を内蔵するようにしても、同様の効果が得られることは言うまでもない。   In addition, in the said embodiment, although the independent operation detection apparatus 5 was separately arrange | positioned between the power conditioner apparatus 4 and the commercial system 3, of course, the independent operation detection apparatus in the power conditioner apparatus 4 inside. It goes without saying that the same effect can be obtained even if 5 is incorporated.

また、上記実施の形態においては、周波数計測部21にて5m秒単位で系統周期を順次計測するようにしたが、例えば系統周期である20m秒単位で系統周期を順次計測し、この順次計測した系統周期に対して、例えば5m秒周期のローパスフィルタ処理を施すことで、きめ細かい移動平均値の変動、すなわち偏差量の変動を滑らかにすることができるため、同様の効果が得られることは言うまでもない。   In the above embodiment, the frequency measurement unit 21 sequentially measures the system cycle in units of 5 milliseconds. For example, the system period is sequentially measured in units of 20 milliseconds, which is the system period, and this measurement is sequentially performed. It is needless to say that the same effect can be obtained by applying a low-pass filter process with a period of, for example, 5 milliseconds to the system period, so that fine movement average value fluctuations, that is, deviation amount fluctuations can be smoothed. .

本発明の単独運転検出装置によれば、前記商用系統の系統周期の1/3以下に相当する計測周期単位で前記商用系統の系統周期を順次計測し、この順次計測した前記計測周期単位の系統周期に基づき、連続した所定移動平均時間分の系統周期の移動平均値を順次算出し、この順次算出した移動平均値を順次記憶し、この記憶中の最新の移動平均値及び、同最新の移動平均値から所定時間前の過去の移動平均値を読み出し、これら読み出した最新の移動平均値及び過去の移動平均値の偏差量を算出し、この算出した偏差量に基づき、前記無効電力注入回路で注入する前記無効電力の無効電力量を算出するようにしたので、前記商用系統の系統周期の1/3以下に相当する計測周期単位の系統周期で、前記無効電力量を算出する偏差量の基礎となる前記移動平均値を算出することで、きめ細かい移動平均値の変動、すなわち偏差量の変動を滑らかにすることができるため、分散型電源及び商用系統間に注入すべき無効電力の無効電力量を大きくしたとしても、前記無効電力注入装置に供給する電流波形の急変を防止することができ、その結果、前記分散型電源の単独運転を高速に検出するのに適した無効電力の高速注入を実現することができるため、分散型電源及び商用系統間を連系接続する分散型電源システムに有用である。   According to the isolated operation detection device of the present invention, the system cycle of the commercial system is sequentially measured in a measurement cycle unit corresponding to 1/3 or less of the system cycle of the commercial system, and the system of the measurement cycle unit that is sequentially measured Based on the cycle, the moving average value of the system cycle for the continuous predetermined moving average time is sequentially calculated, and the sequentially calculated moving average value is sequentially stored, the latest moving average value in the storage and the latest moving The past moving average value of a predetermined time before is read from the average value, the latest moving average value read out and the deviation amount of the past moving average value are calculated, and based on the calculated deviation amount, the reactive power injection circuit Since the reactive power amount of the reactive power to be injected is calculated, the basis of the deviation amount for calculating the reactive power amount in the system cycle of the measurement cycle unit corresponding to 1/3 or less of the system cycle of the commercial system And By calculating the moving average value, it is possible to smooth the fluctuation of the fine moving average value, that is, the fluctuation of the deviation amount, so that the reactive power amount of the reactive power to be injected between the distributed power source and the commercial system is increased. Even in this case, it is possible to prevent a sudden change in the current waveform supplied to the reactive power injection device, and as a result, it is possible to realize high-speed injection of reactive power suitable for detecting single operation of the distributed power source at high speed. Therefore, it is useful for a distributed power supply system that interconnects a distributed power supply and a commercial system.

本発明の単独運転検出装置に関わる実施の形態を示す分散型電源システム内部の概略構成を示すブロック図である。It is a block diagram which shows schematic structure inside the distributed power supply system which shows embodiment in connection with the isolated operation detection apparatus of this invention. 本実施の形態に関わる単独運転検出装置の周波数計測部、移動平均値算出部及び偏差量算出部に関わる無効電力量算出処理に関わるアルゴリズムを端的に示す動作説明図である。It is operation | movement explanatory drawing which shows directly the algorithm regarding the reactive energy calculation process in connection with the frequency measurement part of the isolated operation detection apparatus in connection with this Embodiment, a moving average value calculation part, and a deviation amount calculation part. 本実施の形態に関わる単独運転検出装置の移動平均値の変動を端的に示す比較説明図である。It is comparative explanatory drawing which shows the fluctuation | variation of the moving average value of the isolated operation detection apparatus in connection with this Embodiment. 本実施の形態に関わる単独運転検出装置の移動平均値の変動を移動平均時間(長周期)の見地から端的に示す比較説明図である。It is comparative explanatory drawing which shows the fluctuation | variation of the moving average value of the isolated operation detection apparatus in connection with this Embodiment from the standpoint of moving average time (long period). 本実施の形態に関わる単独運転検出装置の移動平均値の変動を移動平均時間(短周期)の見地から端的に示す比較説明図である。It is comparative explanatory drawing which shows directly the fluctuation | variation of the moving average value of the isolated operation detection apparatus in connection with this Embodiment from the viewpoint of moving average time (short cycle). 本実施の形態に関わる単独運転検出装置の無効電力量−偏差量特性を端的に示す比較説明図である。It is comparison explanatory drawing which shows directly the reactive power amount-deviation amount characteristic of the isolated operation detection apparatus in connection with this Embodiment. 本実施の形態に関わる単独運転検出装置の無効電力量算出処理に関わるインバータ駆動制御回路内部の処理動作を示すフローチャートである。It is a flowchart which shows the processing operation inside the inverter drive control circuit regarding the reactive energy calculation process of the isolated operation detection apparatus in connection with this Embodiment.

符号の説明Explanation of symbols

2 分散型電源
3 商用系統
5 単独運転検出装置
11 インバータ回路(無効電力注入回路)
13 電圧検出回路(周波数変動検出回路及び系統周期計測手段)
14 単独運転検出回路
21 周波数計測部(周波数変動検出回路及び系統周期計測手段)
22 移動平均値算出部(移動平均値算出手段)
23 移動平均値記憶部(移動平均値記憶手段)
24 偏差量算出部(偏差量算出手段)
28 無効電力量演算部(無効電力量算出手段)

2 Distributed power supply 3 Commercial system 5 Independent operation detector 11 Inverter circuit (reactive power injection circuit)
13 Voltage detection circuit (frequency fluctuation detection circuit and system cycle measurement means)
14 Isolated operation detection circuit 21 Frequency measurement unit (frequency fluctuation detection circuit and system cycle measurement means)
22 Moving average value calculation unit (moving average value calculation means)
23 Moving average value storage unit (moving average value storage means)
24 Deviation amount calculation unit (deviation amount calculation means)
28 Reactive energy calculation unit (Reactive energy calculation means)

Claims (5)

分散型電源及び商用系統間に無効電力を注入する無効電力注入回路と、この無効電力注入回路にて注入した前記無効電力の周波数変動を検出する周波数変動検出回路と、この周波数変動検出回路にて検出した前記周波数変動に基づき、前記分散型電源の単独運転を検出する単独運転検出回路とを有する単独運転検出装置であって、
前記商用系統の系統周期の1/3以下に相当する計測周期単位で、前記商用系統の系統周期を計測する系統周期計測手段と、
この系統周期計測手段にて順次計測した計測周期単位の系統周期に基づき、連続した所定移動平均時間分の系統周期の移動平均値を順次算出する移動平均値算出手段と、
この移動平均値算出手段にて順次算出した移動平均値を順次記憶する移動平均値記憶手段と、
この移動平均値記憶手段に記憶中の最新の移動平均値及び、同最新の移動平均値から所定時間前の過去の移動平均値を読み出し、これら読み出した最新の移動平均値及び過去の移動平均値の偏差量を前記計測周期単位の系統周期毎に算出する偏差量算出手段と、
この偏差量算出手段にて算出した前記偏差量に基づき、前記無効電力注入回路で注入する前記無効電力の無効電力量を算出する無効電力量算出手段とを有することを特徴とする単独運転検出装置。
A reactive power injection circuit that injects reactive power between a distributed power source and a commercial system, a frequency fluctuation detection circuit that detects a frequency fluctuation of the reactive power injected by the reactive power injection circuit, and a frequency fluctuation detection circuit An isolated operation detection device having an isolated operation detection circuit for detecting isolated operation of the distributed power source based on the detected frequency fluctuation,
System cycle measuring means for measuring the system cycle of the commercial system in a measurement cycle unit corresponding to 1/3 or less of the system cycle of the commercial system;
Based on the system cycle of the measurement cycle unit sequentially measured by this system cycle measuring means, moving average value calculating means for sequentially calculating the moving average value of the system cycle for a continuous predetermined moving average time;
Moving average value storage means for sequentially storing the moving average values sequentially calculated by the moving average value calculation means;
The latest moving average value stored in the moving average value storage means and the past moving average value of a predetermined time before are read from the latest moving average value, and these read latest moving average value and past moving average value are read out. Deviation amount calculating means for calculating the deviation amount of each system cycle of the measurement cycle unit,
An isolated operation detecting device comprising: a reactive power amount calculating means for calculating a reactive power amount of the reactive power injected by the reactive power injection circuit based on the deviation amount calculated by the deviation amount calculating means. .
前記無効電力量算出手段は、
前記偏差量が小さい不感帯範囲を予め設定し、
前記偏差量算出手段にて算出した前記偏差量が前記不感帯範囲内の場合、前記偏差量が大きい前記不感帯範囲以外の場合に比較して、前記無効電力注入回路で注入する前記無効電力の無効電力量の絶対値を小さく補正して前記無効電力量を算出することを特徴とする請求項1記載の単独運転検出装置。
The reactive energy calculation means includes
A dead zone range in which the deviation amount is small is set in advance,
When the deviation amount calculated by the deviation amount calculation means is within the dead band range, the reactive power of the reactive power injected by the reactive power injection circuit is larger than when the deviation amount is outside the dead band range. The isolated operation detection device according to claim 1, wherein the reactive power amount is calculated by correcting an absolute value of the amount to be small.
前記計測周期単位は、
前記商用系統の系統周期の1/3以下である5m秒単位に相当することを特徴とする請求項1又は2記載の単独運転検出装置。
The measurement cycle unit is
The islanding operation detection device according to claim 1 or 2, which corresponds to a unit of 5 milliseconds which is 1/3 or less of a system cycle of the commercial system.
前記所定移動平均時間分は、
前記商用系統の系統周期よりも長く、かつ前記単独運転検出回路の前記単独運転の高速検出を可能にする時間である40m秒分に相当することを特徴とする請求項1,2又は3記載の単独運転検出装置。
The predetermined moving average time is
4. The system according to claim 1, 2, or 3, characterized in that it is longer than a system cycle of the commercial system and corresponds to 40 milliseconds which is a time during which the single operation detection circuit can detect the single operation at high speed. Single operation detection device.
前記所定時間前の過去の移動平均値は、
前記単独運転検出回路の前記単独運転の高速検出を可能にする時間である、前記最新の移動平均値から200m秒前の過去の移動平均値に相当することを特徴とする請求項1,2,3又は4記載の単独運転検出装置。

The past moving average before the predetermined time is:
It corresponds to a past moving average value 200 msec before the latest moving average value, which is a time during which the isolated operation detecting circuit can detect the isolated operation at high speed. The isolated operation detection device according to 3 or 4.

JP2006225016A 2006-08-22 2006-08-22 Isolated operation detection device Active JP4552913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006225016A JP4552913B2 (en) 2006-08-22 2006-08-22 Isolated operation detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006225016A JP4552913B2 (en) 2006-08-22 2006-08-22 Isolated operation detection device

Publications (2)

Publication Number Publication Date
JP2008054366A JP2008054366A (en) 2008-03-06
JP4552913B2 true JP4552913B2 (en) 2010-09-29

Family

ID=39237888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006225016A Active JP4552913B2 (en) 2006-08-22 2006-08-22 Isolated operation detection device

Country Status (1)

Country Link
JP (1) JP4552913B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11616363B2 (en) 2020-09-11 2023-03-28 Kabushiki Kaisha Toshiba Electronic apparatus with detection of an islanding condition

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100966146B1 (en) * 2008-03-21 2010-06-25 명지대학교 산학협력단 Distributed Generation System Interconnected with Utility Grid and Islanding Detection Method thereof
JP4645735B2 (en) * 2008-12-15 2011-03-09 オムロン株式会社 Isolated operation detection method, isolated operation detection device, and program
JP5362472B2 (en) * 2009-07-22 2013-12-11 一般財団法人電力中央研究所 Isolated operation detection method and detection apparatus
JP5235851B2 (en) * 2009-11-30 2013-07-10 三菱電機株式会社 AC / DC converter, motor drive equipped with the same, and air conditioner, refrigerator, heat pump water heater, washing machine and vacuum cleaner equipped with the motor drive
IT1402466B1 (en) * 2010-11-05 2013-09-13 Raw Power S R L DEVICE TO ELIMINATE A CONTINUOUS CIRCULATING CURRENT IN A SINGLE-PHASE ELECTRIC NETWORK
JP5645622B2 (en) * 2010-11-30 2014-12-24 東芝Itコントロールシステム株式会社 Isolated operation detection device and isolated operation detection method
JP5973144B2 (en) * 2011-08-11 2016-08-23 パーパス株式会社 Distributed power supply apparatus, control program thereof, and control method thereof
JP6047425B2 (en) * 2013-02-28 2016-12-21 山洋電気株式会社 Isolated operation detection device and isolated operation detection method
JP6160193B2 (en) * 2013-04-15 2017-07-12 オムロン株式会社 Control device, power conditioner, distributed power supply system, program, and control method
JP5729413B2 (en) * 2013-04-15 2015-06-03 オムロン株式会社 Control device, power conditioner, distributed power supply system, program, and control method
JP6281704B2 (en) * 2014-10-21 2018-02-21 富士電機株式会社 Isolated operation detection system for distributed power supply
JP6610012B2 (en) * 2015-06-08 2019-11-27 株式会社村田製作所 Isolated operation detection method and isolated operation detection device
JP6458945B2 (en) * 2015-06-29 2019-01-30 富士電機株式会社 Isolated operation detection system for distributed power supply
JP6618414B2 (en) * 2016-04-06 2019-12-11 三菱電機株式会社 Inverter
JP6160790B1 (en) * 2017-03-10 2017-07-12 富士電機株式会社 Detection device, power conditioner, detection method, and detection program
JP6945162B2 (en) * 2017-09-28 2021-10-06 パナソニックIpマネジメント株式会社 Independent operation detection system, power conditioner and power supply system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0851724A (en) * 1994-08-10 1996-02-20 Fuji Electric Co Ltd Method for detecting single operation of system interconnection inverter
JPH08130831A (en) * 1994-11-01 1996-05-21 Fuji Electric Co Ltd Method for detecting independent operation of distributed power source operated in parallel with power system
JP2002218661A (en) * 2001-01-18 2002-08-02 Nissin Electric Co Ltd Sole operation detecting method of distributed power supply

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0851724A (en) * 1994-08-10 1996-02-20 Fuji Electric Co Ltd Method for detecting single operation of system interconnection inverter
JPH08130831A (en) * 1994-11-01 1996-05-21 Fuji Electric Co Ltd Method for detecting independent operation of distributed power source operated in parallel with power system
JP2002218661A (en) * 2001-01-18 2002-08-02 Nissin Electric Co Ltd Sole operation detecting method of distributed power supply

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11616363B2 (en) 2020-09-11 2023-03-28 Kabushiki Kaisha Toshiba Electronic apparatus with detection of an islanding condition

Also Published As

Publication number Publication date
JP2008054366A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP4552913B2 (en) Isolated operation detection device
JP4656131B2 (en) Isolated operation detection method, distributed power supply isolated operation detection control device, isolated operation detection device, and distributed power supply system
JP5589085B2 (en) Power converter
JP6374213B2 (en) Power converter
JP6200196B2 (en) Inverter device
EP2613164A1 (en) Distributed power generation device and method for operating same
JP5418079B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP4661856B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP2015133785A (en) Single operation detector and single operation detection method
JP4645735B2 (en) Isolated operation detection method, isolated operation detection device, and program
JP5050723B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP4735473B2 (en) Isolated operation detection device
JP2006280159A (en) Co-generation system
JP6228854B2 (en) Power converter, load device, and control method
CN110073566A (en) For detecting the method and its DC/AC converter apparatus of the isolated island situation of DC/AC converter apparatus
JP5359242B2 (en) Inverter
JP5877319B2 (en) Grid interconnection device
JP4905141B2 (en) Fault current detection circuit and fault current detection method
JP4872826B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP6958999B2 (en) Independent operation detector and power conditioner
US11527966B2 (en) Power conversion apparatus that judges system power failure based on system frequency and voltage
JP3748560B2 (en) Inverter control device
JP7068619B2 (en) Independent operation detection device, grid interconnection inverter and independent operation detection method
JP2009189188A (en) Power generation system and method for controlling power generation system
JP4935376B2 (en) Isolated operation detection method, isolated operation detection device, and power line conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4552913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250