JP4551536B2 - AlN substrate and laser diode element using the same - Google Patents

AlN substrate and laser diode element using the same Download PDF

Info

Publication number
JP4551536B2
JP4551536B2 JP2000166770A JP2000166770A JP4551536B2 JP 4551536 B2 JP4551536 B2 JP 4551536B2 JP 2000166770 A JP2000166770 A JP 2000166770A JP 2000166770 A JP2000166770 A JP 2000166770A JP 4551536 B2 JP4551536 B2 JP 4551536B2
Authority
JP
Japan
Prior art keywords
aln
aln substrate
substrate
less
laser diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000166770A
Other languages
Japanese (ja)
Other versions
JP2001348275A (en
Inventor
和弘 篠澤
隆雄 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Materials Co Ltd
Original Assignee
Toshiba Corp
Toshiba Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Materials Co Ltd filed Critical Toshiba Corp
Priority to JP2000166770A priority Critical patent/JP4551536B2/en
Publication of JP2001348275A publication Critical patent/JP2001348275A/en
Application granted granted Critical
Publication of JP4551536B2 publication Critical patent/JP4551536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、窒化アルミニウム(AlN)基板およびそれを用いたレーザダイオード素子に関するものであり、特に、窒化アルミニウム基板の研磨加工性を向上させたものである。
【0002】
【従来の技術】
窒化アルミニウムは、高い熱伝導率を有し、電気絶縁性が良く、Siとほぼ同じ熱膨張率を有するなどの優れた性質を持つ。このため、窒化アルミニウム基板は、産業用パワーエレクトロニクスや車載用パワーエレクトロニクスといった分野の製品として広く適用されている。
【0003】
近年、窒化アルミニウム基板が情報通信市場へも普及され始めており、交換機やモバイル機器、DVD機器等への搭載が着実に行なわれている。特に、DVD機器等の素子基板として適用される場合、基板表面にTi、Ni、Au等の薄膜形成を行う必要がある。
【0004】
基板と、この基板表面に形成する薄膜との密着力が弱いと、薄膜が剥離してしまうなどの問題があるため、薄膜形成前に基板表面を研磨加工する必要がある。
しかしながら、研磨加工時に基板の研磨加工性が悪いと、脱粒が生じてしまう等の問題を有し、生産効率が低下していた。従って、基板の脱粒を防止し研磨加工性を向上させるため、結晶粒を小さくし、かつ粒界中の焼結助剤からなる偏析を無くし粒界を強固とすることが要求されている。
【0005】
一方、AlN基板はより一層優れた高い熱伝導性が要求されている。このため、従来、AlN基板の熱伝導性を高めるため、焼結助剤を微量として粒界を極力少なくする方法がとられている。また、粒界を含めたAlN結晶以外の不純物成分を極力無くすことも必要とされる。
【0006】
【発明が解決しようとする課題】
しかしながら、焼結助剤の添加量を微量にすると、焼結温度を著しく高くする必要があり、焼結温度を高くすることで過度の粒成長や粒界強度低下が生じ、焼結後に研磨加工を施すと脱粒が生じ易くなり、基板表面に薄膜形成する際、安定した薄膜形成ができなくなる等の問題を有していた。
【0007】
一方、液相焼結の結果得られるAlN基板は、その強度向上(研磨加工に対する耐脱粒性含む)に対しては適度の粒界層相成分が必要であり、商業上使用するAlN基板はこれら相反する二つの事象を満足する窒化アルミニウム基板が必要とされていた。
【0008】
本発明は、このような問題を解決するためになされたものであり、高い熱伝導率を保持し、かつ、研磨性を向上させたAlN基板およびそれを用いたレーザーダイオード素子を得ることを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、高熱伝導と良好な薄膜を形成するための前処理である研磨加工性良好な表面性状を有するという相反する二つの問題を同時に解決するため種々研究した結果、焼結粒の単位面積に占める結晶粒子数とそれを取り巻く粒界の長さを制御することが有効であることを見い出し、本発明に至ったものである。
【0010】
すなわち、請求項1記載のAlN基板は、比表面積が0.1〜0.3m /gのAlN粉末100重量部にイットリア8重量部以下を添加して焼結したAlN基板であって、前記AlN基板は表面粗さRa0.05μm以下の研磨面を有し、前記研磨面における、任意の一辺が10μmの正方形100μmの領域内に存在するAlN結晶粒子数が5〜10個であり、前記100μm 領域内に入る粒界の総長さが100μm以下であり、前記研磨面における、任意の一辺が100μmの正方形10000μm の領域内に存在する脱粒痕の数が10個以下であり、熱伝導率が180W/(m・k)以上であることを特徴とする。
【0011】
請求項2記載の発明は、前記100μm の領域内に入る粒界の総長さが30〜100μmであることを特徴とする請求項1記載のAlN基板である。
【0014】
請求項記載の発明は、AlN基板表面に薄膜が形成されたことを特徴とする請求項1または2に記載のAlN基板である。
【0015】
本発明によれば、研磨時に脱粒し難いため、研磨加工性が向上してAlN基板表面への薄膜形成が容易となる。
【0016】
請求項記載の発明は、AlN基板は光通信機器に用いる素子搭載用基板として適用されることを特徴とする請求項1ないしのいずれかに記載のAlN基板である。
【0017】
請求項記載のレーザーダイオード素子は、請求項3に記載のAlN基板上にレーザーダイオードを搭載したことを特徴とする。
【0018】
本発明によれば、一辺が10μmである正方形100μm当たりの結晶粒子数を5以上とし、この面積中の粒界の総長さを100μm以下とすることにより、AlN基板表面に薄膜形成できるため、レーザダイオードをはじめとする通信機器関係の薄膜基板の優れたパフォーマンスを得ることができる。
【0019】
請求項記載の発明は、AlN基板上に薄膜を介してレーザーダイオードを搭載したことを特徴とする請求項記載のレーザーダイオード素子である。
【0020】
請求項記載の発明は、レーザー発振の減衰率が10%以下であることを特徴とする請求項またはに記載のレーザーダイオード素子である。
【0021】
【発明の実施の形態】
まず、本発明では、AlN基板において、任意の、一辺が10μmの正方形100μmの領域内に存在するAlN結晶粒子数を5以上としている。この数字が5未満、つまりは4以下であるとAlN結晶粒子に過度の粒成長(異常粒成長)を伴ったものが存在することになる。異常粒成長を伴ったAlN基板は熱伝導率が高くなるものの、AlN粒子が必要以上に大きいため表面研磨の際に脱粒が起き易くなる。一方、該領域内のAlN粒子数があまり大きすぎるとAlN粒子のサイズが小さくなるため熱伝導率が180W/m・k未満になり易い。従って、好ましいAlN結晶粒子数は5以上10以下となる。
【0022】
次に、本発明では該領域内に入る粒界の総長さを100μm以下にしている。
粒界の総長さが100μmを超えると粒界量が多すぎるため熱伝導率が低下し易い。一方、粒界の総長さが少ないと確かに熱伝導率は向上するが、AlN結晶粒子の結合力が落ちるため脱粒が起き易くなってしまう。従って、該領域内における粒界の総長さの好ましい範囲は30μm以上100μm以下である。
【0023】
このような構成を具備するAlN基板であれば表面研磨の際の脱粒を防ぎ、かつ熱伝導率を180W/m・k以上と高熱伝導率を為し得ることが可能である。
【0024】
なお、本発明におけるAlN結晶粒子数および粒界の総長さの測定については、任意の一辺が10μmの正方形100μmの領域を使用している。この領域については任意であることからAlN基板の表面または断面であっても特に問題はない。
【0025】
また、本発明では、AlN基板の表面粗さRaが0.05μmのとき、任意の一辺が100μmの正方形10000μmの領域内に存在する脱粒痕の数が10個以下であることを特徴としている。AlN基板にレーザダイオードなどのレーザ発振素子を搭載する際は、表面粗さRaが0.05μm以下程度まで鏡面加工された後、後述するように金属薄膜を設けた後ろう付けによりレーザダイオードを取付けることになる。このとき、レーザダイオード取付面に脱粒痕が10個を超えて存在すると薄膜を均一な膜厚に形成し難く、剥離の原因となりやすい。
なお、本発明の脱粒痕とは、AlN結晶粒子の脱粒並びに焼結助剤成分を主とする偏析粒子の脱粒した痕を含むものである。
【0026】
本発明のAlN基板はレーザダイオードを搭載する際に、薄膜を介してAlN基板上に搭載する形態に好適である。この薄膜は、特に限定されるものではないが、Ti、Ni、Au、Cuなどの金属成分もしくはこれら金属成分を含む合金からなる金属薄膜であることが望ましい。また、薄膜はスパッタ法、CVD法、メッキ法など様々な方法で形成可能であり、膜厚についても100μm以下で適宜選定可能である。
【0027】
次に材料組成について説明する。AlN基板の組成としては、AlNを主成分としていれば特に限定されるものではないが、焼結助剤としてイットリア(Y)などの希土類化合物を8重量部以下、さらには5重量部以下含有させるものが好ましい。
【0028】
その他の成分としては、遷移金属などの各種成分が適用可能であるが、例えば、Si化合物を0.2重量部以下、さらには0.05重量部以下含有させることが好ましい。Si化合物としては酸化けい素(SiO)、窒化けい素(Si)など各種Si化合物を使用可能であり、Si単体で添加してもよい。また、Si化合物はAlN原料粉末または焼結助剤の不純物をそのまま利用しても問題はない。このようなSi化合物は粒界を強化する効果があるため脱粒をより防ぐことが可能となる。しかしながら、必要以上に含有させると熱伝導率の低下につながることから含有量は0.2重量部以下とする。
【0029】
次に、製造方法について説明する。製造方法については特に限定されるものではないが、例えば次のような方法がある。
【0030】
まず、比表面積が0.1〜0.3m/gの粒径の揃ったAlN粉末を使用する。このとき、比表面積の大きさが前記範囲外であると、焼結後のAlN結晶粒子数を本発明の好ましい範囲である5〜10にし難くなる。
【0031】
このようなAlN粉末に、焼結助剤などを添加した後、混合、調合を行い、ドクターブレード法、プレス成形法、押出成形などの各種成形方法により所定の基板形状に成形する。
【0032】
その後、窒素またはアルゴンなどの非酸化性雰囲気中で1850℃以下の温度で焼結する。必要に応じ、焼結後に100℃/時間以下の徐冷を行うことが好ましい。この徐冷を行うことにより、粒界の強化を行うことができるため脱粒性の向上、いわゆる脱粒の起き難いAlN基板を製造し易くなる。
【0033】
また、金属薄膜を設ける際には、AlN基板の表面を表面粗さRaが1μm以下に研磨した後、さらにRaが0.1μm以下、好ましくは0.05μm以下になるように鏡面加工を施すことが好ましい。
【0034】
実施例(図1〜図8、表1)
以下、本発明のAlN基板について、図1〜図8および表1を用いて説明する。
【0035】
本実施例においては、表1に示すように、焼結助剤として添加するイットリアの添加量および焼結条件を変化させて、試料No.1ないし試料No.6の窒化アルミニウム基板を作製した。
【0036】
比表面積0.27m/gの窒化アルミニウム粉末に焼結助剤としてイットリア5重量部、と必要に応じSiO粉末を添加し、ボールミルで24時間と共に、有機バインダ、可塑剤および有機溶媒を適量添加調合してスラリーを得た。その後、得られたスラリーを真空脱泡した後、ドクターブレード法を用いて厚さ0.8mmのグリーンシートを得た。
【0037】
このグリーンシートを高純度のAlNからなるセッター上に配置し、5気圧の窒素ガス雰囲気中、1830℃の温度で10時間焼結を行った。その後、100℃/時間以下の徐冷を施して窒化アルミニウム基板を得た。これを試料No.1とした。
【0038】
【表1】

Figure 0004551536
【0039】
また、試料No.2ないし試料No.4は、表1に示すように、イットリアおよびSiOの添加量、焼結条件および冷却条件を変化させて、上述した試料No.1と同様の手順を用いて窒化アルミニウム基板を作製したものである。なお、試料No.5および試料No.6は、イットリアの添加量および焼結条件を変えることにより、本発明の範囲外のAlN粒子数をもつ比較例の窒化アルミニウム基板、および本発明の好ましい範囲外のAlN粒子数をもつ参考例となる窒化アルミニウム基板としたものである。そして、各試料に対し、表面粗さRaが0.05μm以下となるよう表面研磨(鏡面加工)することにより実施例(試料No.1〜4)および比較例(試料No.5〜6)にかかるAlN基板(縦10mm×横10mm×板厚0.635mm)を作製した。
【0040】
このようにして製造した試料No.1〜6にかかるAlN基板に対し、一辺が10μmの正方形100μmの領域内のAlN結晶粒子数および粒界の総長さ、熱伝導率、脱粒性を測定した。
【0041】
なお、AlN結晶粒子数および粒界の総長さについては後述するSEMを用いて測定し、熱伝導率についてはレーザーフラッシュ法により測定した。また、脱粒性については研磨面(薄膜形成面)について脱粒の有無を確認した。具体的には、任意の一辺が100μmの正方形10000μmの領域を拡大写真にとり、その領域内に存在する脱粒痕の数(脱粒痕はAlN結晶粒子とは色が異なり、モノクロ写真の場合白色に写ることから見分けるのは容易である)をカウントし、脱粒痕が10個以下のものを脱粒性「良好」、脱粒痕が20個を超えたものを脱粒性「不良」、脱粒痕の数が10を超えて20未満の場合を「やや不良」と表示した。
【0042】
窒化アルミニウム基板の熱伝導率は、表1に示すように、試料No.1は187W/(m・k)、試料No.2は192W/(m・k)、試料No.3は190W/(m・k)、試料No.4は185W/(m・k)であり、いずれも180W/(m・k)以上と高熱伝導率であった。
【0043】
そして、窒化アルミニウム基板の研磨面をSEMによって観察した。その結果を図1〜図8に示す。なお、本実施形態では、研磨面の表面観察を行ったが、窒化アルミニウムの任意の断面について表面観察を行っても良い。
【0044】
図1および図2は、試料No.1の窒化アルミニウム基板の研磨面の表面観察を行い、研磨面を拡大して示す図である。図1に示す研磨面の任意の2箇所を選び、一辺が10μmの面積100μmの正方形領域内を測定領域とした。そして、この測定領域内に面積が50%以上含まれる結晶粒子についてそれぞれ番号を付して結晶粒子数を測定した。その結果、結晶粒子数はいずれも9となっており、一辺が10μmの面積100μmあたりの結晶粒子数が、本発明の範囲内の5以上であることが分かった。
【0045】
図1に示す測定領域内は、面積が100μmの正方形領域を拡大して示したものであり、実寸すると、1辺が30mmの面積900mmの正方形となっている。この面積900mmの範囲の粒界長さを実寸したところ、粒界の総長さは175mmであった。そして、粒界の総長さを面積100μmあたりに換算した結果、粒界の総長さは58μmであり、本発明の範囲内の100μm以下であった。
【0046】
図2は、図1よりも広い測定領域内で結晶粒子を観察したものであり、1辺が20μmの正方形を測定領域としたものである。この測定領域内に存在する結晶粒子数を測定した結果、結晶粒子数が25、27または22となっており、いずれの場合も面積100μmあたりに換算すると、結晶粒子数が5以上であった。
【0047】
図3および図4は、試料No.2の窒化アルミニウム基板の研磨面の表面観察を行い、研磨面を拡大して示す図である。図1および図2と同様に、結晶粒子数および結晶粒界の総長さを測定した結果、1辺が10μmの正方形領域内の結晶粒子数は9または7、粒界総長さは57μmであり、本発明の範囲内であった。
図4は、1辺が20μmの正方形を測定領域としたものであり、結晶粒子数が32であり、面積100μmあたりに換算すると結晶粒子数が5以上であった。
【0048】
また、図5および図6は、試料No.3の窒化アルミニウム基板の研磨面の表面観察を行い、この研磨面を拡大して示す図である。これらの図についても図1および図2と同様に結晶粒子数および粒界総長さを測定した結果、1辺が10μmの正方形内の結晶粒子数は7となっており、本発明の範囲内であった。また、図6は、1辺が20μmの正方形を測定領域としたものであり、この測定領域内の結晶粒子数は22であり、正方形の面積100μmあたりに換算したところ、結晶粒子数は5以上であった。
【0049】
さらに、図7および図8は、試料No.4の窒化アルミニウム基板の研磨面の表面観察を行い、研磨面を拡大して示す図である。これらの図についても同様に結晶粒子数および粒界総長さを測定した結果、面積100μmあたりの結晶粒子数は9であり、本発明の範囲内であった。また、図8は、1辺が20μmの正方形を測定領域としたものであり、結晶粒子数は22であり、正方形の面積100μmあたりに換算したところ、結晶粒子数は5以上であった。
【0050】
このような本実施例にかかるAlN基板は研磨面における単位面積(10000μm)当りの脱粒痕が10個以下と極めて脱粒性が良好であった。
【0051】
それに対し、試料No.5は異常粒成長が確認され、所定領域におけるAlN結晶粒子数は3と本願の範囲外であったため脱粒性は「不良」であった。また、試料No.6は所定領域におけるAlN結晶粒子数が15であり、脱粒性は「やや不良」であり、熱伝導率は165W/m・kと熱伝導率の高いものは得られなかった。これは焼結助剤の量が多いため粒界の総量が増えたこと、さらには粒界に存在する焼結助剤を主成分とする偏析粒子の数が増えてしまったためであると考えられる。
【0052】
次に、試料No.1ないし試料No.6の窒化アルミニウム基板表面にNiからなる薄膜をスパッタ法により形成した。そして、薄膜形成されたAlN基板をレーザダイオードの搭載用基板として適用し、レーザ発振の減衰率を測定した。
この結果を表1に示す。なお、レーザ発振の減衰率を測定する際、測定条件は、レーザダイオードの初期(稼動から30分後)の発振波長(光周波数)を基準としたときのレーザダイオードを5時間連続稼動させたときの波長の変化率を測定したものである。
【0053】
表1に示すように、実施例の試料No.1ないし試料No.4の窒化アルミニウム基板を適用した場合には、レーザ発振の減衰率が3〜8%であるのに対し、比較例の試料No.5および試料No.6はレーザ発振の減衰率が12〜20%となっており、本発明のAlN基板はレーザダイオード搭載用基板として適していることが判明した。言い換えると本発明のAlN基板を用いることによりレーザ発振減衰率が10%以下と減衰率の小さなレーザーダイオード素子を提供することが可能となる。これは、本発明のAlN基板が熱伝導率が高く、かつ脱粒痕が少ないことから薄膜が均一に形成されダイオードに悪影響を与えないためであると言える。
【0054】
本実施形態によれば、任意の一辺が10μmの正方形100μmの領域内に存在する結晶粒子数を5以上、この面積中の粒界の総長さを100μm以下と規定することにより、窒化アルミニウム基板の表面性状を改善して、レーザダイオードをはじめとする光通信機器関係、例えば半導体レーザー搭載用基板、マイクロ波集積回路用基板などに適したAlN基板を得ることができる。
【0055】
【発明の効果】
以上説明したように、本発明のAlN基板およびそれを用いたレーザーダイオード素子によれば、熱伝導率が高いだけでなく、研磨加工時の脱粒を防止して研磨性を向上できるため、基板および薄膜の密着強度を高め、その結果、レーザダイオード等の光通信機器用素子の歩留まりを向上することができる。
【図面の簡単な説明】
【図1】本発明の実施形態における、試料No.1の窒化アルミニウム基板についての結晶粒の拡大写真を示す図。
【図2】本発明の実施形態における、試料No.1の窒化アルミニウム基板についての結晶粒の拡大写真を示す図。
【図3】本発明の実施形態における、試料No.2の窒化アルミニウム基板についての結晶粒の拡大写真を示す図。
【図4】本発明の実施形態における、試料No.2の窒化アルミニウム基板についての結晶粒の拡大写真を示す図。
【図5】本発明の実施形態における、試料No.3の窒化アルミニウム基板についての結晶粒の拡大写真を示す図。
【図6】本発明の実施形態における、試料No.3の窒化アルミニウム基板についての結晶粒の拡大写真を示す図。
【図7】本発明の実施形態における、試料No.4の窒化アルミニウム基板についての結晶粒の拡大写真を示す図。
【図8】本発明の実施形態における、試料No.4の窒化アルミニウム基板についての結晶粒の拡大写真を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum nitride (AlN) substrate and a laser diode element using the same, and in particular, improves the polishing processability of an aluminum nitride substrate.
[0002]
[Prior art]
Aluminum nitride has excellent properties such as high thermal conductivity, good electrical insulation, and almost the same thermal expansion coefficient as Si. For this reason, aluminum nitride substrates are widely applied as products in fields such as industrial power electronics and in-vehicle power electronics.
[0003]
In recent years, aluminum nitride substrates have begun to be widely used in the information and communication market and have been steadily mounted on exchanges, mobile devices, DVD devices and the like. In particular, when it is applied as an element substrate for DVD equipment or the like, it is necessary to form a thin film of Ti, Ni, Au or the like on the substrate surface.
[0004]
If the adhesion between the substrate and the thin film formed on the substrate surface is weak, there is a problem that the thin film is peeled off. Therefore, it is necessary to polish the substrate surface before forming the thin film.
However, when the polishing process of the substrate is poor during the polishing process, there are problems such as the occurrence of degranulation, and the production efficiency is lowered. Therefore, in order to prevent the substrate from degranulating and improve the polishing processability, it is required to make the crystal grain small and to eliminate the segregation of the sintering aid in the grain boundary and to strengthen the grain boundary.
[0005]
On the other hand, the AlN substrate is required to have a further excellent high thermal conductivity. For this reason, conventionally, in order to increase the thermal conductivity of the AlN substrate, a method of reducing the grain boundary as much as possible by using a small amount of sintering aid has been employed. Moreover, it is also necessary to eliminate impurity components other than the AlN crystal including the grain boundary as much as possible.
[0006]
[Problems to be solved by the invention]
However, if the amount of sintering aid added is very small, it is necessary to increase the sintering temperature remarkably. By increasing the sintering temperature, excessive grain growth and a decrease in grain boundary strength occur, and polishing is performed after sintering. When the film is formed, degranulation tends to occur, and when forming a thin film on the substrate surface, there is a problem that a stable thin film cannot be formed.
[0007]
On the other hand, the AlN substrate obtained as a result of liquid phase sintering requires an appropriate grain boundary layer phase component to improve its strength (including anti-granulation resistance to polishing). There has been a need for an aluminum nitride substrate that satisfies two conflicting events.
[0008]
The present invention has been made to solve such problems, and an object of the present invention is to obtain an AlN substrate having high thermal conductivity and improved polishability and a laser diode element using the same. And
[0009]
[Means for Solving the Problems]
As a result of various studies to simultaneously solve the two conflicting problems of having high heat conductivity and pre-treatment for forming a good thin film and having good surface properties, the inventors have found that The inventors have found that it is effective to control the number of crystal grains occupying a unit area and the length of grain boundaries surrounding the crystal grains, and have achieved the present invention.
[0010]
That is, the AlN substrate according to claim 1 is an AlN substrate that is sintered by adding 8 parts by weight or less of yttria to 100 parts by weight of AlN powder having a specific surface area of 0.1 to 0.3 m 2 / g, The AlN substrate has a polished surface with a surface roughness Ra of 0.05 μm or less , and the number of AlN crystal particles existing in an area of a square of 100 μm 2 with an arbitrary side of 10 μm on the polished surface is 5 to 10 , 100μm is Ri der less 100μm total length of the grain boundaries that fall within the second region, in the polishing surface, the number of shedding marks any side is present in a square area 10000 2 100μm is 10 or less, The thermal conductivity is 180 W / (m · k) or more .
[0011]
A second aspect of the present invention is the AlN substrate according to the first aspect, wherein the total length of grain boundaries entering the region of 100 μm 2 is 30 to 100 μm .
[0014]
A third aspect of the present invention is the AlN substrate according to the first or second aspect, wherein a thin film is formed on the surface of the AlN substrate.
[0015]
According to the present invention, since it is difficult for grains to fall during polishing, the polishing processability is improved and the formation of a thin film on the surface of the AlN substrate is facilitated.
[0016]
The invention according to claim 4 is the AlN substrate according to any one of claims 1 to 3 , wherein the AlN substrate is applied as an element mounting substrate used in an optical communication device.
[0017]
A laser diode element according to a fifth aspect is characterized in that a laser diode is mounted on the AlN substrate according to the third aspect.
[0018]
According to the present invention, since the number of crystal grains per 100 μm 2 square having a side of 10 μm is 5 or more and the total length of grain boundaries in this area is 100 μm or less, a thin film can be formed on the surface of the AlN substrate. Excellent performance of thin film substrates related to communication equipment including laser diodes can be obtained.
[0019]
A sixth aspect of the present invention is the laser diode element according to the fifth aspect, wherein the laser diode is mounted on the AlN substrate via a thin film.
[0020]
The invention of claim 7 wherein is a laser diode device according to claim 5 or 6, wherein the attenuation factor of the laser oscillation is not more than 10%.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
First, in the present invention, in the AlN substrate, the number of AlN crystal particles existing in an arbitrary region of a square of 100 μm 2 having a side of 10 μm is 5 or more. If this number is less than 5, that is, 4 or less, some of the AlN crystal grains are accompanied by excessive grain growth (abnormal grain growth). Although the AlN substrate accompanied by abnormal grain growth has high thermal conductivity, the AlN particles are larger than necessary, so that degranulation is likely to occur during surface polishing. On the other hand, if the number of AlN particles in the region is too large, the size of the AlN particles becomes small, so that the thermal conductivity tends to be less than 180 W / m · k. Therefore, the preferable number of AlN crystal particles is 5 or more and 10 or less.
[0022]
Next, in the present invention, the total length of the grain boundaries entering the region is set to 100 μm or less.
If the total length of the grain boundaries exceeds 100 μm, the amount of grain boundaries is too large and the thermal conductivity tends to decrease. On the other hand, when the total length of the grain boundary is small, the thermal conductivity is certainly improved, but since the binding force of the AlN crystal particles is reduced, degranulation is likely to occur. Therefore, a preferable range of the total length of the grain boundaries in the region is 30 μm or more and 100 μm or less.
[0023]
With an AlN substrate having such a structure, it is possible to prevent degranulation during surface polishing and to achieve a high thermal conductivity of 180 W / m · k or higher.
[0024]
In addition, about the measurement of the number of AlN crystal grains and the total length of a grain boundary in the present invention, a square 100 μm 2 region having an arbitrary side of 10 μm is used. Since this region is arbitrary, there is no particular problem even if it is the surface or cross section of the AlN substrate.
[0025]
In the present invention, when the surface roughness Ra of the AlN substrate is 0.05 μm, the number of shed grains present in a region of a square of 10,000 μm 2 having an arbitrary side of 100 μm is 10 or less. . When a laser oscillation element such as a laser diode is mounted on an AlN substrate, the surface roughness Ra is mirror-finished to about 0.05 μm or less, and then a laser diode is attached by brazing after providing a metal thin film as will be described later. It will be. At this time, if there are more than 10 degranulation traces on the laser diode mounting surface, it is difficult to form a thin film with a uniform film thickness, which tends to cause peeling.
In addition, the degranulation trace of this invention includes the degranulation of the segregation particle | grains which mainly degranulated the AlN crystal particle and the sintering auxiliary agent component.
[0026]
The AlN substrate of the present invention is suitable for mounting on a AlN substrate via a thin film when mounting a laser diode. Although this thin film is not specifically limited, It is desirable that it is a metal thin film which consists of metal components, such as Ti, Ni, Au, Cu, or the alloy containing these metal components. Further, the thin film can be formed by various methods such as sputtering, CVD, plating, etc., and the film thickness can be appropriately selected at 100 μm or less.
[0027]
Next, the material composition will be described. The composition of the AlN substrate is not particularly limited as long as it is mainly composed of AlN, but a rare earth compound such as yttria (Y 2 O 3 ) as a sintering aid is 8 parts by weight or less, and further 5 parts by weight. What is contained below is preferable.
[0028]
As other components, various components such as transition metals can be applied. For example, the Si compound is preferably contained in an amount of 0.2 parts by weight or less, and more preferably 0.05 parts by weight or less. As the Si compound, various Si compounds such as silicon oxide (SiO 2 ) and silicon nitride (Si 3 N 4 ) can be used, and Si may be added alone. Moreover, there is no problem even if the Si compound uses the impurities of the AlN raw material powder or the sintering aid as they are. Such a Si compound has an effect of strengthening the grain boundary, so that it is possible to further prevent degranulation. However, if it is contained more than necessary, the thermal conductivity is lowered, so the content is 0.2 parts by weight or less.
[0029]
Next, a manufacturing method will be described. The manufacturing method is not particularly limited, but for example, there is the following method.
[0030]
First, an AlN powder having a uniform particle size with a specific surface area of 0.1 to 0.3 m 2 / g is used. At this time, when the size of the specific surface area is out of the above range, the number of AlN crystal particles after sintering becomes difficult to be 5 to 10 which is a preferable range of the present invention.
[0031]
After adding a sintering aid or the like to such AlN powder, mixing and blending are performed, and a predetermined substrate shape is formed by various forming methods such as a doctor blade method, a press forming method, and an extrusion forming method.
[0032]
Thereafter, sintering is performed at a temperature of 1850 ° C. or less in a non-oxidizing atmosphere such as nitrogen or argon. If necessary, it is preferable to perform slow cooling at 100 ° C./hour or less after sintering. By performing this slow cooling, the grain boundary can be strengthened, so that it becomes easy to produce an AlN substrate that is improved in grain removal, that is, so-called grain breakage hardly occurs.
[0033]
In addition, when the metal thin film is provided, the surface of the AlN substrate is polished to a surface roughness Ra of 1 μm or less, and then mirror-finished so that Ra is 0.1 μm or less, preferably 0.05 μm or less. Is preferred.
[0034]
Example (FIGS. 1-8, Table 1)
Hereinafter, the AlN substrate of the present invention will be described with reference to FIGS. 1 to 8 and Table 1. FIG.
[0035]
In this example, as shown in Table 1, the amount of yttria added as a sintering aid and the sintering conditions were changed, and the sample No. 1 to sample no. 6 aluminum nitride substrates were produced.
[0036]
Add 5 parts by weight of yttria as a sintering aid to the aluminum nitride powder with a specific surface area of 0.27 m 2 / g, and if necessary, add SiO 2 powder, and use an appropriate amount of organic binder, plasticizer and organic solvent over 24 hours in a ball mill. Addition and blending were performed to obtain a slurry. Thereafter, the obtained slurry was vacuum degassed, and then a green sheet having a thickness of 0.8 mm was obtained using a doctor blade method.
[0037]
This green sheet was placed on a setter made of high-purity AlN, and sintered in a nitrogen gas atmosphere at 5 atm at a temperature of 1830 ° C. for 10 hours. Thereafter, annealing was performed at 100 ° C./hour or less to obtain an aluminum nitride substrate. This is designated as Sample No. It was set to 1.
[0038]
[Table 1]
Figure 0004551536
[0039]
Sample No. 2 to Sample No. 4, as shown in Table 1, the addition amount of yttria and SiO 2, by changing the sintering conditions and cooling conditions, the samples described above No. 1 is an aluminum nitride substrate produced using the same procedure as in No. 1. Sample No. 5 and sample no. 6 is a comparative example of an aluminum nitride substrate having an AlN particle number outside the range of the present invention, and a reference example having an AlN particle number outside the preferred range of the present invention by changing the amount of yttria added and the sintering conditions. This is an aluminum nitride substrate. Then, for each sample, surface polishing (mirror finishing) is performed so that the surface roughness Ra is 0.05 μm or less, whereby Examples (Sample Nos. 1 to 4) and Comparative Examples (Sample Nos. 5 to 6) are obtained. Such an AlN substrate (length 10 mm × width 10 mm × plate thickness 0.635 mm) was produced.
[0040]
Sample No. manufactured in this way The number of AlN crystal grains, the total length of grain boundaries, the thermal conductivity, and the degranulation properties in the area of 100 μm 2 square having a side of 10 μm were measured for the AlN substrates of 1-6.
[0041]
The number of AlN crystal grains and the total length of the grain boundaries were measured using an SEM described later, and the thermal conductivity was measured by a laser flash method. Moreover, about the grain-removing property, the presence or absence of grain-breaking was confirmed about the grinding | polishing surface (thin film formation surface). Specifically, an area of a square of 10000 μm 2 having an arbitrary side of 100 μm is taken in an enlarged photograph, and the number of shed grains existing in the area (the shed grains are different in color from the AlN crystal particles, and in the case of a monochrome photograph, it is white. It is easy to tell from the image)), and the number of degranulation marks is less than 10 and the number of degranulation marks is “good”. The case where it exceeded 10 and less than 20 was indicated as “somewhat bad”.
[0042]
As shown in Table 1, the thermal conductivity of the aluminum nitride substrate is shown in Sample No. 1 is 187 W / (m · k), sample no. 2 is 192 W / (m · k), sample no. 3 is 190 W / (m · k). No. 4 was 185 W / (m · k), and all had high thermal conductivity of 180 W / (m · k) or more.
[0043]
Then, the polished surface of the aluminum nitride substrate was observed by SEM. The results are shown in FIGS. In this embodiment, the surface of the polished surface is observed. However, the surface of any cross section of aluminum nitride may be observed.
[0044]
1 and FIG. It is a figure which observes the surface of the grinding | polishing surface of 1 aluminum nitride board | substrate, and expands and shows a grinding | polishing surface. Two arbitrary locations on the polished surface shown in FIG. 1 were selected, and a measurement area was defined as a square area having an area of 100 μm 2 with a side of 10 μm. And the number was attached | subjected about the crystal particle which an area is contained in this measurement area | region 50% or more, and the number of crystal particles was measured. As a result, it was found that the number of crystal particles was 9 and the number of crystal particles per 100 μm 2 area having a side of 10 μm was 5 or more within the scope of the present invention.
[0045]
The measurement region shown in FIG. 1 is an enlarged view of a square region having an area of 100 μm 2 , and when actually measured, is a square having an area of 900 mm 2 with one side being 30 mm. When the grain boundary length in the area of 900 mm 2 was actually measured, the total grain boundary length was 175 mm. Then, as a result of converting the total length of the grain boundary per area of 100 μm 2 , the total length of the grain boundary was 58 μm, which was 100 μm or less within the range of the present invention.
[0046]
FIG. 2 shows a crystal particle observed in a measurement area wider than that in FIG. 1, and a square having a side of 20 μm is used as the measurement area. As a result of measuring the number of crystal grains existing in this measurement region, the number of crystal grains was 25, 27, or 22, and in any case, the number of crystal grains was 5 or more when converted per area of 100 μm 2 . .
[0047]
3 and FIG. It is a figure which observes the surface of the grinding | polishing surface of the aluminum nitride board | substrate of 2, and expands and shows a grinding | polishing surface. As in FIG. 1 and FIG. 2, the number of crystal grains and the total length of the crystal grain boundaries were measured. As a result, the number of crystal grains in a square region with one side of 10 μm was 9 or 7, and the total grain boundary length was 57 μm. It was within the scope of the present invention.
In FIG. 4, a square having a side of 20 μm is used as a measurement region, the number of crystal particles is 32, and the number of crystal particles is 5 or more when converted per area of 100 μm 2 .
[0048]
5 and 6 show sample Nos. FIG. 3 is a view showing an enlarged surface of a polished surface of an aluminum nitride substrate of FIG. 1 and 2, the number of crystal grains and the total length of the grain boundary were measured. As a result, the number of crystal grains in a square having a side of 10 μm 2 was 7, which was within the scope of the present invention. Met. In addition, FIG. 6 shows a square having a side of 20 μm as a measurement region. The number of crystal particles in the measurement region is 22, and the number of crystal particles is 5 when converted per square area of 100 μm 2. That was all.
[0049]
Further, FIG. 7 and FIG. FIG. 4 is a view showing an enlarged polished surface by observing the polished surface of an aluminum nitride substrate of No. 4; As for these figures, the number of crystal grains and the total length of grain boundaries were measured in the same manner. As a result, the number of crystal grains per 100 μm 2 area was 9, which was within the scope of the present invention. Further, FIG. 8 shows a square having a side of 20 μm as a measurement region, the number of crystal particles is 22, and the number of crystal particles is 5 or more when converted per square area of 100 μm 2 .
[0050]
Such an AlN substrate according to this example had extremely good degranulating properties with 10 or less degranulation traces per unit area (10000 μm 2 ) on the polished surface.
[0051]
In contrast, sample no. In No. 5, abnormal grain growth was confirmed, and the number of AlN crystal grains in the predetermined region was 3, which was outside the scope of the present application. Sample No. No. 6 had 15 AlN crystal grains in a predetermined region, the grain removal property was “slightly poor”, and a thermal conductivity of 165 W / m · k and a high thermal conductivity could not be obtained. This is thought to be because the total amount of grain boundaries has increased due to the large amount of sintering aid, and the number of segregated particles whose main component is sintering aid present at the grain boundaries has increased. .
[0052]
Next, sample No. 1 to sample no. A thin film made of Ni was formed on the surface of the aluminum nitride substrate 6 by sputtering. The thin film formed AlN substrate was applied as a laser diode mounting substrate, and the laser oscillation attenuation rate was measured.
The results are shown in Table 1. When measuring the attenuation rate of laser oscillation, the measurement condition is that when the laser diode is operated continuously for 5 hours with reference to the oscillation wavelength (optical frequency) at the initial stage (30 minutes after operation) of the laser diode. The rate of change of the wavelength of is measured.
[0053]
As shown in Table 1, sample No. 1 to sample no. When the aluminum nitride substrate of No. 4 is applied, the laser oscillation attenuation rate is 3 to 8%, whereas the sample No. of the comparative example. 5 and sample no. No. 6 has a laser oscillation attenuation rate of 12 to 20%, and it has been found that the AlN substrate of the present invention is suitable as a laser diode mounting substrate. In other words, by using the AlN substrate of the present invention, it is possible to provide a laser diode element having a low laser oscillation attenuation rate of 10% or less. This can be said to be because the AlN substrate of the present invention has a high thermal conductivity and few degranulation traces, so that a thin film is uniformly formed and does not adversely affect the diode.
[0054]
According to the present embodiment, by defining the number of crystal grains existing in an area of a square of 100 μm 2 having an arbitrary side of 10 μm as 5 or more and the total length of grain boundaries in this area as 100 μm or less, the aluminum nitride substrate Thus, an AlN substrate suitable for optical communication equipment such as a laser diode, for example, a substrate for mounting a semiconductor laser, a substrate for a microwave integrated circuit, or the like can be obtained.
[0055]
【The invention's effect】
As described above, according to the AlN substrate of the present invention and the laser diode element using the same, not only the thermal conductivity is high, but also the substrate and The adhesion strength of the thin film can be increased, and as a result, the yield of optical communication equipment elements such as laser diodes can be improved.
[Brief description of the drawings]
FIG. 1 shows a sample No. in an embodiment of the present invention. The figure which shows the enlarged photograph of the crystal grain about 1 aluminum nitride board | substrate.
FIG. 2 shows a sample No. in the embodiment of the present invention. The figure which shows the enlarged photograph of the crystal grain about 1 aluminum nitride board | substrate.
FIG. 3 shows a sample No. in the embodiment of the present invention. The figure which shows the enlarged photograph of the crystal grain about 2 aluminum nitride board | substrates.
4 shows a sample No. in the embodiment of the present invention. The figure which shows the enlarged photograph of the crystal grain about 2 aluminum nitride board | substrates.
FIG. 5 shows a sample No. in the embodiment of the present invention. The figure which shows the enlarged photograph of the crystal grain about 3 aluminum nitride board | substrates.
6 shows a sample No. in the embodiment of the present invention. The figure which shows the enlarged photograph of the crystal grain about 3 aluminum nitride board | substrates.
7 shows a sample No. in an embodiment of the present invention. The figure which shows the enlarged photograph of the crystal grain about 4 aluminum nitride board | substrates.
8 shows a sample No. in the embodiment of the present invention. The figure which shows the enlarged photograph of the crystal grain about 4 aluminum nitride board | substrates.

Claims (7)

比表面積が0.1〜0.3m /gのAlN粉末100重量部にイットリア8重量部以下を添加して焼結したAlN基板であって、
前記AlN基板は表面粗さRa0.05μm以下の研磨面を有し、
前記研磨面における、任意の一辺が10μmの正方形100μmの領域内に存在するAlN結晶粒子数が5〜10個であり、
前記100μm 領域内に入る粒界の総長さが100μm以下であり、
前記研磨面における、任意の一辺が100μmの正方形10000μm の領域内に存在する脱粒痕の数が10個以下であり、
熱伝導率が180W/(m・k)以上であることを特徴とするAlN基板。
An AlN substrate sintered by adding 8 parts by weight or less of yttria to 100 parts by weight of AlN powder having a specific surface area of 0.1 to 0.3 m 2 / g,
The AlN substrate has a polished surface with a surface roughness Ra of 0.05 μm or less,
In the polished surface, the number of AlN crystal particles present in a region of a square 100 μm 2 having an arbitrary side of 10 μm is 5 to 10 ,
Ri Der is 100 [mu] m or less total length of the grain boundaries entering the 100 [mu] m 2 of area,
In the polished surface, the number of shed grains present in an area of a square of 10000 μm 2 having an arbitrary side of 100 μm is 10 or less,
An AlN substrate having a thermal conductivity of 180 W / (m · k) or more .
前記100μm100 μm 2 の領域内に入る粒界の総長さが30〜100μmであることを特徴とする請求項1に記載のAlN基板。2. The AlN substrate according to claim 1, wherein the total length of grain boundaries entering the region is 30 to 100 μm. AlN基板表面に薄膜が形成されたことを特徴とする請求項1または2に記載のAlN基板。AlN substrate according to claim 1 or 2, characterized in that the thin film is formed on the AlN substrate surface. AlN基板は光通信機器に用いる素子搭載用基板として適用されることを特徴とする請求項1ないしのいずれかに記載のAlN基板。The AlN substrate according to any one of claims 1 to 3 , wherein the AlN substrate is applied as an element mounting substrate used in an optical communication device. 請求項3に記載のAlN基板上にレーザーダイオードを搭載したことを特徴とするレーザーダイオード素子。A laser diode element comprising a laser diode mounted on the AlN substrate according to claim 3 . AlN基板上に薄膜を介してレーザーダイオードを搭載したことを特徴とする請求項記載のレーザーダイオード素子。6. The laser diode element according to claim 5 , wherein a laser diode is mounted on the AlN substrate via a thin film. レーザー発振の減衰率が10%以下であることを特徴とする請求項またはに記載のレーザーダイオード素子。The laser diode element according to claim 5 or 6 , wherein an attenuation rate of laser oscillation is 10% or less.
JP2000166770A 2000-06-02 2000-06-02 AlN substrate and laser diode element using the same Expired - Lifetime JP4551536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000166770A JP4551536B2 (en) 2000-06-02 2000-06-02 AlN substrate and laser diode element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000166770A JP4551536B2 (en) 2000-06-02 2000-06-02 AlN substrate and laser diode element using the same

Publications (2)

Publication Number Publication Date
JP2001348275A JP2001348275A (en) 2001-12-18
JP4551536B2 true JP4551536B2 (en) 2010-09-29

Family

ID=18670041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000166770A Expired - Lifetime JP4551536B2 (en) 2000-06-02 2000-06-02 AlN substrate and laser diode element using the same

Country Status (1)

Country Link
JP (1) JP4551536B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6038564B2 (en) * 2012-09-20 2016-12-07 Dowaエレクトロニクス株式会社 Semiconductor laminate bonding substrate and manufacturing method thereof
JP6262598B2 (en) 2014-05-12 2018-01-17 住友電気工業株式会社 AlN sintered body, AlN substrate, and manufacturing method of AlN substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012977A (en) * 1996-06-21 1998-01-16 Nec Corp Fabrication of semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3472585B2 (en) * 1992-02-21 2003-12-02 株式会社東芝 Aluminum nitride sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012977A (en) * 1996-06-21 1998-01-16 Nec Corp Fabrication of semiconductor device

Also Published As

Publication number Publication date
JP2001348275A (en) 2001-12-18

Similar Documents

Publication Publication Date Title
US6613443B2 (en) Silicon nitride ceramic substrate, silicon nitride ceramic circuit board using the substrate, and method of manufacturing the substrate
US8858865B2 (en) Silicon nitride substrate manufacturing method, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module
CN113348046B (en) Method for producing copper-ceramic joined body, method for producing insulated circuit board, copper-ceramic joined body, and insulated circuit board
JP4248173B2 (en) Aluminum nitride substrate and thin film substrate using the same
US6475924B2 (en) Substrate and process for producing the same
KR20010079642A (en) Composite Material and Semiconductor Device Using the Same
JPH1084059A (en) Silicon nitride circuit board
JPWO2019235593A1 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
WO2019235594A1 (en) Plate-like silicon nitride sintered body and production method thereof
JP2009120483A (en) Semiconductor module and electronics device using the same
US5409869A (en) Aluminum nitride sintered body, method for manufacturing the same, and ceramic circuit board
JP4551536B2 (en) AlN substrate and laser diode element using the same
JP3002642B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board using the same
JP4360832B2 (en) Copper alloy
JP7451964B2 (en) Cu alloy plate and its manufacturing method
JP2677748B2 (en) Ceramics copper circuit board
JP2000351673A (en) High heat-conductive silicon nitride-based sintered product and its production
JP3518843B2 (en) Metallized substrate
EP0955279B1 (en) Aluminum-nitride sintered body, method for fabricating the same, and semiconductor substrate comprising the same
JPH11100274A (en) Silicon nitride sintered compact, its production and circuit board
WO2020044974A1 (en) Silicon nitride substrate and silicon nitride circuit board
JP2011037691A (en) Highly heat-conductive aluminum nitride sintered compact, substrate using this, circuit board, semiconductor device, and method for manufacturing highly heat-conductive aluminum nitride sintered compact
JP2002029850A (en) Sintered silicon nitride compact and method for manufacturing the same
JP3562042B2 (en) Ceramic substrate and method of manufacturing the same
JP4761617B2 (en) Aluminum nitride sintered body, method for producing the same, and electronic component using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4551536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

EXPY Cancellation because of completion of term