JP4550699B2 - Superconducting power cable termination connection - Google Patents

Superconducting power cable termination connection Download PDF

Info

Publication number
JP4550699B2
JP4550699B2 JP2005254232A JP2005254232A JP4550699B2 JP 4550699 B2 JP4550699 B2 JP 4550699B2 JP 2005254232 A JP2005254232 A JP 2005254232A JP 2005254232 A JP2005254232 A JP 2005254232A JP 4550699 B2 JP4550699 B2 JP 4550699B2
Authority
JP
Japan
Prior art keywords
conductor
superconducting
lead
power transmission
lead conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005254232A
Other languages
Japanese (ja)
Other versions
JP2007066819A (en
Inventor
博之 飯塚
寛信 平野
重夫 長屋
達也 永田
俊英 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Chubu Electric Power Co Inc
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Chubu Electric Power Co Inc filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2005254232A priority Critical patent/JP4550699B2/en
Publication of JP2007066819A publication Critical patent/JP2007066819A/en
Application granted granted Critical
Publication of JP4550699B2 publication Critical patent/JP4550699B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、例えば液体窒素等の極低温液体で冷却される超電導送電ケーブルの終端接続部に関するものである。   The present invention relates to a terminal connection portion of a superconducting power transmission cable cooled by a cryogenic liquid such as liquid nitrogen.

超電導送電ケーブルの終端接続部は、一端が超電導送電ケーブルの導体に直接、あるいは他の接続部材を介して間接的に接続され、他端が大気中に引き出される引出し導体を備えている。
この引出し導体は、一般的にはその長手方向の一部に絶縁被覆を有する導体からなっていて、絶縁被覆が施された一端側は液体窒素等で冷却され、導体が露出されている他端側は大気中に引き出されている。
そのため、この引出し導体はその長手方向(軸方向)に亘って、液体窒素の温度、すなわち極低温から常温までの極めて大きな温度勾配を有している。
The terminal connection portion of the superconducting power transmission cable includes a lead conductor having one end connected directly to the conductor of the superconducting power transmission cable or indirectly through another connecting member and the other end drawn into the atmosphere.
This lead conductor is generally made of a conductor having an insulation coating in a part of its longitudinal direction, and one end side where the insulation coating is applied is cooled with liquid nitrogen or the like, and the other end where the conductor is exposed. The side is pulled out into the atmosphere.
Therefore, the lead conductor has a very large temperature gradient from the temperature of liquid nitrogen, that is, from a very low temperature to a normal temperature, in the longitudinal direction (axial direction).

特許文献1記載の一般的な超電導送電ケーブルの終端接続部を図3を用いて説明する。
図3は従来の一般的な超電導送電ケーブルの終端接続部の一例を示す縦断面図である。
図3が示すように、図の水平方向に布設された超電導送電ケーブルの導体1(以下単に超電導導体1という)は、接続用導体2を介して、極低温から常温である大気中へと引き出される引出し導体3の下端に接続部材20により接続されている。
この引出し導体3は液体窒素のごとき液体冷媒層4や、この液体冷媒層4の上部に連なる窒素ガス等からなる冷媒ガス層5とにより構成される温度傾斜部12を通過し、さらにこの温度傾斜部12の上方に設けられ、この温度傾斜部12とフランジ6により仕切られている高電圧引出部13を通った後、その先端部は外部へと導かれている。
The termination | terminus connection part of the general superconducting power transmission cable of patent document 1 is demonstrated using FIG.
FIG. 3 is a longitudinal sectional view showing an example of a terminal connection portion of a conventional general superconducting power transmission cable.
As shown in FIG. 3, the conductor 1 of the superconducting power transmission cable laid in the horizontal direction in the figure (hereinafter simply referred to as the superconducting conductor 1) is drawn out from the cryogenic temperature to the ambient temperature through the connecting conductor 2. The connecting member 20 is connected to the lower end of the drawn conductor 3 to be connected.
The lead conductor 3 passes through a temperature gradient portion 12 constituted by a liquid refrigerant layer 4 such as liquid nitrogen and a refrigerant gas layer 5 made of nitrogen gas or the like connected to the upper portion of the liquid refrigerant layer 4, and further this temperature gradient. After passing through the high voltage lead-out portion 13 provided above the portion 12 and partitioned by the temperature inclined portion 12 and the flange 6, the tip end portion is led to the outside.

前記温度傾斜部12は、主として図3が示すように真空断熱層を形成しているSUS製の外部圧力容器21で覆われている。同じくSUS製の内部圧力容器22と、この内部圧力容器22内に形成されている前述した液体冷媒層4や冷媒ガス層5とで構成されている。
また高電圧引出部13は、主として碍子7と、碍子7内に充填されている絶縁油やSFガス等からなる流体絶縁体8及び高電圧引出部13の先端に設けられている上部金具14により構成されている。
The temperature inclined portion 12 is covered with an external pressure vessel 21 made of SUS that mainly forms a vacuum heat insulating layer as shown in FIG. Similarly, it is composed of an internal pressure vessel 22 made of SUS and the liquid refrigerant layer 4 and the refrigerant gas layer 5 described above formed in the internal pressure vessel 22.
The high voltage lead-out part 13 is mainly composed of an insulator 7, a fluid insulator 8 made of insulating oil or SF 6 gas filled in the insulator 7, and an upper metal fitting 14 provided at the tip of the high voltage lead-out part 13. It is comprised by.

ところで前記引出し導体3には、温度傾斜部内12に位置する部分と高電圧引出部13の下部に位置する部分に跨って、例えばエポキシ樹脂やエチレンプロピレンゴム等からなる絶縁被覆10が施されている場合が多い。そしてこの絶縁被覆10の上端より上の部分では裸の導体が露出していて、前述したようにこの裸の導体は温度傾斜部12の上方に延び高電圧引出部13を通過し、外部へと引き出される。符号11は、前記絶縁被覆10の両端部近傍に設けられている電界制御部材、すなわちストレスコーンを示している。また絶縁被覆10は、前記フランジ6と一体的に形成される場合もある。   By the way, the lead conductor 3 is provided with an insulating coating 10 made of, for example, epoxy resin or ethylene propylene rubber, over a portion located in the temperature gradient portion 12 and a portion located in the lower portion of the high voltage lead portion 13. There are many cases. Then, a bare conductor is exposed at a portion above the upper end of the insulating coating 10, and as described above, the bare conductor extends above the temperature gradient portion 12 and passes through the high voltage lead-out portion 13 to the outside. Pulled out. Reference numeral 11 denotes an electric field control member provided in the vicinity of both end portions of the insulating coating 10, that is, a stress cone. Further, the insulating coating 10 may be formed integrally with the flange 6.

符合23は、温度傾斜部12と、詳細には図示していない超電導導体1を含む超電導送電ケーブル線路側とを仕切る圧力隔壁を示している。
このような超電導送電ケーブルの終端接続部は、極低温から常温までの極めて大きな温度勾配に曝されることから、以下のような熱的問題を有している。
Reference numeral 23 indicates a pressure bulkhead that partitions the temperature inclined portion 12 and the superconducting power transmission cable line side including the superconducting conductor 1 (not shown in detail).
Since the terminal connection part of such a superconducting power transmission cable is exposed to a very large temperature gradient from extremely low temperature to room temperature, it has the following thermal problems.

すなわち、超電導送電ケーブルの電流を取り出し続けるためには、超電導送電ケーブル部は超電導状態を保持し続ける環境に維持し続けなければならない。そのため、例えば液体ヘリウムや液体窒素を冷却媒体として使用し、かつそれらの沸点以下に温度制御を行う必要がある。
また変電設備等は常温であるため、前述した超電導送電ケーブルの終端接続部には冷却媒体の温度、すなわち極低温から常温に亘る温度勾配部が必要になる。そしてこの温度勾配部にあっては電気絶縁を保持しながら電流を通過させる導体部品、具体的には前述した引出し導体3が必要であり、この引出し導体3には、例えば冷却媒体が液体窒素であれば摂氏−196℃から常温、例えば摂氏20℃までの温度勾配が生ずる。
That is, in order to continue taking out the current of the superconducting power transmission cable, the superconducting power transmission cable unit must be maintained in an environment that keeps maintaining the superconducting state. Therefore, for example, it is necessary to use liquid helium or liquid nitrogen as a cooling medium and control the temperature below the boiling point thereof.
In addition, since the substation equipment and the like are at room temperature, the temperature of the cooling medium, that is, the temperature gradient portion from the extremely low temperature to the room temperature is required for the terminal connection portion of the superconducting power transmission cable described above. In this temperature gradient portion, a conductor component that allows electric current to pass while maintaining electrical insulation, specifically, the above-described lead conductor 3 is necessary. In this lead conductor 3, for example, the cooling medium is liquid nitrogen. If present, a temperature gradient from -196 ° C. to room temperature, for example, 20 ° C. occurs.

一般的に、前述した引出し導体3の絶縁を保つためには、絶縁被覆10として、例えばエポキシ樹脂、ポリエチレン、ゴム等の高分子材料を用いなければならない。
ところが高分子材料は一般に熱膨張係数が大きく、しかも図3に示すように高分子材料で形成した絶縁被覆10の中心部には銅導体のような金属導体が貫通しているため、高分子材料と金属の熱膨張係数の差により、高分子材料製の絶縁被覆10内にはかなり大きな内部応力が発生する。
In general, in order to maintain the insulation of the lead conductor 3 described above, a polymer material such as epoxy resin, polyethylene, rubber or the like must be used as the insulating coating 10.
However, a polymer material generally has a large coefficient of thermal expansion, and a metal conductor such as a copper conductor penetrates through the central portion of the insulating coating 10 formed of the polymer material as shown in FIG. Due to the difference between the thermal expansion coefficients of the metal and the metal, a considerably large internal stress is generated in the insulating coating 10 made of the polymer material.

一方、超電導送電ケーブルの終端接続部は常温下で組み立てられ、その後図3に示すように布設されると、徐々に冷却媒体温度にまで冷却される。この冷却の過程において、超電導導体1は熱収縮する。このとき図3に示すように超電導導体1と直線状に接続されている接続用導体2と、この接続用導体2と直交する引出し導体3との接続部である接続部材20を介して、引出し導体3の端部が超電導導体1側に引っ張られて、結果的には引出し導体3に曲げ応力が掛かる。   On the other hand, when the terminal connection portion of the superconducting power transmission cable is assembled at room temperature and then laid as shown in FIG. 3, it is gradually cooled to the cooling medium temperature. In the cooling process, the superconducting conductor 1 is thermally contracted. At this time, as shown in FIG. 3, the connecting conductor 2 connected in a straight line with the superconducting conductor 1 and the connecting member 20 which is a connecting portion between the connecting conductor 2 and the lead conductor 3 are drawn out. The end of the conductor 3 is pulled toward the superconducting conductor 1, and as a result, bending stress is applied to the lead conductor 3.

このように引出し導体3に曲げ応力が掛かると、必然的にこの引出し導体3の絶縁被覆10にも曲げ応力が掛かることになる。
高分子材料製の絶縁被覆10は冷却媒体の温度下で冷却されて弾性率や伸び特性が低下していて、しかも前述のように引出し導体3の中心の金属導体との熱膨張係数差による内部応力も発生しているために、わずかな力が掛かっただけで絶縁被覆10の破壊が生ずる状況下にある。
このような状況下において、前述した曲げ応力が作用すると、絶縁被覆に破壊が発生する恐れが高くなる。
When bending stress is applied to the lead conductor 3 in this way, the bending stress is inevitably applied to the insulating coating 10 of the lead conductor 3.
The insulating coating 10 made of a polymer material is cooled at the temperature of the cooling medium and has a reduced elastic modulus and elongation characteristics. Further, as described above, the inner coating due to the difference in thermal expansion coefficient with the metal conductor at the center of the lead conductor 3 Since stress is also generated, the insulation coating 10 is broken only when a slight force is applied.
Under such circumstances, when the bending stress described above acts, there is a high risk that the insulation coating will be broken.

他方、この引出し導体3の常温側では、通電の際にジュール熱が発生し、このジュール熱により引出し導体3の導体温度が上昇する。導体温度が上昇すると、引出し導体3は熱膨張し、導体の軸方向に極めて大きな力が働く。その結果、引出し導体3のみならず、引出し導体3を保持している部分、すなわち引出し導体3をほぼ垂直に保持している部分、特にフランジ6が引出し導体3の絶縁被覆10と一体的に形成されているような場合には、引出し導体3を垂直状態に保持しているこのフランジ6の部分に過大な力が掛かり、最悪の場合、保持部分、すなわちフランジ6の部分が破壊する恐れもある。   On the other hand, on the room temperature side of the lead conductor 3, Joule heat is generated during energization, and the conductor temperature of the lead conductor 3 rises due to the Joule heat. When the conductor temperature rises, the lead conductor 3 expands thermally, and a very large force acts in the axial direction of the conductor. As a result, not only the lead conductor 3, but also the portion holding the lead conductor 3, that is, the portion holding the lead conductor 3 substantially vertically, in particular, the flange 6 is formed integrally with the insulating coating 10 of the lead conductor 3. In such a case, an excessive force is applied to the portion of the flange 6 that holds the lead conductor 3 in a vertical state, and in the worst case, the holding portion, that is, the portion of the flange 6 may be broken. .

そこで前述した超電導導体1の熱収縮に伴う引出し導体3へ負荷する曲げ応力の発生を和らげ、この曲げ応力に起因する絶縁被覆10の破壊を防止しようとする観点から、あるいはまた引出し導体3の熱膨張による保持部分の破壊を起こり難くするために、例えば特許文献1に記載されているように、前記接続部材20を可撓性のあるリード線等の、いわゆる可撓性導体で形成する試みが既に知られている。   Therefore, the above-described bending stress applied to the lead conductor 3 due to the thermal contraction of the superconducting conductor 1 is alleviated, and from the viewpoint of preventing the insulation coating 10 from being destroyed due to this bending stress, or also from the heat of the lead conductor 3. In order to make it difficult to break the holding portion due to expansion, for example, as described in Patent Document 1, there is an attempt to form the connection member 20 with a so-called flexible conductor such as a flexible lead wire. Already known.

特開平11− 73824号公報JP-A-11-73824

前記特許文献1に記載の超電導送電ケーブルの終端接続部にあっては、超電導導体1と、あるいはこの超電導導体1の端部に直線接続された接続用導体2と、これら超電導導体1や接続用導体2の中心軸線とその中心軸線が直交する引出し導体3の各端部同士をリード線のような可撓性導体で接続している。   In the terminal connection part of the superconducting power transmission cable described in Patent Document 1, the superconducting conductor 1, or the connecting conductor 2 connected in a straight line to the end of the superconducting conductor 1, the superconducting conductor 1 and the connecting part are connected. The central axis of the conductor 2 and the ends of the lead conductor 3 whose central axis is orthogonal to each other are connected by a flexible conductor such as a lead wire.

このように可撓性導体で接続部材20を構成すれば、確かに超電導導体1の熱収縮に伴う引出し導体3へ負荷する曲げ応力や、引出し導体3の熱膨張による保持部へ負荷する応力も、その一部は確実に緩和できるかも知れない。
しかしながら、前述したように既に高分子材料製の絶縁被覆10は、冷却媒体の温度下で冷却されて弾性率や伸び特性が低下していて、しかも中心に位置する金属導体との熱膨張係数差による内部応力をも抱えているため、わずかな力の外力によっても破壊が起こっておかしくない状態にある。
If the connecting member 20 is formed of a flexible conductor in this way, the bending stress applied to the lead conductor 3 due to the thermal contraction of the superconducting conductor 1 and the stress applied to the holding part due to the thermal expansion of the lead conductor 3 are also sure. , Some of them may be surely mitigated.
However, as described above, the insulating coating 10 made of a polymer material has already been cooled at the temperature of the cooling medium and has decreased elastic modulus and elongation characteristics, and the difference in thermal expansion coefficient from the metal conductor located at the center. Because it also has internal stress due to, it is in a state where it is not strange that even a slight external force causes destruction.

そのような観点から考えると、超電導導体1、あるいはこれと直線接続されている接続用導体2の端部と引出し導体3の下端部とを可撓性導体で接続するだけでは、まだ絶縁被覆10の破壊を防止する上で充分とは言い難い。また引出し導体3を保持している部分の破壊をも完全に防止できるとは言い難い。   From such a point of view, the insulation coating 10 can still be obtained simply by connecting the end of the superconducting conductor 1 or the connecting conductor 2 linearly connected thereto and the lower end of the lead conductor 3 with a flexible conductor. It is hard to say that it is enough to prevent the destruction of the. Further, it is difficult to say that the portion holding the lead conductor 3 can be completely prevented from being broken.

そこで本発明の目的は、引出し導体の下端部の高分子材料製絶縁被覆を冷却媒体温度まで冷却した状態で使用し続けても、また冷却過程での超電導導体の熱収縮に伴う応力負荷が生じても、引出し導体の絶縁被覆の破壊をより起こり難くでき、また通電時の引出し導体の熱膨張により発生する応力の作用で、引出し導体の絶縁被覆の破壊やこの引出し導体をほぼ垂直に保持している保持部の破壊の恐れもより少なくできる超電導送電ケーブルの終端接続部を提供することにある。   Accordingly, an object of the present invention is to generate a stress load due to thermal contraction of the superconducting conductor during the cooling process even if the insulating coating made of the polymer material at the lower end of the lead conductor is continuously used in a state cooled to the cooling medium temperature. However, breakage of the insulation of the lead conductor is less likely to occur, and the action of the stress generated by the thermal expansion of the lead conductor during energization causes the insulation of the lead conductor to break and keep this lead conductor almost vertical. It is an object of the present invention to provide a terminal connection portion of a superconducting power transmission cable that can reduce the risk of breakage of the holding portion.

前記目的を達成すべく請求項1記載の超電導送電ケーブルの終端接続部は、超電導状態で送電を行う超電導送電ケーブルの少なくとも一端に設けられて超電導導体に流れる電流を常温の大気中に取り出すための超電導送電ケーブルの終端接続部であって、温度傾斜部と該温度傾斜部の上方に設けられている高電圧引出部とを経て極低温から常温に引き出される引出し導体を備えており、前記引出し導体には前記温度傾斜部内に位置する部分及び前記高電圧引出部の下部に位置する部分に跨って絶縁被覆が施され、該絶縁被覆が施された部分の上方に延びる裸導体の部分には導体軸方向に摺動性を有する摺動性接続部が設けられ、かつ前記引出し導体の下端にはこの引出し導体と略直交する前記超電導送電ケーブルの端末部とを電気的に接続する可撓性導体が接続されていることを特徴とするものである。   In order to achieve the above object, the terminal connection part of the superconducting power transmission cable according to claim 1 is provided at at least one end of the superconducting power transmission cable that transmits power in a superconducting state, and takes out the current flowing in the superconducting conductor into the ambient air. A terminal connection part of a superconducting power transmission cable, comprising a lead conductor that is drawn from a cryogenic temperature to room temperature via a temperature slope part and a high voltage lead part provided above the temperature slope part, the lead conductor Is provided with an insulation coating over a portion located in the temperature gradient portion and a portion located in the lower portion of the high voltage lead-out portion, and a bare conductor portion extending above the portion provided with the insulation coating has a conductor. A slidable connecting portion having slidability in the axial direction is provided, and a lower end of the lead conductor is electrically connected to a terminal portion of the superconducting power transmission cable substantially orthogonal to the lead conductor. The flexible conductor is connected is characterized in.

このようにしてなる請求項1記載の超電導送電ケーブルの終端接続部によれば、超電導導体の端末部と直接、あるいはこの超電導導体の端末部を構成するところの、例えば、超電導導体の端部に直線接続された接続用導体等を介して間接的に接続される引出し導体の下端との接続を可撓性導体により行い、さらに温度傾斜部や高電圧引出部内にほぼ垂直に位置決めされている引出し導体の絶縁被覆が施された部分の上方に延びる裸導体の部分に、導体軸方向に摺動性を有する摺動性接続部を設けたことにより、主として冷却過程での超電導導体の熱収縮に伴って発生する応力は前記可撓性導体で吸収して緩和し、通電時の引出し導体の熱膨張により発生する応力は主として摺動性接続部で吸収し、これを緩和する。   According to the terminal connection portion of the superconducting power transmission cable according to claim 1, the terminal portion of the superconducting conductor is formed directly or at the end portion of the superconducting conductor, for example, constituting the terminal portion of the superconducting conductor. A drawer that is connected to the lower end of the lead conductor that is indirectly connected via a connecting conductor etc. that is connected in a straight line by a flexible conductor, and that is positioned almost vertically in the temperature gradient part or high voltage lead part By providing a slidable connection part that has slidability in the conductor axis direction on the bare conductor part that extends above the part where the insulation coating is applied to the conductor, the heat conduction of the superconducting conductor is mainly reduced during the cooling process. The accompanying stress is absorbed and relaxed by the flexible conductor, and the stress generated by the thermal expansion of the lead conductor during energization is absorbed mainly by the slidable connection portion and relaxed.

その結果、引出し導体に対して曲げ応力が掛かり難く、しかも引出し導体の保持部への応力の負荷もより一層緩和される。
それ故、引出し導体の下端部の高分子材料製絶縁被覆部を冷却媒体温度まで冷却した状態で使用し続けても、また冷却過程での超電導導体の熱収縮に伴う応力負荷が生じても、引出し導体の絶縁被覆の破壊をより起こり難くできる。
同時に、通電時に引出し導体の熱膨張により発生する可能性のある引出し導体の絶縁被覆やこの引出し導体の保持部の破壊の恐れもより一層少なくでき、長期に亘って安定した超電導送電ケーブルの終端接続部を提供することができる。
As a result, it is difficult to apply a bending stress to the lead conductor, and the stress load on the holding portion of the lead conductor is further alleviated.
Therefore, even if the polymer material insulation coating at the lower end of the lead conductor continues to be used in a state cooled to the cooling medium temperature, or even if a stress load is generated due to thermal contraction of the superconducting conductor in the cooling process, The breakage of the insulation coating of the lead conductor can be made less likely to occur.
At the same time, it is possible to further reduce the risk of damage to the insulation of the lead conductor and the holding part of this lead conductor that may occur due to the thermal expansion of the lead conductor when energized. Department can be provided.

以上のように本発明の超電導送電ケーブルの終端接続部によれば、引出し導体の下端部の高分子材料製絶縁被覆部を冷却媒体温度まで冷却した状態で使用し続けても、また冷却過程での超電導導体の熱収縮に伴う応力負荷が生じても、引出し導体の絶縁被覆の破壊をより起こり難くできる。また通電時の引出し導体の熱膨張により発生する応力の作用で、引出し導体の絶縁体が破壊される恐れや、この引出し導体をほぼ垂直に保持している保持部の破壊の恐れもより低減できる。   As described above, according to the terminal connecting portion of the superconducting power transmission cable of the present invention, the insulating covering made of the polymer material at the lower end of the lead conductor can be continuously used in the state cooled to the cooling medium temperature, or in the cooling process. Even if a stress load accompanying thermal contraction of the superconducting conductor occurs, the insulation coating of the lead conductor can be more unlikely to break. In addition, it is possible to further reduce the risk of the insulator of the lead conductor being destroyed due to the action of the stress generated by the thermal expansion of the lead conductor when energized, and the possibility of breaking the holding portion holding the lead conductor almost vertically. .

図1及び図2を用いて本発明の超電導送電ケーブルの終端接続部の一実施例を詳細に説明することにする。   One embodiment of the termination connecting portion of the superconducting power transmission cable of the present invention will be described in detail with reference to FIGS.

図1は本発明の超電導送電ケーブルの終端接続部の一実施例を示す要部縦断面図である。
図1において、前述した従来例である図3との相違点は、引出し導体3の下端と超電導導体1と直線接続されている接続用導体2の右端との接続を可撓性導体25で接続したこと、及び引出し導体3の軸方向にあって、絶縁被覆10が被覆されている部分3aの上端部とこれに続く裸の導体部分3bとからなる部分の境界部に摺動性接続部30を設けた点の2点である。それ以外の部分の基本的構成は従来のものと類似している。
それ故、類似しているものには図3のものと同符号を付し、かつその説明を一部省略した。
FIG. 1 is a longitudinal sectional view of an essential part showing an embodiment of a terminal connection part of a superconducting power transmission cable according to the present invention.
In FIG. 1, the difference from the above-described conventional example of FIG. 3 is that the connection between the lower end of the lead conductor 3 and the right end of the connecting conductor 2 that is linearly connected to the superconducting conductor 1 is connected by the flexible conductor 25. And the slidable connecting portion 30 at the boundary portion between the upper end portion of the portion 3a covered with the insulating coating 10 and the bare conductor portion 3b following the axial direction of the lead conductor 3. 2 points. The other basic configuration is similar to the conventional one.
Therefore, similar parts are denoted by the same reference numerals as those in FIG. 3, and the explanation thereof is partially omitted.

図1が示すように本発明の超電導送電ケーブルの終端接続部の一実施例において、図で水平方向に布設されている超電導送電ケーブルの端末部を構成する超電導導体1は、接続用導体2を介して、引出し導体3の下端に略L字状をした可撓性導体25を用いて接続されている。   As shown in FIG. 1, in one embodiment of the terminal connection portion of the superconducting power transmission cable of the present invention, the superconducting conductor 1 constituting the terminal portion of the superconducting power transmission cable laid in the horizontal direction in FIG. The flexible conductor 25 having a substantially L shape is connected to the lower end of the lead conductor 3.

ここで超電導送電ケーブルの端末部、という場合には、超電導送電ケーブルの超電導導体1の端末部を指す場合と、超電導導体1に接続されている接続用導体2の端末部を指す場合(共に図に向かって右側端末部)の両方が含まれるものとする。
すなわち、超電導送電ケーブルの端末部と引出し導体3の下端部とを可撓性導体25で接続する、という場合には、超電導導体1と引出し導体3とを可撓性導体25により直接接続する場合もあれば、超電導導体1に接続されている接続用導体2を介して間接的に超電導導体1と引出し導体3とを可撓性導体25で接続する場合もある。
Here, in the case of the terminal part of the superconducting power transmission cable, the terminal part of the superconducting conductor 1 of the superconducting power transmission cable and the terminal part of the connecting conductor 2 connected to the superconducting conductor 1 are shown (both in FIG. And the right terminal portion).
That is, when the end portion of the superconducting power transmission cable and the lower end portion of the lead conductor 3 are connected by the flexible conductor 25, the superconductor conductor 1 and the lead conductor 3 are directly connected by the flexible conductor 25. In some cases, the superconducting conductor 1 and the lead conductor 3 may be indirectly connected by the flexible conductor 25 via the connecting conductor 2 connected to the superconducting conductor 1.

そしてこの引出し導体3は、液体窒素のごとき液体冷媒層4や、この液体冷媒層4の上部に連なる窒素ガス等からなる冷媒ガス層5とにより構成される温度傾斜部12を通過し、さらにこの温度傾斜部12の上方に設けられ、この温度傾斜部12とフランジ6により仕切られている高電圧引出部13を通った後、その先端部は外部へと導かれている。   The lead conductor 3 passes through a temperature gradient portion 12 constituted by a liquid refrigerant layer 4 such as liquid nitrogen and a refrigerant gas layer 5 made of nitrogen gas or the like continuous with the liquid refrigerant layer 4. After passing through the high voltage lead-out portion 13 provided above the temperature gradient portion 12 and partitioned by the temperature gradient portion 12 and the flange 6, the tip portion is led to the outside.

温度傾斜部12は、主としてSUS製の内部圧力容器22内に形成されている液体冷媒層4や冷媒ガス層5とで構成され、この内部圧力容器22は内部に真空断熱層を形成しているSUS製の外部圧力容器21で覆われている。
また温度傾斜部12とフランジ6で仕切られている高電圧引出部13は、主として碍子7と、該碍子7内に充填されている絶縁油やSFガス等からなる流体絶縁体8及び高電圧引出部13の先端に設けられている上部金具14により構成されている。
尚、図1でフランジ6は引出し導体3と別体であるが、例えば引出し導体3の絶縁被覆10とフランジ6とを同じ絶縁樹脂で構成して一体形成することもできる。この場合には、絶縁被覆10のフランジ状の部分で引出し導体3をほぼ垂直に保持し、軸方向の位置決めを行う。
The temperature gradient portion 12 is mainly composed of a liquid refrigerant layer 4 and a refrigerant gas layer 5 formed in an internal pressure vessel 22 made of SUS, and the internal pressure vessel 22 forms a vacuum heat insulating layer therein. It is covered with an external pressure vessel 21 made of SUS.
The high voltage lead-out portion 13 partitioned by the temperature gradient portion 12 and the flange 6 is mainly composed of an insulator 7, a fluid insulator 8 made of insulating oil, SF 6 gas, or the like filled in the insulator 7 and a high voltage. It is constituted by an upper metal fitting 14 provided at the leading end of the drawing portion 13.
In FIG. 1, the flange 6 is separate from the lead conductor 3, but for example, the insulating coating 10 of the lead conductor 3 and the flange 6 may be formed of the same insulating resin and integrally formed. In this case, the lead conductor 3 is held almost vertically by the flange-shaped portion of the insulating coating 10 to perform axial positioning.

さて本発明にあっては、前記引出し導体3は、絶縁被覆10の上端部に設けられたストレスコーン11より上部であって、導体が露出している部分で軸方向に2つに分割されている。そして分割された下方側の部分、すなわち絶縁被覆10を有する部分3aと、この絶縁被覆10を有する部分3aの上方に位置する裸の導体からなる部分3bとの境界部に両部分3a、3bが相対的に軸方向に摺動できるようにした摺動性接続部30が設けられている。
もちろんこの摺動性接続部30は、絶縁被覆10を有する部分3aと裸の導体からなる部分3bの各導体間の電気的導通を損なうものではない。
In the present invention, the lead conductor 3 is above the stress cone 11 provided at the upper end of the insulating coating 10 and is divided into two in the axial direction at the portion where the conductor is exposed. Yes. Then, both portions 3a and 3b are provided at the boundary between the divided lower portion, that is, the portion 3a having the insulating coating 10 and the portion 3b made of a bare conductor located above the portion 3a having the insulating coating 10. A slidable connecting portion 30 is provided so as to be relatively slidable in the axial direction.
Of course, the slidable connecting portion 30 does not impair the electrical continuity between the conductors of the portion 3a having the insulating coating 10 and the portion 3b made of a bare conductor.

図2は、この摺動性接続部30の拡大縦断面図を示す。
図2が示すように、裸の導体からなる部分3bの下端には、その中心軸が引出し導体3の中心軸に一致するように設けた穴、すなわち受け部が設けられている。そして、この受け部には、例えばマルチコンタクトのごとき摺動性接続部材31が嵌入されている。そしてこの摺動性接続部材31内に、引出し導体3の軸方向に摺動自在に前記絶縁被覆10を有する部分3aの先端部を嵌め込んである。
もちろん摺動性接続部30を構成する方法は、この実施例のようにマルチコンタクトのごとき摺動性接続部材31を使用する方法に限定されるものではない。
FIG. 2 shows an enlarged longitudinal sectional view of the slidable connecting portion 30.
As shown in FIG. 2, a hole, that is, a receiving portion provided so that the central axis thereof coincides with the central axis of the lead conductor 3 is provided at the lower end of the portion 3 b made of a bare conductor. In this receiving portion, for example, a slidable connection member 31 such as a multi-contact is fitted. And in this slidable connection member 31, the front-end | tip part of the part 3a which has the said insulating coating 10 is slidably fitted to the axial direction of the drawer | drawing-out conductor 3.
Of course, the method of configuring the slidable connecting portion 30 is not limited to the method of using the slidable connecting member 31 such as multi-contact as in this embodiment.

ところで裸の導体からなる部分3bの下端に設けた穴の底面と絶縁被覆10を有する部分3aの先端との間には、図2が示すように軸方向長さεを有する空隙を設けておいて、この長さεを調整することで摺動可能長さ(余裕)を調整する。このεの値は、引出し導体3の長さや材質等に応じて適宜決定される。すなわち引出し導体3が熱膨張した場合の軸方向の伸び等を計算して決定すればよい。   By the way, a gap having an axial length ε is provided between the bottom surface of the hole provided at the lower end of the portion 3b made of a bare conductor and the tip of the portion 3a having the insulating coating 10, as shown in FIG. The slidable length (margin) is adjusted by adjusting the length ε. The value of ε is appropriately determined according to the length and material of the lead conductor 3. That is, the elongation in the axial direction when the lead conductor 3 thermally expands may be determined by calculation.

尚、絶縁被覆10を有する部分3aの導体は、図1が示すように、高電圧引出部内13側に位置する部分の外径を、温度傾斜部12内に位置する部分のそれより相対的に大きくしてある。その理由は、引出し導体3を通じて碍子7内の流体絶縁体8が冷媒ガス層5や液体冷媒層4側に熱を奪われ難くなるように設計されているからである。すなわち、流体絶縁体8が固化または液化して絶縁強度が低下するのを防止している。
但し、本発明は引出し導体3の外径には本質的に無関係であり、図1に示す実施例のものに限定されず、例えば絶縁被覆10を有する部分3aの導体外径が、上端から下端まで同じ外径のものであってもなんら問題ない。
As shown in FIG. 1, the conductor of the portion 3 a having the insulating coating 10 has an outer diameter of the portion located on the high voltage lead-out portion 13 side relatively to that of the portion located in the temperature gradient portion 12. It is enlarged. This is because the fluid insulator 8 in the insulator 7 is designed to be less likely to be deprived of heat toward the refrigerant gas layer 5 or the liquid refrigerant layer 4 through the lead conductor 3. That is, the fluid insulator 8 is prevented from being solidified or liquefied to lower the insulation strength.
However, the present invention is essentially irrelevant to the outer diameter of the lead conductor 3, and is not limited to that of the embodiment shown in FIG. 1. For example, the conductor outer diameter of the portion 3a having the insulating coating 10 is changed from the upper end to the lower end. There is no problem even if they have the same outer diameter.

また前記実施例では摺動性接続部材31を裸の導体からなる部分3bの下端に穿った受け部に嵌めこんで、これに摺動自在に絶縁被覆10を有する部分3aの先端部を嵌め込んでいるが、これとは逆に絶縁被覆10を有する部分3aの先端部に摺動性接続部材31を嵌め込む穴を設け、これに摺動性接続部材31を嵌めて、裸の導体からなる部分3bの下端をこの摺動性接続部材31に摺動自在に嵌め込んでもよい。   In the above embodiment, the slidable connecting member 31 is fitted into a receiving portion formed at the lower end of the portion 3b made of a bare conductor, and the tip of the portion 3a having the insulating coating 10 is slidably fitted therein. However, conversely, a hole for fitting the slidable connecting member 31 is provided at the tip of the portion 3a having the insulating coating 10, and the slidable connecting member 31 is fitted into the hole to be made of a bare conductor. The lower end of the portion 3b may be slidably fitted into the slidable connection member 31.

以上のように超電導送電ケーブルの端末部と引出し導体3の下端部との接続を可撓性導体25で接続し、また絶縁被覆10を有する部分3aと、この絶縁被覆10を有する部分3aの上方に位置する裸の導体からなる部分3bとの境界部に両部分3a、3bが軸方向に摺動できるように摺動性接続部30を設けたことにより、本発明の超電導送電ケーブルの終端接続部においては、主として冷却過程での超電導導体の熱収縮に伴って発生する応力は前記可撓性導体25が吸収して緩和し、通電時の引出し導体3の熱膨張により発生する応力は主として摺動性接続部30がこれを吸収し、緩和する。   As described above, the connection between the terminal portion of the superconducting power transmission cable and the lower end portion of the lead conductor 3 is connected by the flexible conductor 25, and the portion 3a having the insulating coating 10 and the portion 3a having the insulating coating 10 are located above. The slidable connection portion 30 is provided at the boundary with the portion 3b made of a bare conductor located in the base so that both the portions 3a and 3b can slide in the axial direction, whereby the end connection of the superconducting power transmission cable of the present invention is achieved. In this section, the stress generated mainly due to the thermal contraction of the superconducting conductor during the cooling process is absorbed and relaxed by the flexible conductor 25, and the stress generated by the thermal expansion of the lead conductor 3 during energization is mainly slid. The dynamic connection 30 absorbs this and relaxes it.

その結果、引出し導体3に対して超電導送電ケーブル側からの応力に起因する曲げ応力が掛かり難くなる。また引出し導体3の膨張による引出し導体3の保持部への負荷応力も一層軽減、緩和される。
それ故、引出し導体3の下端部の高分子材料製絶縁被覆部10を冷却媒体温度まで冷却した状態で使用し続けても、また冷却過程で超電導導体1の熱収縮に伴う応力負荷が生じても、引出し導体3の絶縁被覆10の破壊をより起こり難くできる。
同時に、通電時の引出し導体の熱膨張により発生する応力の作用で、引出し導体の絶縁体が破壊される恐れや、この引出し導体をほぼ垂直に保持している保持部の破壊の恐れもより一層少なくでき、長期に亘って安定した超電導送電ケーブルの終端接続部を提供することができる。
As a result, it is difficult to apply bending stress due to stress from the superconducting power transmission cable side to the lead conductor 3. Further, the load stress on the holding portion of the lead conductor 3 due to the expansion of the lead conductor 3 is further reduced and alleviated.
Therefore, even if the polymeric insulating coating 10 at the lower end of the lead conductor 3 is continuously used in a state of being cooled to the cooling medium temperature, a stress load due to thermal contraction of the superconducting conductor 1 occurs during the cooling process. However, the insulation coating 10 of the lead conductor 3 can be more unlikely to break.
At the same time, the action of the stress generated by the thermal expansion of the lead conductor during energization may cause damage to the insulator of the lead conductor and the risk of breaking the holding part that holds the lead conductor almost vertically. It is possible to provide a terminal connection portion of a superconducting power transmission cable that can be reduced and stable for a long period of time.

本発明の超電導送電ケーブルの終端接続部の一例を示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows an example of the termination | terminus connection part of the superconducting power transmission cable of this invention. 図1の引出し導体に設けられた摺動性接続部の一例を示す拡大縦断面図である。FIG. 2 is an enlarged longitudinal sectional view showing an example of a slidable connection provided on the lead conductor in FIG. 1. 従来の超電導送電ケーブルの終端接続部の一例を示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows an example of the termination | terminus connection part of the conventional superconducting power transmission cable.

符号の説明Explanation of symbols

1 超電導導体
3 引出し導体
3a 絶縁被覆を有する部分
3b 裸の導体からなる部分
4 液体冷媒層
5 冷媒ガス層
6 フランジ
7 碍子
8 流体絶縁体
10 絶縁被覆
12 温度傾斜部
13 高電圧引出部
25 可撓性導体
30 摺動性接続部
31 摺動性接続部材
DESCRIPTION OF SYMBOLS 1 Superconductor 3 Lead conductor 3a Part 3b which has insulation coating Part 4 which consists of a bare conductor 4 Liquid refrigerant layer 5 Refrigerant gas layer 6 Flange 7 Insulator 8 Fluid insulator 10 Insulation coating 12 Temperature gradient part 13 High voltage extraction part 25 Flexible Conductive conductor 30 Sliding connection part 31 Sliding connection member

Claims (1)

超電導状態で送電を行う超電導送電ケーブルの少なくとも一端に設けられて超電導導体に流れる電流を常温の大気中に取り出すための超電導送電ケーブルの終端接続部であって、温度傾斜部と該温度傾斜部の上方に設けられている高電圧引出部とを経て極低温から常温に引き出される引出し導体を備えており、前記引出し導体には前記温度傾斜部内に位置する部分及び前記高電圧引出部の下部に位置する部分に跨って絶縁被覆が施され、該絶縁被覆が施された部分の上方に延びる裸導体の部分には導体軸方向に摺動性を有する摺動性接続部が設けられ、かつ前記引出し導体の下端にはこの引出し導体と略直交する前記超電導送電ケーブルの端末部とを電気的に接続する可撓性導体が接続されていることを特徴とする超電導送電ケーブルの終端接続部。   A superconducting power transmission cable terminal connection part for taking out the current flowing in the superconducting conductor provided in at least one end of the superconducting power transmission cable that performs power transmission in a superconducting state, into a normal temperature atmosphere. And a lead conductor that is drawn from cryogenic temperature to room temperature through a high voltage lead portion provided above, and the lead conductor is located at a portion located in the temperature inclined portion and at a lower portion of the high voltage lead portion. A portion of the bare conductor extending above the portion provided with the insulating coating is provided with a slidable connecting portion having slidability in the conductor axial direction, and the drawer The end of the superconducting power transmission cable is characterized in that a flexible conductor for electrically connecting the end of the superconducting power transmission cable substantially perpendicular to the lead conductor is connected to the lower end of the conductor. Connection portion.
JP2005254232A 2005-09-02 2005-09-02 Superconducting power cable termination connection Expired - Fee Related JP4550699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005254232A JP4550699B2 (en) 2005-09-02 2005-09-02 Superconducting power cable termination connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005254232A JP4550699B2 (en) 2005-09-02 2005-09-02 Superconducting power cable termination connection

Publications (2)

Publication Number Publication Date
JP2007066819A JP2007066819A (en) 2007-03-15
JP4550699B2 true JP4550699B2 (en) 2010-09-22

Family

ID=37928756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005254232A Expired - Fee Related JP4550699B2 (en) 2005-09-02 2005-09-02 Superconducting power cable termination connection

Country Status (1)

Country Link
JP (1) JP4550699B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9251932B2 (en) 2011-01-27 2016-02-02 Furukawa Electric Co., Ltd. Terminal connecting part of superconducting cable

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101199004B1 (en) 2011-01-06 2012-11-07 성균관대학교산학협력단 Nano Porous Electrode for Super Capacitor and Method for Preparing the Same
US9182464B2 (en) * 2012-07-27 2015-11-10 General Electric Company Retractable current lead
KR101518673B1 (en) * 2014-06-18 2015-05-11 주식회사 포스코 Apparatus and method for treating ends of laminated wire
CN111641169B (en) * 2020-06-03 2021-09-07 黄琦 Automatic cable mounting bracket of elasticity
KR102579045B1 (en) * 2021-08-11 2023-09-19 한국전력공사 Connection apparatus for superconducting cable

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08196030A (en) * 1995-01-13 1996-07-30 Furukawa Electric Co Ltd:The End connecting device for cryoresistive cable
JP2005151727A (en) * 2003-11-18 2005-06-09 Furukawa Electric Co Ltd:The Method of measuring critical current of superconducting cable line

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08196030A (en) * 1995-01-13 1996-07-30 Furukawa Electric Co Ltd:The End connecting device for cryoresistive cable
JP2005151727A (en) * 2003-11-18 2005-06-09 Furukawa Electric Co Ltd:The Method of measuring critical current of superconducting cable line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9251932B2 (en) 2011-01-27 2016-02-02 Furukawa Electric Co., Ltd. Terminal connecting part of superconducting cable

Also Published As

Publication number Publication date
JP2007066819A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP4550699B2 (en) Superconducting power cable termination connection
KR101103732B1 (en) Terminal
US7067739B2 (en) Joint structure of superconducting cable and insulating spacer for connecting superconducting cable
KR101556792B1 (en) Cryostat of Superconducting Cable
JP5053466B2 (en) Terminal structure of superconducting cable conductor
KR20040111104A (en) Termination structure of cryogenic cable
US20070235211A1 (en) Method for laying a superconductor cable
JP2009268340A (en) Electric connection structure for superconductive device
WO2011096348A1 (en) Cryogenic cable termination connector
KR20140018145A (en) Arrangement having at least one superconducting cable
KR20120121443A (en) Super-conducting cable device
JP4686429B2 (en) Device for powering superconducting devices under medium or high voltage
JP4028454B2 (en) Cryogenic cable termination connection
JP6520334B2 (en) Superconducting equipment
JP5537761B2 (en) Electrical lead-in wire for connecting superconducting devices with devices at room temperature
KR20100004281A (en) 3 phase superconducting cable jointing apparatus
KR100627511B1 (en) Connecting system of superconducting power-cable and conducting sleeve used therein
KR102657040B1 (en) Dead end test equipment for power cable
WO2002029930A2 (en) A terminal connection for a superconductive cable
JP5742006B2 (en) End structure of room temperature insulated superconducting cable
CA2529075C (en) Terminal structure
JPH11329101A (en) Heat resisting cv cable
JP2003284233A (en) Insulating cover for cold joint
JP2007080940A (en) Superconducting coil apparatus
JP2005151727A (en) Method of measuring critical current of superconducting cable line

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees