JP4028454B2 - Cryogenic cable termination connection - Google Patents

Cryogenic cable termination connection Download PDF

Info

Publication number
JP4028454B2
JP4028454B2 JP2003273141A JP2003273141A JP4028454B2 JP 4028454 B2 JP4028454 B2 JP 4028454B2 JP 2003273141 A JP2003273141 A JP 2003273141A JP 2003273141 A JP2003273141 A JP 2003273141A JP 4028454 B2 JP4028454 B2 JP 4028454B2
Authority
JP
Japan
Prior art keywords
conductor
temperature
lead conductor
lead
insulating coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003273141A
Other languages
Japanese (ja)
Other versions
JP2005033964A (en
Inventor
寛信 平野
重夫 長屋
達也 永田
俊英 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Chubu Electric Power Co Inc
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Chubu Electric Power Co Inc filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2003273141A priority Critical patent/JP4028454B2/en
Publication of JP2005033964A publication Critical patent/JP2005033964A/en
Application granted granted Critical
Publication of JP4028454B2 publication Critical patent/JP4028454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Processing Of Terminals (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)

Description

本発明は、例えば液体窒素等の極低温液体で冷却される極低温ケーブル(超電導ケーブル、極低温抵抗ケーブル等を含む)の終端接続部に関するものである。   The present invention relates to a terminal connection portion of a cryogenic cable (including a superconducting cable, a cryogenic resistance cable, etc.) cooled by a cryogenic liquid such as liquid nitrogen.

極低温ケーブル、例えば超電導ケーブルの終端接続部は、一端が超電導ケーブルの導体に直接、あるいは他の接続部材を介して間接的に接続され、他端が大気中に引き出される引出し導体を備えている。
この引出し導体は一般的には銅製の導体からなっていて、一端は液体窒素等で冷却され、他端は大気中に引き出されるため、液体窒素の温度、すなわち極低温から常温までの極めて大きな温度傾斜(温度勾配)を有している。
A terminal connection portion of a cryogenic cable, for example, a superconducting cable, includes a lead conductor having one end connected directly to the conductor of the superconducting cable or indirectly through another connecting member and the other end drawn into the atmosphere. .
This lead conductor is generally made of a copper conductor, one end is cooled with liquid nitrogen or the like, and the other end is drawn into the atmosphere, so the temperature of liquid nitrogen, that is, a very high temperature from extremely low temperature to room temperature. It has a slope (temperature gradient).

一般的な極低温ケーブルの終端接続部を図3を用いて説明する。
図3は従来の一般的な極低温ケーブルの終端接続部の一例を示す縦断面図である。図3が示すように超電導ケーブル等の導体1が接続部2を介して引出し導体3に接続されている。引出し導体3は液体窒素のごとき液体冷媒層4や、この液体冷媒層4の上部に連なる窒素ガス等からなる冷媒ガス層5とにより構成される温度傾斜部12を通過し、さらにこの温度傾斜部12とフランジ6により仕切られている高電圧引出部13を通った後、外部へと導かれている。
この高電圧引出部13は、主として碍子7と該碍子7の内部に充填された絶縁油やSFガス等からなる流体絶縁体8により構成されている。
A termination connection part of a general cryogenic cable will be described with reference to FIG.
FIG. 3 is a longitudinal sectional view showing an example of a terminal connection portion of a conventional general cryogenic cable. As shown in FIG. 3, a conductor 1 such as a superconducting cable is connected to a lead conductor 3 through a connection portion 2. The lead conductor 3 passes through a temperature gradient portion 12 constituted by a liquid refrigerant layer 4 such as liquid nitrogen and a refrigerant gas layer 5 made of nitrogen gas or the like connected to the upper portion of the liquid refrigerant layer 4, and further this temperature gradient portion. After passing through the high voltage lead-out part 13 partitioned by 12 and the flange 6, it is led to the outside.
The high voltage lead-out portion 13 is mainly composed of an insulator 7 and a fluid insulator 8 made of insulating oil, SF 6 gas, or the like filled in the insulator 7.

ここで符号9は高圧用の断熱容器を示している。ところで前記引出し導体3は、温度傾斜部内12に位置する部分と高電圧引出部13の下部に位置する部分に跨って、例えばエチレンプロピレンゴム等からなる絶縁被覆が施された絶縁被覆部分3aと、該絶縁被覆部分3aの上方に延び高電圧引出部13を通過し、外部へと引き出される絶縁被覆が施されていない、すなわち裸の銅導体からなる導体露出部3bとからなっている。符号10は、前記絶縁被覆部分3aの両端部近傍に設けられている電界制御部材、すなわちストレスコーンを示している。   Here, reference numeral 9 denotes a high-pressure insulated container. By the way, the lead conductor 3 extends over a portion located in the temperature inclined portion 12 and a portion located in the lower portion of the high voltage lead portion 13, and an insulating covering portion 3a provided with an insulating covering made of, for example, ethylene propylene rubber, It comprises a conductor exposed portion 3b that extends above the insulating coating portion 3a, passes through the high voltage lead-out portion 13, and is not provided with an insulating coating that is led out to the outside, that is, a bare copper conductor. Reference numeral 10 denotes an electric field control member, that is, a stress cone provided near both ends of the insulating coating portion 3a.

このような極低温ケーブルの終端接続部は、極低温から常温までの極めて大きな温度傾斜(温度勾配)に曝されることから、種々の熱的問題を有している。
例えば、液体冷媒層4内に位置する絶縁被覆部分3aの下端部やストレスコーン10の下端部に、液体冷媒が外部からの侵入熱や引出し導体3のジュール熱で気化して、その蒸発ガスが溜まって絶縁強度を低下させるといった問題がある(特許文献1)。
さらには引出し導体3を通じて碍子7内の流体絶縁体8が冷媒ガス層5や液体冷媒層4側に熱を奪われ、固化または液化して絶縁強度が低下する、といった問題も提示されている(特許文献2)。
Since the termination connection part of such a cryogenic cable is exposed to a very large temperature gradient (temperature gradient) from cryogenic temperature to room temperature, it has various thermal problems.
For example, the liquid refrigerant is vaporized by the intrusion heat from the outside or the Joule heat of the lead conductor 3 at the lower end portion of the insulating coating portion 3 a located in the liquid refrigerant layer 4 or the lower end portion of the stress cone 10, and the evaporated gas is There is a problem that it accumulates and lowers the insulation strength (Patent Document 1).
Furthermore, there is a problem that the fluid insulator 8 in the insulator 7 is deprived of heat to the refrigerant gas layer 5 or the liquid refrigerant layer 4 side through the lead conductor 3 and solidifies or liquefies to lower the insulation strength. Patent Document 2).

これらの問題のうち前者については、液体冷媒層4を該液体冷媒より沸点の低いガスで加圧する、といった提案(特許文献1)がなされ、後者の問題についても流体絶縁体8側における引出し導体3の外径を冷媒ガス層5や液体冷媒層4側における外径より大きくする、といった提案(特許文献2)がなされている。   Among these problems, the former has been proposed (Patent Document 1) in which the liquid refrigerant layer 4 is pressurized with a gas having a boiling point lower than that of the liquid refrigerant, and the lead conductor 3 on the fluid insulator 8 side is also proposed for the latter problem. Has been proposed (Patent Document 2) such that the outer diameter of the refrigerant is larger than the outer diameter on the refrigerant gas layer 5 or liquid refrigerant layer 4 side.

特許文献1:特開平10− 70828号公報
特許文献2:特開平 8−196032号公報
Patent Document 1: Japanese Patent Application Laid-Open No. 10-70828 Patent Document 2: Japanese Patent Application Laid-Open No. 8-196032

ところで図3に示す従来の極低温ケーブルの終端接続部においては、前述したように、液体冷媒層4内に位置する絶縁被覆部分3aやストレスコーン10の下端部に、液体冷媒が侵入熱や引出し導体3のジュール熱で気化して、その蒸発ガスが溜まって絶縁強度の低下を引き起こす、という問題や、流体絶縁体の熱が冷媒ガス層5や液体冷媒層4側に奪われて絶縁強度が劣化する、という問題だけでなく、以下のような問題もあった。
すなわち、引出し導体3の絶縁被覆部分3aの、例えばエチレンプロピレンゴム製の絶縁被覆が、液体窒素の温度下で機械的強度が低下して割れが生じ、絶縁強度が劣化する、というものである。
Incidentally, in the terminal connection portion of the conventional cryogenic cable shown in FIG. 3, as described above, the liquid refrigerant enters the insulating coating portion 3a located in the liquid refrigerant layer 4 or the lower end portion of the stress cone 10 and intrudes heat or draws out. The problem is that vaporization is caused by Joule heat of the conductor 3 and the evaporated gas accumulates, resulting in a decrease in insulation strength, and the heat of the fluid insulator is taken away by the refrigerant gas layer 5 or the liquid refrigerant layer 4 side, resulting in an insulation strength. In addition to the problem of deterioration, there were the following problems.
That is, the insulating coating made of, for example, ethylene propylene rubber, of the insulating coating portion 3a of the lead conductor 3 is reduced in mechanical strength at the temperature of liquid nitrogen to cause cracking, and the insulating strength is deteriorated.

そこで前記絶縁被覆の材料としてエチレンプロピレンゴム以外のものを種々検討した。具体的には、例えばエポキシ樹脂に換えてもみたが、エポキシ樹脂の線膨張係数が銅導体の線膨張係数より大きいためか、冷却されている最中にエポキシ樹脂に過大な応力が発生し、絶縁被覆が割れる場合があった。   Therefore, various materials other than ethylene propylene rubber were examined as the material for the insulating coating. Specifically, for example, it was replaced with an epoxy resin, but because the linear expansion coefficient of the epoxy resin is larger than the linear expansion coefficient of the copper conductor, excessive stress is generated in the epoxy resin during cooling, Insulation coating sometimes cracked.

そこで本発明の目的は、引出し導体の一部(図3における絶縁被覆部分3a)に被覆した絶縁被覆が液体冷媒や冷媒ガスで冷却されても割れを引き起こすことのない引出し導体の構造を提案し、もって信頼性の高い極低温ケーブルの終端接続部を提供することにある。   Accordingly, an object of the present invention is to propose a structure of a lead conductor that does not cause cracking even when the insulation coating covering a part of the lead conductor (insulation coating portion 3a in FIG. 3) is cooled by liquid refrigerant or refrigerant gas. Accordingly, an object of the present invention is to provide a highly reliable termination connection for a cryogenic cable.

前記目的を達成すべく請求項1記載の本発明は、温度傾斜部内の液体冷媒層、冷媒ガス層及び高電圧引出部とを経て極低温から常温に引き出される引出し導体を有する極低温ケーブルの終端接続部において、前記引出し導体には前記温度傾斜部内に位置する部分及び前記高電圧引出部の下部に位置する部分に跨って、その両端に電界制御部材を有する絶縁被覆が施され、かつ少なくとも前記温度傾斜部内に位置する部分における引出し導体と絶縁被覆との間には離型処理が施され、前記引出し導体は、前記高電圧引出部内に位置する部分の外径が前記温度傾斜部内に位置する部分の外径より大きくなっていて、かつ前記温度傾斜部内に位置する部分の外径は上部に向かってテーパ状に細くなっていることを特徴とするものである。 In order to achieve the above object, the present invention according to claim 1 is directed to an end of a cryogenic cable having a lead conductor drawn from a cryogenic temperature to a normal temperature through a liquid refrigerant layer, a refrigerant gas layer and a high voltage lead portion in a temperature gradient portion. In the connecting portion, the lead conductor is provided with an insulating coating having an electric field control member at both ends across a portion located in the temperature inclined portion and a portion located in the lower portion of the high voltage lead portion, and at least the A mold release process is performed between the lead conductor and the insulating coating in the portion located in the temperature inclined portion, and the outer diameter of the portion of the lead conductor located in the high voltage lead portion is located in the temperature inclined portion. The outer diameter of the portion which is larger than the outer diameter of the portion and which is located in the temperature inclined portion is tapered toward the upper portion .

このようにしてなる請求項1記載の本発明の極低温ケーブルの終端接続部によれば、引出し導体の絶縁被覆部分が液体冷媒層や冷媒ガス層により冷却され、絶縁被覆を構成する樹脂が銅導体からなる引出し導体と共に収縮し、その際、両者の線膨張係数の差により収縮量や収縮速度が違っても、両者間には少なくとも温度傾斜部内に位置する部分における引出し導体と絶縁被覆との間に離型処理が施されているため、両者は互いの界面を滑りながら収縮し、互いに収縮に伴う応力を受け難くなる、と推測される。
また、引出し導体を、前記高電圧引出部内に位置する部分の外径が前記温度傾斜部内に位置する部分の外径より大きくなっていて、かつ前記温度傾斜部内に位置する部分の外径は上部に向かってテーパ状に細くすることで、引出し導体の絶縁被覆部分が液体冷媒層や冷媒ガス層により冷却され、その際線膨張係数の差により絶縁被覆を構成する樹脂と銅導体の収縮量や収縮速度が違っても、両者間には前述のように少なくとも温度傾斜部内に位置する部分における引出し導体と絶縁被覆との間に離型処理が施されているのに加えて、銅導体の前記温度傾斜部内に位置する部分の外径が上部に向かってテーパ状に細くなっているため、収縮する樹脂は引出し導体上をより滑り易くなって、より一層過度の応力が発生し難くなる。
このように樹脂側に過度の応力が負荷され難くなって、樹脂製の絶縁被覆が割れ難くなり、信頼性の高い極低温ケーブルの終端接続部を提供することができる。
According to the terminal connection portion of the cryogenic cable of the present invention as described in claim 1, the insulating coating portion of the lead conductor is cooled by the liquid refrigerant layer or the refrigerant gas layer, and the resin constituting the insulating coating is copper. Even if the shrinkage amount and shrinkage speed are different due to the difference in linear expansion coefficient between them, at least the portion between the lead conductor and the insulation coating in the temperature inclined portion is contracted. Since the mold release treatment is performed between them, it is assumed that both contract while sliding on the interface with each other, and are less likely to receive the stress accompanying the contraction.
Further, the outer diameter of the portion of the lead conductor located in the high voltage lead portion is larger than the outer diameter of the portion located in the temperature inclined portion, and the outer diameter of the portion located in the temperature inclined portion is the upper portion The insulation coating portion of the lead conductor is cooled by the liquid refrigerant layer or the refrigerant gas layer, and the amount of contraction between the resin and the copper conductor constituting the insulation coating due to the difference in linear expansion coefficient at that time Even if the shrinkage speed is different, in addition to the fact that a release treatment is performed between the lead conductor and the insulation coating at least in the portion located in the temperature gradient portion as described above, the copper conductor is in the state described above. Since the outer diameter of the portion located in the temperature inclined portion is tapered toward the upper portion, the shrinking resin becomes easier to slide on the lead conductor, and an excessive stress is hardly generated.
As described above, it is difficult for excessive stress to be applied to the resin side, the resin insulation coating is difficult to break, and a highly reliable terminal connection portion of the cryogenic cable can be provided.

さらに請求項記載の本発明は、請求項記載の発明において、前記絶縁被覆がエポキシ樹脂からなることを特徴とするものである。
このようにしてなる請求項記載の本発明によれば、絶縁被覆用の樹脂としてエポキシ樹脂を使用しているため、より一層冷却下でも割れ難くなる。
よって信頼性の高い極低温ケーブルの終端接続部を提供することができる。
Furthermore, the present invention according to claim 2 is characterized in that, in the invention according to claim 1 , the insulating coating is made of an epoxy resin.
According to the second aspect of the present invention as described above, since the epoxy resin is used as the resin for the insulating coating, it becomes more difficult to break even under cooling.
Therefore, it is possible to provide a highly reliable terminal connection portion for a cryogenic cable.

以上のように本発明の極低温ケーブルの終端接続部によれば、引出し導体の絶縁被覆部分における絶縁被覆に過度の応力が負荷され難くなって、樹脂製の絶縁被覆が割れ難くなる。よって信頼性の高い極低温ケーブルの終端接続部を提供することができる。   As described above, according to the terminal connection portion of the cryogenic cable of the present invention, it is difficult for excessive stress to be applied to the insulation coating in the insulation coating portion of the lead conductor, and the resin insulation coating is difficult to break. Therefore, it is possible to provide a highly reliable terminal connection portion for a cryogenic cable.

図1及び図2を用いて本発明の極低温ケーブルの終端接続部の一実施例を詳細に説明する。   An embodiment of the termination connecting portion of the cryogenic cable according to the present invention will be described in detail with reference to FIGS.

図1は本発明の極低温ケーブルの終端接続部の要部縦断面図である。図1において符号3が本発明の対象となっている引出し導体である。この引出し導体3はその下端が、例えばフレキシブル接続子のごとき接続端子20によりインターフェース用の導体11に接続されている。
このインターフェース用の導体11は、超電導ケーブルの導体に直接接続される導体であったり、あるいは超電導ケーブルの導体にマルチコンタクトや種々の接続スリーブ等を介して間接的に接続される導体である。
FIG. 1 is a longitudinal sectional view of an essential part of a terminal connection part of a cryogenic cable according to the present invention. In FIG. 1, reference numeral 3 denotes a lead conductor which is an object of the present invention. The lower end of the lead conductor 3 is connected to the interface conductor 11 by a connection terminal 20 such as a flexible connector.
The interface conductor 11 is a conductor that is directly connected to the conductor of the superconducting cable, or a conductor that is indirectly connected to the conductor of the superconducting cable via a multi-contact or various connection sleeves.

さて前述のように下端が導体11に接続された引出し導体3は、上方に向かって、温度傾斜部12内の液体窒素等の液体冷媒層4、窒素ガス等からなる冷媒ガス層5及び温度傾斜部12の上方に連なる高電圧引出部13とを経て、高電圧引出部13の先端、すなわち常温の状態へと引き出されている。   As described above, the lead conductor 3 whose lower end is connected to the conductor 11 has a liquid refrigerant layer 4 such as liquid nitrogen in the temperature gradient portion 12, a refrigerant gas layer 5 made of nitrogen gas and the like, and a temperature gradient. Through the high voltage lead-out part 13 connected above the part 12, the tip of the high-voltage lead-out part 13, that is, the state at room temperature is drawn out.

因みに温度傾斜部12は、主として図1が示すように真空断熱層を形成しているSUS製の外部圧力容器21で覆われている、同じくSUS製の内部圧力容器22と、この内部圧力容器22内に形成されている前記液体冷媒層4や冷媒ガス層5とで構成されている。また温度傾斜部12とフランジ6で仕切られている高電圧引出部13は、主として碍子7と、該碍子7内に充填されている絶縁油やSFガス等からなる流体絶縁体8及び高電圧引出部13の先端に設けられている上部金具14により構成されている。また符合23は温度傾斜部12と図示しないインターフェース側を仕切る圧力隔壁を示している。 Incidentally, the temperature gradient portion 12 is covered with a SUS external pressure vessel 21 that mainly forms a vacuum heat insulating layer as shown in FIG. 1, and also the SUS internal pressure vessel 22, and the internal pressure vessel 22. The liquid refrigerant layer 4 and the refrigerant gas layer 5 are formed inside. The high voltage lead-out portion 13 partitioned by the temperature gradient portion 12 and the flange 6 is mainly composed of an insulator 7, a fluid insulator 8 made of insulating oil, SF 6 gas, or the like filled in the insulator 7 and a high voltage. It is constituted by an upper metal fitting 14 provided at the leading end of the drawing portion 13. Reference numeral 23 denotes a pressure partition that partitions the temperature inclined portion 12 and the interface side (not shown).

さてこのように極低温ケーブルの終端接続部内に配置される本発明の引出し導体3は、前記温度傾斜部12内に位置する部分及び前記高電圧引出部13の下部に位置する部分に跨って、その両端に図1及び図2が示すように、電界制御部材としてベルマウス構造3gを有するエポキシ樹脂製の絶縁被覆が施されている。尚、この電界制御部材としては、ベルマウス構造3gに限定されるものではなく、通常使用されている種々の形状のストレスコーンが使用できる。
このように絶縁被覆が施されている部分を絶縁被覆部分3aとする。そしてこの絶縁被覆部分3aの上方には、必要により接続部を介して絶縁被覆が施されていない、すなわち裸の銅導体からなる導体外径約Dの導体露出部3bが連なり、その先端は前記上部金具14へと導かれている。
Now, the lead conductor 3 of the present invention arranged in the terminal connection part of the cryogenic cable as described above straddles the part located in the temperature inclined part 12 and the part located in the lower part of the high voltage lead part 13, As shown in FIG. 1 and FIG. 2 at both ends, an insulating coating made of epoxy resin having a bell mouth structure 3g is applied as an electric field control member. The electric field control member is not limited to the bell mouth structure 3g, and various commonly used stress cones can be used.
The portion thus provided with the insulating coating is referred to as an insulating coating portion 3a. Above the insulating coating portion 3a, a conductor exposed portion 3b having a conductor outer diameter of about D, which is not covered with an insulating coating via a connecting portion if necessary, that is, made of a bare copper conductor, is connected. It is led to the upper metal fitting 14.

尚、引出し導体3の銅導体は、図1が示すように、前記高電圧引出部内13に位置する部分3eの外径が,前記温度傾斜部12内に位置する部分3fのそれより相対的に大きくなっていて、引出し導体3を通じて碍子7内の流体絶縁体8が冷媒ガス層5や液体冷媒層4側に熱を奪われ難く設計されている。すなわち、流体絶縁体8が固化または液化して絶縁強度が低下するのを防止している。
このように引出し導体3は絶縁被覆部分3aと導体露出部3bにより構成されている。
As shown in FIG. 1, the copper conductor of the lead conductor 3 is such that the outer diameter of the portion 3e located in the high voltage lead portion 13 is relatively larger than that of the portion 3f located in the temperature inclined portion 12. The fluid insulator 8 in the insulator 7 is designed to be difficult to be deprived of heat toward the refrigerant gas layer 5 or the liquid refrigerant layer 4 through the lead conductor 3. That is, the fluid insulator 8 is prevented from being solidified or liquefied to lower the insulation strength.
As described above, the lead conductor 3 is composed of the insulating coating portion 3a and the conductor exposed portion 3b.

本発明の特徴は、前記引出し導体3の絶縁被覆部分3aにある。そこでこの絶縁被覆部分3aの拡大一部断面図である図2により、本発明を詳細に説明する。
まず引出し導体3の形状について説明する。図2で、紙面に向かって右側が図1における引出し導体3の下端部を示し、紙面の左側が高電圧引出部13へと立ち上がっている上端部を示している。
図2の左側で、高電圧引出部13内に位置する部分の導体3eの外径Dは、図2の右側で前記温度傾斜部12内に位置し、引出し導体3の下端側に相当する部分の導体3fの最下端外径dより大きくなっている。また温度傾斜部12内に位置するこの導体3fの外径は上部に向かってテーパ角度θで細くなっていて、図1のフランジ6の近傍下端にて一度最小外径になった後、今度は逆に拡径され、フランジ6の近傍では導体外径Dになるよう設計されている。
The feature of the present invention resides in the insulating coating portion 3a of the lead conductor 3. Therefore, the present invention will be described in detail with reference to FIG. 2 which is an enlarged partial sectional view of the insulating coating portion 3a.
First, the shape of the lead conductor 3 will be described. In FIG. 2, the right side toward the paper surface shows the lower end portion of the lead conductor 3 in FIG. 1, and the left side of the paper surface shows the upper end portion rising to the high voltage extraction portion 13.
2, the outer diameter D of the portion of the conductor 3 e located in the high voltage lead-out portion 13 is located in the temperature gradient portion 12 on the right side of FIG. 2 and corresponds to the lower end side of the lead-out conductor 3. The lowermost outer diameter d of the conductor 3f is larger. Further, the outer diameter of the conductor 3f located in the temperature inclined portion 12 is narrowed toward the upper portion by a taper angle θ, and after reaching the minimum outer diameter at the lower end near the flange 6 in FIG. On the contrary, the diameter is increased, and the conductor outer diameter D is designed in the vicinity of the flange 6.

一方、この引出し導体3に被覆されている絶縁被覆には、図2が示すように絶縁被覆部分3aの両端部近傍に電界制御用のベルマウス構造3g、3gが設けられている。また中央部にはフランジ部分3kが設けられているが、これは図1のフランジ6の下端にこのフランジ部分3kの上面を当接させて引出し導体3を位置決め、固定するためのものである。他の方法で引出し導体3の位置決めができるならフランジ部分3kをあえて設ける必要はない。   On the other hand, as shown in FIG. 2, bellows structures 3g and 3g for electric field control are provided in the vicinity of both ends of the insulating coating portion 3a. Further, a flange portion 3k is provided at the center, and this is for positioning and fixing the lead conductor 3 by bringing the upper surface of the flange portion 3k into contact with the lower end of the flange 6 in FIG. If the lead conductor 3 can be positioned by another method, it is not necessary to provide the flange portion 3k.

そして前記引出し導体3の導体がテーパ状になっている部分(導体3f側)においては、絶縁被覆と引出し導体3fとの間には離型処理が施されている。   In the portion of the lead conductor 3 where the conductor is tapered (on the side of the conductor 3f), a release treatment is performed between the insulating coating and the lead conductor 3f.

このようにしてなる絶縁被覆部分3aを導体露出部3bと接続した後、これを図1に示す終端接続部内にセットした。そして高電圧引出部13の上部金具14を装着したら、碍子7内、外部圧力容器21内及び内部圧力容器22内を真空引きし、しかる後碍子7内には絶縁油を注入して流体絶縁体8を形成し、かつ内部圧力容器22には、まず絶縁被覆部分3aの下端の導体が露出している部分3nのみが液体冷媒層4に浸漬するレベルまで図示しない液体冷媒注入口から液体窒素を注入した。
この状態を約10分間保持して引出し導体3側を絶縁被覆(樹脂)より先に冷却し、熱収縮を開始させた。しかる後液体窒素を図1が示すレベルまで注入した。
After the insulating coating portion 3a thus formed was connected to the conductor exposed portion 3b, it was set in the terminal connection portion shown in FIG. When the upper metal fitting 14 of the high voltage lead-out portion 13 is attached, the inside of the insulator 7, the inside of the external pressure vessel 21 and the inside of the internal pressure vessel 22 are evacuated, and then the insulating oil is injected into the insulator 7 to obtain a fluid insulator. 8 and the internal pressure vessel 22 is first filled with liquid nitrogen from a liquid refrigerant inlet (not shown) to a level where only the portion 3n where the conductor at the lower end of the insulating coating portion 3a is exposed is immersed in the liquid refrigerant layer 4. Injected.
This state was maintained for about 10 minutes, and the lead conductor 3 side was cooled before the insulating coating (resin) to start thermal contraction. Thereafter, liquid nitrogen was injected to the level shown in FIG.

このようにして組み立てた極低温ケーブルの終端接続部に対して部分放電試験を試みた。その結果、ノイズレベルは2pcで、77kV用送電ケーブルの部分放電試験用電圧である95kVを負荷しても部分放電がでないことを確認した。また試験終了後にこの終端接続部を解体し、引出し導体3を引き上げて観察したが、絶縁被覆部分3aの絶縁被覆には割れやクラックは全く見られなかった。   A partial discharge test was attempted on the terminal connection portion of the cryogenic cable thus assembled. As a result, it was confirmed that the noise level was 2 pc and no partial discharge occurred even when 95 kV, which is a partial discharge test voltage for a 77 kV transmission cable, was loaded. Further, after the end of the test, this terminal connection part was disassembled and the lead conductor 3 was pulled up and observed, but no cracks or cracks were found in the insulation coating of the insulation coating portion 3a.

このようにエポキシ樹脂製の絶縁被覆が割れなかった理由は以下のように推測される。
すなわち、絶縁被覆部分3aが液体冷媒層4や冷媒ガス層5により冷却され、絶縁被覆を構成する樹脂が銅導体からなる引出し導体3と共に収縮した場合、従来のものようにこの絶縁被覆部分3aにおいて、引出し導体3とこれを被覆している絶縁被覆とが密着(接着を含む)していると、本来は互いにその線膨張係数の相違する両者はその収縮量や収縮速度の違いにも係わらず無理に一緒に収縮しようとする。そのため両者に過剰な応力が負荷されることになり、相対的に機械的強度の弱い樹脂、すなわち絶縁被覆が割れたり、クラックが入ったりする。
The reason why the insulating coating made of epoxy resin was not cracked in this way is assumed as follows.
That is, when the insulating coating portion 3a is cooled by the liquid refrigerant layer 4 or the refrigerant gas layer 5 and the resin constituting the insulating coating shrinks together with the lead conductor 3 made of a copper conductor, the insulating coating portion 3a When the lead conductor 3 and the insulating coating covering the lead conductor 3 are in close contact (including adhesion), both of them whose linear expansion coefficients are different from each other regardless of the contraction amount or contraction speed. Try to shrink together. For this reason, excessive stress is applied to both of them, and the resin having relatively low mechanical strength, that is, the insulating coating is cracked or cracked.

それに対して本発明の引出し導体3における絶縁被覆部分3aにおいては、少なくとも冷却量の大きい温度傾斜部12内に位置する部分にあって、引出し導体3と絶縁被覆間に離型処理を施しているため、引出し導体3と絶縁被覆とが液体冷媒層4や冷媒ガス層5で冷やされて両者が収縮する際、両者間に離型処理が施されているため、両者間に滑りが生じ、互いの収縮が邪魔され難くなり、その結果、過剰な応力が負荷する事態が緩和される、と推測される。   On the other hand, in the insulation coating portion 3a of the lead conductor 3 of the present invention, at least in the portion located in the temperature inclined portion 12 where the cooling amount is large, a release treatment is performed between the lead conductor 3 and the insulation coating. For this reason, when the lead conductor 3 and the insulation coating are cooled by the liquid refrigerant layer 4 or the refrigerant gas layer 5 and both contract, a release treatment is performed between the two, causing slippage between the two, It is presumed that the contraction of the film becomes difficult to be disturbed, and as a result, the situation where an excessive stress is applied is alleviated.

特に、温度傾斜部12内に位置する引出し導体3の形状を図2が示すように上方に向かうほど、その外径が細くなるようにしておくと、絶縁被覆部分3aがその下方から順次冷却され、収縮する際、熱伝導率の大きい引出し導体3がより先立ってその径方向及び長手方向に収縮し、しかる後熱伝導率の小さい絶縁被覆(樹脂)が収縮するので、絶縁被覆内に発生する応力はより一層緩和される、と考えられる。   In particular, if the outer diameter of the lead conductor 3 positioned in the temperature inclined portion 12 is made thinner as it goes upward as shown in FIG. 2, the insulating coating portion 3a is sequentially cooled from the lower side. When contracting, the lead conductor 3 having a high thermal conductivity is contracted in the radial direction and the longitudinal direction in advance, and then the insulating coating (resin) having a low thermal conductivity is contracted, so that it is generated in the insulating coating. It is thought that the stress is further relaxed.

また前述した構造の引出し導体3において、絶縁被覆用の樹脂として、エチレンプロピレンゴムに換えてエポキシ樹脂を使用した結果、絶縁被覆の割れがより少なくなった。   Further, in the lead conductor 3 having the structure described above, as a result of using an epoxy resin instead of ethylene propylene rubber as the resin for the insulation coating, the insulation coating was less cracked.

また前述のように、引出し導体3を温度傾斜部12内に組み込んだ後、まずその下端部の導体が露出している部分3nのみ液体冷媒層4に浸漬し、この部分を先に冷却した後、液体冷媒層4のレベルを上げていったが、この結果として、引出し導体3の方がより先に絶縁被覆側より冷され、収縮したため、その後に収縮した絶縁被覆への応力の発生も幾分小さくできた、とも推測される。   Further, as described above, after the lead conductor 3 is incorporated in the temperature inclined portion 12, first, only the portion 3n where the conductor at the lower end is exposed is immersed in the liquid refrigerant layer 4, and this portion is cooled first. The level of the liquid refrigerant layer 4 was raised, but as a result, the lead conductor 3 was cooled earlier than the insulating coating side and contracted, so that some stress was generated on the contracted insulating coating after that. It is speculated that it was made smaller.

本発明の極低温ケーブルの終端接続部の要部を示す拡大縦断面図である。It is an expanded longitudinal cross-sectional view which shows the principal part of the termination | terminus connection part of the cryogenic cable of this invention. 図1の引出し導体の絶縁被覆部分を示す拡大一部断面図である。FIG. 2 is an enlarged partial cross-sectional view showing an insulating coating portion of the lead conductor of FIG. 1. 従来の極低温ケーブルの終端接続部の要部縦断面図である。It is a principal part longitudinal cross-sectional view of the termination | terminus connection part of the conventional cryogenic cable.

符号の説明Explanation of symbols

3 引出し導体
3a 絶縁被覆部分
3b 導体露出部
4 液体冷媒層
5 冷媒ガス層
6 フランジ
7 碍子
8 流体絶縁体
12 温度傾斜部
13 高電圧引出部
DESCRIPTION OF SYMBOLS 3 Lead conductor 3a Insulation coating | cover part 3b Conductor exposure part 4 Liquid refrigerant | coolant layer 5 Refrigerant gas layer 6 Flange 7 Insulator 8 Fluid insulator 12 Temperature gradient part 13 High voltage extraction part

Claims (2)

温度傾斜部内の液体冷媒層、冷媒ガス層及び高電圧引出部とを経て極低温から常温に引き出される引出し導体を有する極低温ケーブルの終端接続部において、前記引出し導体には前記温度傾斜部内に位置する部分及び前記高電圧引出部の下部に位置する部分に跨って、その両端に電界制御部材を有する絶縁被覆が施され、かつ少なくとも前記温度傾斜部内に位置する部分における引出し導体と絶縁被覆との間には離型処理が施され、前記引出し導体は、前記高電圧引出部内に位置する部分の外径が前記温度傾斜部内に位置する部分の外径より大きくなっていて、かつ前記温度傾斜部内に位置する部分の外径は上部に向かってテーパ状に細くなっていることを特徴とする極低温ケーブルの終端接続部。 In a termination connection part of a cryogenic cable having a lead conductor drawn from a cryogenic temperature to a normal temperature through a liquid refrigerant layer, a refrigerant gas layer, and a high voltage lead part in the temperature slope part, the lead conductor is located in the temperature slope part The insulation coating having electric field control members at both ends thereof, and at least the portion located in the temperature gradient portion and the insulation conductor and the insulation coating. A mold release process is performed therebetween, and the lead conductor has an outer diameter of a portion located in the high-voltage lead portion larger than an outer diameter of a portion located in the temperature slope portion, and the inside of the temperature slope portion. A terminal connection part of a cryogenic cable, characterized in that the outer diameter of the portion located in the taper is tapered toward the upper part. 前記絶縁被覆はエポキシ樹脂からなることを特徴とする請求項記載の極低温ケーブルの終端接続部。 The insulating coating sealing end of the cryogenic cable according to claim 1, characterized in that it consists of an epoxy resin.
JP2003273141A 2003-07-11 2003-07-11 Cryogenic cable termination connection Expired - Fee Related JP4028454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003273141A JP4028454B2 (en) 2003-07-11 2003-07-11 Cryogenic cable termination connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003273141A JP4028454B2 (en) 2003-07-11 2003-07-11 Cryogenic cable termination connection

Publications (2)

Publication Number Publication Date
JP2005033964A JP2005033964A (en) 2005-02-03
JP4028454B2 true JP4028454B2 (en) 2007-12-26

Family

ID=34210463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003273141A Expired - Fee Related JP4028454B2 (en) 2003-07-11 2003-07-11 Cryogenic cable termination connection

Country Status (1)

Country Link
JP (1) JP4028454B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2287885T3 (en) * 2005-12-13 2007-12-16 Nexans, Societe Anonyme ELECTRIC PASS NOZZLE TO CONNECT A SUPERCONDUCTION DEVICE WITH AN ENVIRONMENTAL TEMPERATURE DEVICE.
FR2903243B1 (en) * 2006-06-29 2008-10-03 Nexans Sa ELECTRICAL CROSS STRUCTURE FOR SUPERCONDUCTING ELEMENT
JP4826797B2 (en) * 2007-02-23 2011-11-30 住友電気工業株式会社 Superconducting cable line design method and superconducting cable line
JP5566714B2 (en) 2010-02-04 2014-08-06 古河電気工業株式会社 Cryogenic cable termination connection
JP5555729B2 (en) * 2012-02-03 2014-07-23 昭和電線ケーブルシステム株式会社 Terminal equipment for cryogenic equipment
JP2015029372A (en) * 2013-07-30 2015-02-12 昭和電線ケーブルシステム株式会社 Terminal device of cryogenic apparatus

Also Published As

Publication number Publication date
JP2005033964A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
KR100642538B1 (en) Terminal structure of extreme-low temperature equipment
US4319074A (en) Void-free electrical conductor for power cables and process for making same
KR101214025B1 (en) Electric bushing and a method of manufacturing an electric bushing
KR101058331B1 (en) Termination Structure of Superconducting Cable
US7067739B2 (en) Joint structure of superconducting cable and insulating spacer for connecting superconducting cable
KR20100092109A (en) Cryostat of superconducting cable
JP4028454B2 (en) Cryogenic cable termination connection
KR20000011131A (en) Conductor winding arrangement for heavy electric machines
CN106941032A (en) Insulator and its manufacture method
JP4550699B2 (en) Superconducting power cable termination connection
JP3779168B2 (en) Terminal structure of cryogenic equipment
US4397807A (en) Method of making cryogenic cable
JP4927794B2 (en) Superconducting cable former connection method and superconducting cable former connection structure
WO2021170611A1 (en) Bushing with electrically conductive head mounted on condenser core
JP6965623B2 (en) Winding structure, coils, transformers and rotating machines
KR100508710B1 (en) termination structure of super conducting cable
JP2009542187A (en) Electric bushing structure for superconducting elements
RU2755923C1 (en) Method for manufacturing cast insulation for conductors
JP4083136B2 (en) Manufacturing method of resin mold product
JPH07336837A (en) Method for reinforcing insulator of cable connecting section
JP3833444B2 (en) Mold vacuum valve and manufacturing method thereof
JP2903215B2 (en) Cable mold joint method
JP2005151727A (en) Method of measuring critical current of superconducting cable line
EP3544133A1 (en) Supporting insulator and manufacturing method therefor
KR100562568B1 (en) Connection box for superconducting cable system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4028454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees