JP4545293B2 - Cement admixture and cement composition - Google Patents

Cement admixture and cement composition Download PDF

Info

Publication number
JP4545293B2
JP4545293B2 JP2000243711A JP2000243711A JP4545293B2 JP 4545293 B2 JP4545293 B2 JP 4545293B2 JP 2000243711 A JP2000243711 A JP 2000243711A JP 2000243711 A JP2000243711 A JP 2000243711A JP 4545293 B2 JP4545293 B2 JP 4545293B2
Authority
JP
Japan
Prior art keywords
cement
raw material
parts
cement admixture
admixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000243711A
Other languages
Japanese (ja)
Other versions
JP2002060261A (en
Inventor
実 盛岡
康宏 中島
隆行 樋口
光男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2000243711A priority Critical patent/JP4545293B2/en
Publication of JP2002060261A publication Critical patent/JP2002060261A/en
Application granted granted Critical
Publication of JP4545293B2 publication Critical patent/JP4545293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、主に、土木・建築分野において使用されるセメント混和材及びセメント組成物に関する。
【0002】
【従来の技術】
セメント・コンクリートのひび割れ低減や曲げ耐力の向上は、コンクリート構造物の信頼性、耐久性、美観等の観点から最も重要であり、これらを改善するためセメント系膨張材の開発が行われてきたが、更なる技術の進展が望まれている。セメント系膨張材としては、例えば、遊離石灰−アウイン−無水セッコウ系膨張材(特公昭42-21840号公報)や遊離石灰−カルシウムシリケート−無水セッコウ系膨張材(特公昭53-31170号公報)等が知られている。
【0003】
【発明が解決しようとする課題】
近年、コンクリートの高性能化を目的に、高流動コンクリートや高強度コンクリートの開発が盛んに行われているものの、これら高性能コンクリートにおいては、セメント系膨張材の効果が十分に発揮されない点が指摘され、膨張材の混和率が小さくても大きな膨張性を付与できる、膨張性能の優れた膨張材の開発が待たれている。
【0004】
また、最近では従来の仕様規定型の設計体系から、性能規定型の設計体系への移行が検討されており、これまでやや軽視されていたコンクリートの耐久性についても明確な性能規定が定められる方向にある。即ち、ひび割れに対する耐久性について、その影響を定量化することが検討されているため、ひび割れの低減は一層重要な課題となってきている。従って、使用量が少なく、経済的負担が小さく、ひび割れ低減に効果のある優れた膨張性能を有するセメント系膨張材が不可欠である。
【0005】
本発明者らは、これらの課題を解決すべく種々の検討を重ねた結果、特定のセメント混和材を使用することにより、前記課題が解決できるとの知見を得て本発明を完成するに至った。
【0006】
【課題を解決するための手段】
即ち、本発明は、CaO原料、MgO原料、Fe23原料及びCaSO4原料を熱処理して得られる物質であって、セメント混和材100部中、遊離石灰30〜65部、遊離マグネシア1〜10部、カルシウムフェライト5〜44部及び無水セッコウ5〜35部を含有してなるセメント混和材であり、更にセメントと、該セメント混和材とを含有してなるセメント組成物である。
なお、本発明で用いる部、%は質量単位を表す。
【0007】
【発明の実施の形態】
以下、本発明を更に詳細に説明する。
【0008】
本発明のセメント混和材は、遊離石灰、遊離マグネシア、カルシウムフェライト及び無水セッコウを含有してなるものであり、その割合については特に限定されるものではないが、セメント混和材100部中、遊離石灰は30〜65部が好ましく、40〜55部がより好ましい。遊離マグネシアは1〜10部が好ましく、2〜7部がより好ましい。カルシウムフェライトは5〜44部が好ましく、10〜40部がより好ましい。さらに、無水セッコウは5〜35部が好ましく、10〜30部がより好ましい。セメント混和材中の各化合物の組成割合が前記範囲を外れると、優れた膨張性能が得られない場合がある。
【0009】
本発明のカルシウムフェライトとは、CaO−Fe23系化合物を総称するものであり、特に限定されるものではないが、CaOをC、Fe23をFと略記すると、C2FやCFと表せる化合物等が挙げられる。本発明では、膨張特性が良好となることから、C2Fを使用することが好ましい。
【0010】
本発明のセメント混和材は、CaO原料、MgO原料、Fe23原料及びCaSO4原料を熱処理して、遊離石灰、遊離マグネシア、カルシウムフェライト及び無水セッコウからなるクリンカーを合成してこれを粉砕して製造される。遊離石灰、遊離マグネシア、カルシウムフェライト及び無水セッコウを別々に合成し、これらを混合したものでは、本発明のような効果は得られない。
【0011】
CaO原料、MgO原料、Fe23原料及びCaSO4原料を熱処理して、遊離石灰、遊離マグネシア、カルシウムフェライト及び無水セッコウからなるクリンカーを合成したかどうかは、例えば、粉砕物中の100μm以上の粗粒子を顕微鏡観察(SEM-EDS)等を行い、その粒子中に遊離石灰、遊離マグネシア、カルシウムフェライト及び無水セッコウが混在していることを確認することによって判別できる。
【0012】
本発明のセメント混和材を製造する際の熱処理温度であるが、1100〜1600℃の範囲が好ましく、1200〜1500℃の範囲がより好ましい。1100℃未満では、得られたセメント混和材の膨張性能が十分でなく、1600℃を超えると無水セッコウが分解する場合がある。
【0013】
CaO原料としては、石灰石や消石灰等が挙げられ、MgO原料としては、ドロマイト質や炭酸マグネシウム、酸化マグネシウム及び水酸化マグネシウム等が挙げられ、Fe23原料としては、圧延スケール、銅カラミ、鉄粉、鋼スラッジ及び市販の酸化鉄等が挙げられ、CaSO4原料としては、二水セッコウ、半水セッコウ及び無水セッコウ等が挙げられる。
【0014】
本発明のセメント混和材には、主成分のCaO、MgO、Fe23、SO3の他に各種の不純物が存在し、その具体例としては、Al23、SiO2、TiO2、P25、Na2O、K2O、フッ素、塩素等が挙げられ、本発明の目的を実質的に阻害しない範囲では特に問題とはならない。
【0015】
本発明のセメント混和材の粒度は、特に限定されるものではないが、通常、ブレーン比表面積で1500〜9000cm2/gが好ましく、2500〜4000cm2/gがより好ましい。セメント混和材の粒度がブレーン比表面積で1500cm2/g未満では、長期耐久性が悪くなる場合があり、9000cm2/gを超えると充分な膨張性能が得られない場合がある。
【0016】
本発明のセメント混和材の配合量は、特に限定されるものではないが、通常、セメントとセメント混和材からなるセメント組成物100部中、3〜12部が好ましく、5〜9部がより好ましい。3部未満では、充分な膨張性能が得られない場合があり、12部を超えて使用すると長期耐久性が悪くなる場合がある。
【0017】
本発明のセメントとしては、普通セメント、早強、超早強、低熱及び中庸熱等各種ポルトランドセメントと、これらセメントに、高炉スラグ、フライアッシュ及びシリカを混合した各種混合セメント、並びに石灰石粉末等を混合したフィラーセメント等がある。
【0018】
本発明では、減水剤、高性能減水剤、AE減水剤、高性能AE減水剤、流動化剤、消泡剤、増粘剤、防錆剤、防凍剤、収縮低減剤、高分子エマルジョン及び凝結調整剤、並びにセメント急硬材、ベントナイト等の粘土鉱物及びハイドロタルサイト等のアニオン交換体等のうちの一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で使用することが可能である。
【0019】
本発明では、各材料の混合方法は特に限定されるものではなく、それぞれの材料を施工時に混合しても良いし、予めその一部、或いは全部を混合しておいても差し支えない。混合装置としては、既存の如何なる装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ及びナウタミキサ等が挙げられる。
【0020】
【実施例】
以下、実施例により本発明を詳細に説明する。
【0021】
実施例1
CaO原料、MgO原料、Fe23原料及びCaSO4原料を配合し、混合粉砕した後、電気炉を用いて、1350℃で3時間熱処理して表1に示すような組成のクリンカーを合成し、ボールミルでブレーン比表面積3300±200cm2/gに粉砕して、セメント混和材を調製した。セメント混和材を粉末X線回折法で同定したところ、遊離石灰、遊離マグネシア、C2F及び無水セッコウを含有していた。セメント混和材の化合物組成は、化学組成を基に計算により算出した。化学組成はJIS R 5202に準じて求めた。セメントと、セメント混和材からなるセメント組成物100部中、セメント混和材を8部使用し、水/セメント組成物比=50%、セメント組成物/砂比=1/3のモルタルを調製し、長さ変化率の測定を行った。なお、比較例として、遊離石灰、遊離マグネシア、C2F及び無水セッコウを別々に合成して混合したものについて試験した(実験No.1-14)。結果を表1に併記する。
【0022】
<使用材料>
CaO原料:試薬1級炭酸カルシウム。
MgO原料:試薬1級水酸化マグネシウム。
Fe23原料:試薬1級酸化第二鉄。
CaSO4原料:試薬1級二水セッコウ。
遊離石灰:CaO原料を1350℃で3時間熱処理して合成。
遊離マグネシア:MgO原料を1350℃で3時間熱処理して合成。
無水セッコウ:CaSO4原料を1350℃で3時間熱処理して合成。
2F:CaO原料2モル、Fe23原料1モルの割合で配合した原料を混合粉砕した後、1350℃で3時間熱処理して合成。
砂:JIS標準砂(ISO679準拠)
【0023】
<測定方法>
長さ変化率:JIS A 6202に準じて測定。
【0024】
【表1】

Figure 0004545293
【0025】
表1より、本発明のセメント混和材を配合したモルタルは、比較例の遊離石灰、遊離マグネシア、C2F及び無水セッコウを別々に合成し混合して調製したセメント混和材を配合したモルタルと比べ、優れた膨張性能を示すことが判る。
【0026】
実施例2
工業原料であるCaO原料、MgO原料、Fe23原料及びCaSO4原料を配合し、ロータリーキルンを用いて、1400℃で焼成して表2に示すような組成のクリンカーを合成し、ボールミルでブレーン比表面積3200cm2/gに粉砕してセメント混和材を調製したこと以外は、実施例1と同様に行った。化学組成を基に算出した化合物組成を表3に示す。比較のため、市販の膨張材についても長さ変化率の測定を行った。その結果を表4に示す。
【0027】
<使用材料>
CaO原料:新潟県青海鉱山産石灰石。
MgO原料:中国産ドロマイト。
Fe23原料:市販の酸化第二鉄。
CaSO4原料:排煙脱硫二水セッコウ。
膨張材A:市販カルシウムサルホアルミネート系膨張材、ブレーン比表面積2940cm2/g。
膨張材B:市販石灰系膨張材、ブレーン比表面積3610cm2/g。
【0028】
【表2】
Figure 0004545293
【0029】
【表3】
Figure 0004545293
【0030】
【表4】
Figure 0004545293
【0031】
表4より、本発明のセメント混和材を配合したモルタルは、市販のカルシウムサルホアルミネート系膨張材及び石灰系膨張材を配合したモルタルと比べ、優れた膨張性能を示すことが判る。
【0032】
実施例3
実施例2の実験No.2-1のセメント混和材を使用し、セメントと、セメント混和材からなるセメント組成物100部中のセメント混和材の配合量を変えたこと以外は、実施例1と同様に行った。その結果を表5に示す。
【0033】
【表5】
Figure 0004545293
【0034】
表5より、本発明のセメント混和材を配合したモルタルは、本発明のセメント混和材を配合していないモルタルと比べ、優れた膨張性能を示すことが判る。
【0035】
【発明の効果】
本発明のセメント混和材を使用することにより、優れた膨張性能を有するセメント組成物が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to a cement admixture and a cement composition used in the field of civil engineering and construction.
[0002]
[Prior art]
Reduction of cracks in cement and concrete and improvement of bending strength are the most important from the viewpoint of reliability, durability and aesthetics of concrete structures, and cement-based expansion materials have been developed to improve these. Further technical progress is desired. Examples of the cement-based expansion material include free lime-auin-anhydrous gypsum-based expansion material (Japanese Patent Publication No. 42-21840) and free lime-calcium silicate-anhydrous gypsum-based expansion material (Japanese Patent Publication No. 53-31170). It has been known.
[0003]
[Problems to be solved by the invention]
In recent years, high-fluidity concrete and high-strength concrete have been actively developed for the purpose of improving the performance of concrete, but it has been pointed out that the effects of cement-based expansion materials are not fully demonstrated in these high-performance concretes. However, there is a need for the development of an expandable material with excellent expansion performance that can impart large expandability even when the mixing ratio of the expandable material is small.
[0004]
Recently, the transition from the conventional specification-based design system to the performance-based design system has been studied, and there is a direction in which clear performance rules are set for the durability of concrete, which has been neglected until now. It is in. That is, since it has been studied to quantify the effect on durability against cracks, reduction of cracks has become an even more important issue. Accordingly, a cement-based expansion material having an excellent expansion performance that has a small amount of use, a small economic burden, and is effective in reducing cracks is indispensable.
[0005]
As a result of various studies to solve these problems, the present inventors have obtained the knowledge that the above problems can be solved by using a specific cement admixture, and have completed the present invention. It was.
[0006]
[Means for Solving the Problems]
That is, the present invention is a substance obtained by heat-treating CaO raw material, MgO raw material, Fe 2 O 3 raw material and CaSO 4 raw material, and in 100 parts of cement admixture, 30 to 65 parts of free lime, free magnesia 1 10 parts of a cement admixture comprising a 5-44 parts of calcium ferrite and anhydrous gypsum 5-35 parts, a cement to further cement composition containing the said cement admixture.
In addition, the part used by this invention and% represent a mass unit.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0008]
The cement admixture of the present invention contains free lime, free magnesia, calcium ferrite, and anhydrous gypsum, and the ratio is not particularly limited. Is preferably 30 to 65 parts, more preferably 40 to 55 parts. The free magnesia is preferably 1 to 10 parts, more preferably 2 to 7 parts. The calcium ferrite is preferably 5 to 44 parts, more preferably 10 to 40 parts. Further, the anhydrous gypsum is preferably 5 to 35 parts, more preferably 10 to 30 parts. If the composition ratio of each compound in the cement admixture is out of the above range, an excellent expansion performance may not be obtained.
[0009]
The calcium ferrite of the present invention is a generic term for CaO—Fe 2 O 3 compounds and is not particularly limited, but when CaO is abbreviated as C and Fe 2 O 3 is abbreviated as F, C 2 F or Examples include compounds that can be expressed as CF. In the present invention, it is preferable to use C 2 F because the expansion characteristics are good.
[0010]
The cement admixture of the present invention heats CaO raw material, MgO raw material, Fe 2 O 3 raw material and CaSO 4 raw material, synthesizes a clinker composed of free lime, free magnesia, calcium ferrite and anhydrous gypsum and pulverizes it. Manufactured. In the case where free lime, free magnesia, calcium ferrite and anhydrous gypsum are synthesized separately and mixed together, the effect of the present invention cannot be obtained.
[0011]
Whether the clinker composed of free lime, free magnesia, calcium ferrite and anhydrous gypsum was synthesized by heat-treating the CaO raw material, MgO raw material, Fe 2 O 3 raw material and CaSO 4 raw material is, for example, 100 μm or more in the pulverized product The coarse particles can be identified by performing microscopic observation (SEM-EDS) or the like and confirming that free lime, free magnesia, calcium ferrite and anhydrous gypsum are mixed in the particles.
[0012]
Although it is the heat processing temperature at the time of manufacturing the cement admixture of this invention, the range of 1100-1600 degreeC is preferable, and the range of 1200-1500 degreeC is more preferable. If it is less than 1100 degreeC, the expansion performance of the obtained cement admixture is not enough, and when it exceeds 1600 degreeC, anhydrous gypsum may decompose | disassemble.
[0013]
Examples of the CaO raw material include limestone and slaked lime. Examples of the MgO raw material include dolomite, magnesium carbonate, magnesium oxide, and magnesium hydroxide. Examples of the Fe 2 O 3 raw material include rolling scale, copper calami, iron. Powder, steel sludge, commercially available iron oxide and the like can be mentioned, and examples of the CaSO 4 raw material include dihydrate gypsum, half water gypsum and anhydrous gypsum.
[0014]
The cement admixture of the present invention contains various impurities in addition to the main components CaO, MgO, Fe 2 O 3 and SO 3 , and specific examples thereof include Al 2 O 3 , SiO 2 , TiO 2 , P 2 O 5 , Na 2 O, K 2 O, fluorine, chlorine and the like can be mentioned, and there is no particular problem as long as the object of the present invention is not substantially inhibited.
[0015]
Although the particle size of the cement admixture of the present invention is not particularly limited, it is usually preferably 1500 to 9000 cm 2 / g, more preferably 2500 to 4000 cm 2 / g in terms of specific surface area of branes. If the particle size of the cement admixture is less than 1500 cm 2 / g in terms of Blaine specific surface area, the long-term durability may be deteriorated, and if it exceeds 9000 cm 2 / g, sufficient expansion performance may not be obtained.
[0016]
The blending amount of the cement admixture of the present invention is not particularly limited, but usually 3 to 12 parts are preferable and 5 to 9 parts are more preferable in 100 parts of a cement composition composed of cement and a cement admixture. . If it is less than 3 parts, sufficient expansion performance may not be obtained, and if it exceeds 12 parts, long-term durability may be deteriorated.
[0017]
As the cement of the present invention, various cements such as ordinary cement, early strength, very early strength, low heat and moderate heat, mixed cement obtained by mixing blast furnace slag, fly ash and silica with these cements, and limestone powder, etc. There are mixed filler cements.
[0018]
In the present invention, a water reducing agent, a high performance water reducing agent, an AE water reducing agent, a high performance AE water reducing agent, a fluidizing agent, an antifoaming agent, a thickening agent, a rust preventive agent, a defrosting agent, a shrinkage reducing agent, a polymer emulsion and a coagulation It is possible to use one or two or more of modifiers, cement rapid hardening materials, clay minerals such as bentonite, and anion exchangers such as hydrotalcite, etc., as long as the object of the present invention is not substantially inhibited. Is possible.
[0019]
In this invention, the mixing method of each material is not specifically limited, Each material may be mixed at the time of construction, and the part or all may be mixed beforehand. Any existing apparatus can be used as the mixing apparatus, and examples thereof include a tilting cylinder mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a Nauta mixer.
[0020]
【Example】
Hereinafter, the present invention will be described in detail by way of examples.
[0021]
Example 1
After mixing CaO raw material, MgO raw material, Fe 2 O 3 raw material and CaSO 4 raw material, mixing and grinding, using an electric furnace, heat treatment at 1350 ° C. for 3 hours to synthesize clinker having the composition shown in Table 1. The cement admixture was prepared by pulverizing with a ball mill to a Blaine specific surface area of 3300 ± 200 cm 2 / g. When the cement admixture was identified by powder X-ray diffraction, it contained free lime, free magnesia, C 2 F and anhydrous gypsum. The compound composition of the cement admixture was calculated by calculation based on the chemical composition. The chemical composition was determined according to JIS R 5202. 8 parts of cement admixture is used in 100 parts of cement composition consisting of cement and cement admixture, and a mortar with a water / cement composition ratio = 50% and a cement composition / sand ratio = 1/3 is prepared, The length change rate was measured. As a comparative example, free lime, free magnesia, C 2 F and anhydrous gypsum were separately synthesized and mixed (Experiment No. 1-14). The results are also shown in Table 1.
[0022]
<Materials used>
CaO raw material: Reagent primary calcium carbonate.
MgO raw material: reagent primary magnesium hydroxide.
Fe 2 O 3 raw material: Reagent primary ferric oxide.
CaSO 4 raw material: Reagent grade 1 dihydrate gypsum.
Free lime: synthesized by heat treatment of CaO raw material at 1350 ° C. for 3 hours.
Free magnesia: synthesized by heat-treating MgO raw material at 1350 ° C. for 3 hours.
Anhydrous gypsum: synthesized by heat treatment of CaSO 4 raw material at 1350 ° C. for 3 hours.
C 2 F: raw material blended in a ratio of 2 mol of CaO raw material and 1 mol of Fe 2 O 3 raw material was mixed and ground, and then heat treated at 1350 ° C. for 3 hours for synthesis.
Sand: JIS standard sand (ISO679 compliant)
[0023]
<Measurement method>
Length change rate: Measured according to JIS A 6202.
[0024]
[Table 1]
Figure 0004545293
[0025]
From Table 1, the mortar containing the cement admixture of the present invention is compared with the mortar containing the cement admixture prepared by separately synthesizing and mixing the free lime, free magnesia, C 2 F and anhydrous gypsum of the comparative example. It can be seen that it exhibits excellent expansion performance.
[0026]
Example 2
Combining industrial raw materials such as CaO raw material, MgO raw material, Fe 2 O 3 raw material and CaSO 4 raw material, using a rotary kiln, firing at 1400 ° C to synthesize a clinker having the composition shown in Table 2, and using a ball mill The same procedure as in Example 1 was carried out except that a cement admixture was prepared by grinding to a specific surface area of 3200 cm 2 / g. Table 3 shows the compound composition calculated based on the chemical composition. For comparison, the length change rate was also measured for a commercially available expansion material. The results are shown in Table 4.
[0027]
<Materials used>
CaO raw material: Limestone from Aomi mine, Niigata Prefecture.
MgO raw material: Chinese dolomite.
Fe 2 O 3 raw material: Commercially available ferric oxide.
CaSO 4 raw material: flue gas desulfurization dihydrate gypsum.
Expansion material A: Commercially available calcium sulfoaluminate-based expansion material, Blaine specific surface area 2940 cm 2 / g.
Expansion material B: Commercially available lime-based expansion material, Blaine specific surface area 3610 cm 2 / g.
[0028]
[Table 2]
Figure 0004545293
[0029]
[Table 3]
Figure 0004545293
[0030]
[Table 4]
Figure 0004545293
[0031]
From Table 4, it can be seen that the mortar containing the cement admixture of the present invention exhibits superior expansion performance as compared with a mortar containing a commercially available calcium sulfoaluminate-based expansion material and lime-based expansion material.
[0032]
Example 3
Example 1 except that the cement admixture of Experiment No. 2-1 of Example 2 was used, and the amount of cement admixture in 100 parts of the cement composition composed of cement and the cement admixture was changed. The same was done. The results are shown in Table 5.
[0033]
[Table 5]
Figure 0004545293
[0034]
From Table 5, it can be seen that the mortar blended with the cement admixture of the present invention exhibits superior expansion performance as compared with the mortar not blended with the cement admixture of the present invention.
[0035]
【The invention's effect】
By using the cement admixture of the present invention, a cement composition having excellent expansion performance can be obtained.

Claims (2)

CaO原料、MgO原料、Fe23原料及びCaSO4原料を熱処理して得られる物質であって、セメント混和材100部中、遊離石灰30〜65部、遊離マグネシア1〜10部、カルシウムフェライト5〜44部及び無水セッコウ5〜35部を含有してなるブレーン比表面積で1500〜9000cm 2 /gのセメント混和材。CaO material, MgO raw material, a substance obtained by heat-treating the Fe 2 O 3 raw material and a CaSO 4 material, in 100 parts of cement admixture, free lime 30-65 parts, free magnesia 1-10 parts of calcium ferrite 5 A cement admixture having a Blaine specific surface area of 1500 to 9000 cm 2 / g , comprising 44 parts and 5 to 35 parts of anhydrous gypsum. セメントと、請求項1に記載のセメント混和材とを含有してなり、セメント混和材がセメント組成物100部中、3〜12部であるセメント組成物。Cement, claim Ri name contains the cement admixture according to 1, in 100 parts of cement admixture is a cement composition, 3-12 parts der Ru cement composition.
JP2000243711A 2000-08-11 2000-08-11 Cement admixture and cement composition Expired - Fee Related JP4545293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000243711A JP4545293B2 (en) 2000-08-11 2000-08-11 Cement admixture and cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000243711A JP4545293B2 (en) 2000-08-11 2000-08-11 Cement admixture and cement composition

Publications (2)

Publication Number Publication Date
JP2002060261A JP2002060261A (en) 2002-02-26
JP4545293B2 true JP4545293B2 (en) 2010-09-15

Family

ID=18734520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000243711A Expired - Fee Related JP4545293B2 (en) 2000-08-11 2000-08-11 Cement admixture and cement composition

Country Status (1)

Country Link
JP (1) JP4545293B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104671687A (en) * 2015-01-23 2015-06-03 湖州丰盛新材料有限公司 Concrete expansive agent and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4894725A (en) * 1972-03-17 1973-12-06
JPS5237926A (en) * 1975-06-12 1977-03-24 Gen Pootorando Inc Improved extensible cement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313650B2 (en) * 1971-11-13 1978-05-11
JPS5425050B2 (en) * 1972-09-19 1979-08-25
JPS5549020B2 (en) * 1972-12-08 1980-12-09
JP2000233959A (en) * 1999-02-10 2000-08-29 Taiheiyo Cement Corp Clinker ground material, high-early-strength cement composition containing the same, concrete and concrete product
JP3963622B2 (en) * 1999-12-07 2007-08-22 電気化学工業株式会社 Grout cement admixture and cement composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4894725A (en) * 1972-03-17 1973-12-06
JPS5237926A (en) * 1975-06-12 1977-03-24 Gen Pootorando Inc Improved extensible cement

Also Published As

Publication number Publication date
JP2002060261A (en) 2002-02-26

Similar Documents

Publication Publication Date Title
JP3960718B2 (en) Cement admixture and cement composition
JP3960717B2 (en) Cement admixture and cement composition
JP4244261B2 (en) Cement admixture and cement composition
JP2001163651A (en) Grouting cement admixture and cement composition
JP2003012352A (en) Cement additive and cement composition
JP4509339B2 (en) Cement admixture and cement composition
JP4744678B2 (en) Cement admixture and cement composition
JP4545293B2 (en) Cement admixture and cement composition
JP4498555B2 (en) Cement admixture and cement composition
JP4642202B2 (en) Cement admixture and cement composition
JP4642201B2 (en) Cement admixture and cement composition
JP4398076B2 (en) Cement admixture and cement composition
JP3390082B2 (en) Cement admixture and cement composition for grout
JP4244267B2 (en) Cement admixture and cement composition
JP4244266B2 (en) Cement admixture and cement composition
JP4244262B2 (en) Cement admixture and cement composition
JP4459379B2 (en) Cement admixture and cement composition
JP4606546B2 (en) Grout cement admixture and cement composition
JP3390075B2 (en) Cement admixture and cement composition
JP4108533B2 (en) Portland cement clinker and cement composition using the same
JP4459380B2 (en) Cement admixture and cement composition
JP4498592B2 (en) Cement admixture and cement composition
JP4527269B2 (en) Cement admixture and cement composition
JP4244264B2 (en) Cement admixture and cement composition
JP4520005B2 (en) Cement admixture and cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4545293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees