JP4545087B2 - Operation signal distribution method - Google Patents

Operation signal distribution method Download PDF

Info

Publication number
JP4545087B2
JP4545087B2 JP2005372089A JP2005372089A JP4545087B2 JP 4545087 B2 JP4545087 B2 JP 4545087B2 JP 2005372089 A JP2005372089 A JP 2005372089A JP 2005372089 A JP2005372089 A JP 2005372089A JP 4545087 B2 JP4545087 B2 JP 4545087B2
Authority
JP
Japan
Prior art keywords
operation signal
distribution
control
calculation
intervention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005372089A
Other languages
Japanese (ja)
Other versions
JP2007172481A (en
Inventor
秀樹 吉岡
功 津浦
正和 岩瀬
政博 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
JP Steel Plantech Co
Original Assignee
Fuji Electric Systems Co Ltd
JP Steel Plantech Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd, JP Steel Plantech Co filed Critical Fuji Electric Systems Co Ltd
Priority to JP2005372089A priority Critical patent/JP4545087B2/en
Publication of JP2007172481A publication Critical patent/JP2007172481A/en
Application granted granted Critical
Publication of JP4545087B2 publication Critical patent/JP4545087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Feedback Control In General (AREA)

Description

この発明は、同一の制御系に複数の操作端を具備するプラント等の制御装置において、制御装置の運転が定常状態から非定常状態に移行した場合などに操作信号(調節計から出力される信号)が極端に少なく(多く)なり、操作信号が良好な制御範囲を逸脱することがある。このとき並列に動作している一部の操作端への操作信号を個別に減少(増大)させ、他の操作端への操作信号を良好な制御範囲に戻し、制御量(PV:Process Variable)を常時安定させる操作信号の演算分配方法に関するものである。 The present invention relates to an operation signal (a signal output from a controller ) when the operation of the control device shifts from a steady state to an unsteady state in a control device such as a plant having a plurality of operation ends in the same control system. ) Is extremely small (many), and the operation signal may deviate from a good control range. At this time, the operation signals to some of the operation ends operating in parallel are individually reduced (increased), the operation signals to the other operation ends are returned to a good control range, and the control amount (PV: Process Variable) The present invention relates to a method for calculating and distributing an operation signal that constantly stabilizes the operation signal.

同一の制御系において複数の操作端を具備し、圧力、温度、流量などの制御が必要な制御装置(例.プラント)において、操作端の制御が有効な範囲を逸脱した場合、従来は、オペレータにより調節計のモードを自動モードから手動モードに変更しハンチング現象の発生を避けていた(特許文献1参照)。また再度制御が有効範囲に入った場合、オペレータがその判断を下し、モードを自動に戻していた。
特開平7−219610号公報
In a control device (eg, a plant) that has a plurality of operation ends in the same control system and requires control of pressure, temperature, flow rate, etc., if the control of the operation ends deviates from the effective range, conventionally, the operator Thus, the controller mode is changed from the automatic mode to the manual mode to avoid the occurrence of the hunting phenomenon (see Patent Document 1). When the control entered the effective range again, the operator made the determination and returned the mode to automatic.
Japanese Patent Laid-Open No. 7-219610

上述した従来技術においては、操作端の制御が有効な範囲を逸脱した場合、常にオペレータの介入が必要になりオペレータの負担増となり、また圧力、温度、流量などの制御が必要な制御装置(例.プラント)においては制御量(PV)が安定しないという課題があった。   In the above-described prior art, when the control of the operation end deviates from the effective range, an operator's intervention is always required, increasing the burden on the operator, and a control device that requires control of pressure, temperature, flow rate, etc. (example) In the plant, there is a problem that the controlled variable (PV) is not stable.

上記のような課題を克服するため本発明は、並列に動作している操作端に対し操作信号(MV:Manipulative Variable)の絶対量、増加方向、および減少方向を監視し、その状況に応じてオペレータの介入なしに各操作端個別に的確な操作信号を分配する操作信号の演算分配方法を提供することを目的とする。   In order to overcome the above-described problems, the present invention monitors the absolute amount, increasing direction, and decreasing direction of an operation signal (MV: Manipulative Variable) with respect to the operation ends operating in parallel, and according to the situation. It is an object of the present invention to provide an operation signal calculation / distribution method that distributes an accurate operation signal to each operation end without operator intervention.

本発明は、同一の制御系に対し複数の操作端を有し、制御対象を所望の制御量とするために調節計から出力される操作信号で操作される前記複数の操作端を有する制御装置に対する操作信号の演算分配方法であって、前記調節計から出力される操作信号が所定の範囲を逸脱したとき、前記制御対象への制御量変動を伴わないように操作端への介入に基づいて演算分配手段が当該調節計から出力される操作信号を演算分配し、一部の操作端に対する演算分配後の操作信号を徐々に減少させ、前記一部の操作端を除いた操作端に対する前記演算分配後の操作信号を徐々に増加させることで、操作端の全閉近傍の制御不安定領域での操作を避け制御量を安定させるようにしたことを特徴とする。
また、本発明は、同一の制御系に対し複数の操作端を有し、制御対象を所望の制御量とするために調節計から出力される操作信号で操作される前記複数の操作端を有する制御装置に対する操作信号の演算分配方法であって、前記調節計から出力される操作信号が所定の範囲を逸脱したとき、前記制御対象への制御量変動を伴わないように操作端への介入に基づいて演算分配手段が当該調節計から出力される操作信号を演算分配し、一部の操作端に対する演算分配後の操作信号を徐々に増加させ、前記一部の操作端を除いた操作端に対する前記演算分配後の操作信号を徐々に減少させることで、操作端の全開近傍の制御不安定領域での操作を避け制御量を安定させるようにしたことを特徴とする。
The present invention includes a plurality of operation terminals for the same control system, control of the controlled object to have a plurality of operation terminal that is operated by the operation signal output from the controllers to the desired control quantity An operation signal calculation / distribution method for an apparatus , based on intervention at an operation end so that a control amount fluctuation to the control target is not accompanied when an operation signal output from the controller deviates from a predetermined range. an operation signal calculating distribution means is output from the controllers calculates distribution Te, is gradually decreasing an operation signal after computation distribution for some operations end, the relative operation end excluding the operating end of said portion an operation signal after computation distribution that gradually increased, characterized in that the controlled variable to avoid the operation of the control unstable region fully closed near the operating end to stabilize.
In addition, the present invention has a plurality of operation ends for the same control system, and has the plurality of operation ends operated by an operation signal output from a controller to set a control target to a desired control amount. An operation signal calculation / distribution method for a control device, wherein when an operation signal output from the controller deviates from a predetermined range, intervention at an operation end is performed so as not to cause a control amount fluctuation to the control target. Based on this, the operation distribution means calculates and distributes the operation signal output from the controller, gradually increases the operation signal after the operation distribution to some operation ends, and to the operation ends excluding the some operation ends. It is characterized in that the control amount is stabilized by avoiding the operation in the unstable control region near the fully open end of the operation end by gradually decreasing the operation signal after the calculation distribution.

本発明によれば、オペレータの介入なしに常に操作信号を制御性の良好な領域に維持できるので、制御装置(例.プラント)の制御量(PV:Process Variable)を常に安定状態に保つことができる。   According to the present invention, since an operation signal can always be maintained in a region with good controllability without operator intervention, the control variable (PV: Process Variable) of a control device (eg, plant) can always be kept stable. it can.

以下、本発明の実施の形態を、図面を参照しながら説明する。
図1は、本発明の適用に係る炉圧制御装置RSE(Ring Slit Element)による転炉内圧力制御の概要を説明するための図である。図1において本発明の適用に係る炉圧制御装置RSEによる転炉内圧力制御は、操作端11に加えられた調節計(図示せず)出力である操作信号によってRSE12を上昇(下降)させて圧力制御し転炉(図示せず)からの排ガスの流れ1をIDF(Induced Draft Fan:誘引送風機)(図示せず)への排ガスの流れ2に導くものであり転炉排ガス処理装置OGでもっぱら使用される。OG(Oxygen Converter Gas Recovery System:酸素転炉排ガス回収システム)は、当業者には周知のように酸素転炉による製鋼精錬の際に発生する排ガスを燃焼させずに回収し、処理してガス燃料として使用するとともに環境汚染の発生を防止する技術である。また炉圧制御装置RSE(Ring Slit Element)について、必要であれば特開平9−176707号公報におけるRSEの記載を参考にされたい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram for explaining an overview of converter pressure control by a furnace pressure control device RSE (Ring Slit Element) according to the application of the present invention. In FIG. 1, the in-converter pressure control by the furnace pressure control device RSE according to the application of the present invention is performed by raising (lowering) the RSE 12 by an operation signal which is a controller (not shown) output applied to the operation end 11. The pressure control controls the exhaust gas flow 1 from the converter (not shown) to the exhaust gas flow 2 to an IDF (Induced Draft Fan) (not shown), and the converter exhaust gas treatment device OG exclusively. used. The OG (Oxygen Converter Gas Recovery System) is a gas fuel that recovers without burning the exhaust gas generated during steelmaking refining by an oxygen converter and processes it, as is well known to those skilled in the art. It is a technology to prevent the occurrence of environmental pollution as well as to use. Regarding the furnace pressure control device RSE (Ring Slit Element), refer to the description of RSE in JP-A-9-176707 if necessary.

図1において本発明の適用に当たっては炉圧制御装置RSE(Ring Slit Element)用操作端11を複数備える転炉排ガス処理装置OGを前提としており、この装置において後述する本発明を用いれば、転炉操業で変更が発生し排ガス流量が極端に減少し、調節計(図示せず)制御出力(操作信号出力)が良好な(閉方向の)制御範囲を越えた場合、炉圧制御装置RSE12の制御台数を減少(操作信号を絞り込み、制御系から実質切り離し操作)させ炉圧を常時安定状況に維持させることができる。   In FIG. 1, the application of the present invention is premised on a converter exhaust gas treatment apparatus OG having a plurality of operation ends 11 for a reactor pressure control device RSE (Ring Slit Element). When a change occurs in the operation, the exhaust gas flow rate is extremely reduced, and the control output of the controller (not shown) (operation signal output) exceeds the good (closed direction) control range, the control of the furnace pressure control device RSE12 The number of units can be reduced (operation signal is narrowed down and operation is substantially separated from the control system) to maintain the furnace pressure in a stable state at all times.

図2は、本発明の実施形態に係る操作信号の演算分配を実施するための前提として操作信号-必要容量値変換器を用いて操作信号を操作端の必要容量値(調節弁のCV(flow Coefficient of Valve:弁容量係数)値)に換算する方法を説明するための図である。図2(a)は、操作信号MV(Manipulative Variable)を操作信号-必要容量値変換器30に入力して必要容量値f(X)を求める構成原理を示す図であり、求まった必要容量値f(X)に対し配分を実施するものである。演算分配するにしても操作信号を直に分配処理すると、調節計(図示せず)のゲインを分配状況ごとに再計算しなければならなくなり煩雑になる。それを避けるために、図2(b)では、操作信号MV(Xtとする)から複数の操作端の必要容量値f(X)を個々の操作信号-操作端容量値特性曲線を備える操作信号-必要容量値変換器31〜3nから算出し、それを演算器40で加減算して全体必要容量値f(Xt)を求める。つまり、図2(b)において、個々の操作端の必要容量値はf(X)であるから、操作端の数をnとすると、全体必要容量値f(Xt)=Σf(X)として求めることができる。 FIG. 2 is a diagram illustrating a required capacity value of the operation end (CV (flow of the control valve) using an operation signal-necessary capacity value converter as a precondition for performing the operation distribution of the operation signal according to the embodiment of the present invention. It is a figure for demonstrating the method converted into Coefficient of Valve: valve capacity coefficient) value). FIG. 2A is a diagram showing a configuration principle in which an operation signal MV (Manipulative Variable) is input to the operation signal-required capacitance value converter 30 to obtain a required capacitance value f (X n ). Allocation is performed for the value f (X n ). Even if the operation is distributed, if the operation signal is directly distributed, the gain of the controller (not shown) must be recalculated for each distribution situation, which is complicated. To avoid that, in FIG. 2 (b), the operation signal MV (X t to) from a plurality of operation terminals required capacitance value f (X n) the individual operation signal - an operation end capacitance characteristic curve operation signal - calculated from the required capacity value converter 31 to 3n, determine the overall required capacity value f (X t) it to addition and subtraction arithmetic unit 40. That is, in FIG. 2B, since the required capacity value of each operation end is f (X n ), if the number of operation ends is n, the total required capacity value f (X t ) = Σf (X n ).

図3は、本発明の実施形態に係る全体必要容量値の演算分配方法と各操作信号への逆換算方法を説明するための図である。図中、図3(b)は、本発明の実施形態に係る操作信号の演算分配を実施するための構成を示す図である。   FIG. 3 is a diagram for explaining a method of calculating and distributing the total required capacity value and a method of inverse conversion to each operation signal according to the embodiment of the present invention. In the figure, FIG. 3B is a diagram showing a configuration for carrying out the operation distribution of the operation signal according to the embodiment of the present invention.

図3(a)は、ランプ関数を用いて介入元信号g(t)を生成する介入元信号生成演算器50の構成を示す図である。図3(a)において介入元信号生成演算器50は、介入の度合いを介入量0%(介入無)または介入量A%のいずれかにスイッチ操作で選択し、それに対応してランプ関数を用いて介入元信号g(t)を生成し出力する。   FIG. 3A is a diagram illustrating a configuration of an intervention source signal generation calculator 50 that generates an intervention source signal g (t) using a ramp function. In FIG. 3 (a), the intervention source signal generation computing unit 50 selects the intervention degree as either the intervention amount 0% (no intervention) or the intervention amount A% by the switch operation, and uses the ramp function correspondingly. To generate and output an intervention source signal g (t).

図3(b)は、本発明の実施形態に係る操作信号の演算分配を実施するための構成を示す図であって、全体必要容量値を維持しながら個々の操作端の必要容量値f(X)を演算しながら配分して行く。配分の方法は図3(a)による介入元信号g(t)を操作端n台の内1台に介入(操作信号を強制的に0%あるいは100%方向に介入)させた場合、介入された操作端の必要容量値をf(X)とすると、操作端の必要容量値からg(t)を減算(あるいは加算)する、図3(b)の場合は図2(b)に示した操作信号-必要容量値変換器31の出力から減算する。したがって、
1(X1)=f(X1)−g(t)
という演算を施すことになる。
FIG. 3B is a diagram showing a configuration for performing operation distribution of the operation signal according to the embodiment of the present invention, and the required capacity value f () of each operation end while maintaining the total required capacity value. Xn ) is calculated and distributed. The allocation method is intervened when the intervention source signal g (t) shown in FIG. 3 (a) is intervened in one of the n operation terminals (the operation signal is forcibly intervened in the direction of 0% or 100%). and when the required capacity value of the operation end and f n (X n), is subtracted g (t) from the required capacity value of the operating end (or addition), in FIG. 2 (b) case of FIG. 3 (b) Subtract from the output of the indicated operation signal-required capacitance value converter 31. Therefore,
f 1 (X 1 ) = f (X 1 ) −g (t)
Will be performed.

また他の操作端に関しては、操作端の必要容量値にg(t)/(n−1)を加算(あるいは減算)する、図3(b)の場合は図2(b)に示した操作信号-必要容量値変換器3nの出力にg(t)/(n−1)を加算する。したがって、
n-1(Xn-1)=f(Xn-1)+g(t)/(n−1)
という演算を施すことになる。
For other operation ends, g (t) / (n-1) is added (or subtracted) to the required capacity value of the operation end. In the case of FIG. 3B, the operation shown in FIG. G (t) / (n-1) is added to the output of the signal-required capacitance value converter 3n. Therefore,
f n-1 (X n-1 ) = f (X n-1 ) + g (t) / (n-1)
Will be performed.

この操作により全体必要容量値f(Xt)を再計算すると、
f(Xt)=f(X1)-g(t)+Σ[f(Xn-1)+g(t)/(n−1)]
=f(X1)-g(t)+Σf(Xn-1)+(n-1)・g(t)/(n−1)
=Σf(X
となり、全体必要容量値は不変となっていることが分かる。
By recalculating the total required capacity value f (X t ) by this operation,
f (X t ) = f (X 1 ) −g (t) + Σ [f (X n−1 ) + g (t) / (n−1)]
= F (X 1) -g ( t) + Σf (X n-1) + (n-1) · g (t) / (n-1)
= Σf (X n )
Thus, it can be seen that the total required capacity value remains unchanged.

図3(c)は、本発明の実施形態に係る演算分配した必要容量値の各操作信号への逆換算方法を説明するための図であって、演算分配が施された各操作端の必要容量値f(X)を必要容量値-操作信号変換器60に入力して操作信号MVを求める構成原理を示す図である。そして図3(b)で求められた各操作端の必要容量値f(X)を、図3(c)に示したような、個々の操作端の必要容量値-操作信号特性曲線を備える必要容量値-操作信号変換器61〜6nから各操作信号MVnを逆換算し出力する。 FIG. 3C is a diagram for explaining a method for inversely converting the operation-distributed required capacity value into each operation signal according to the embodiment of the present invention, and is necessary for each operation end subjected to operation distribution. capacitance value f n (X n) the required capacity value - is a diagram showing a basic arrangement which is input to the operation signal converter 60 obtains an operation signal MV n. Then, the required capacity value f n (X n ) of each operation end obtained in FIG. 3 (b) is obtained from the required capacity value-operation signal characteristic curve of each operation end as shown in FIG. 3 (c). Each operation signal MVn is inversely converted and output from the necessary capacity value-operation signal converters 61 to 6n.

図4は、本発明の実施形態に係る操作信号の演算分配を実施するための他の構成を示す図である。図4は、図3(b)で示した本発明の実施形態に係る操作信号の演算分配を実施するための構成において操作端で減算(あるいは加算)を施す介入台数を1台ではなくk台に変更した構成を示す図である。図4に示すように介入する操作端の台数をk台にした場合には、操作端の必要容量値からk台分g(t)を減算(あるいは加算)する。このとき他の操作端に関してはg(t)・k/(n−k)を加算(あるいは減算)する。   FIG. 4 is a diagram showing another configuration for performing operation distribution of operation signals according to the embodiment of the present invention. FIG. 4 shows the number of interventions to be subtracted (or added) at the operation end in the configuration for performing the operation signal distribution according to the embodiment of the present invention shown in FIG. It is a figure which shows the structure changed into. As shown in FIG. 4, when the number of operation terminals to intervene is k, k (g) is subtracted (or added) from the required capacity value of the operation terminals. At this time, g (t) · k / (n−k) is added (or subtracted) for the other operation ends.

図5は、本発明の実施形態に係る操作信号に対する介入の制御方法を説明するための図であり、図5(a)において介入元信号生成演算器50は、介入の度合いを介入量0%(介入無)または介入量A%のいずれかにスイッチ操作で選択し、それに対応してランプ関数を用いて介入元信号g(t)を生成し出力するばかりでなく、生成出力した介入元信号g(t)をフィードバックして介入元信号生成演算器50に選択入力可能とする。そのために図3(a)の構成に対してスイッチを1つ増やして介入量の選択制御を補填している。   FIG. 5 is a diagram for explaining an intervention control method for an operation signal according to the embodiment of the present invention. In FIG. 5A, the intervention source signal generation computing unit 50 sets the degree of intervention to an intervention amount of 0%. (Intervention-free) or intervention amount A% is selected by a switch operation, and the intervention source signal g (t) is generated and output using the ramp function corresponding to the selection. g (t) is fed back to enable selection input to the intervention source signal generation calculator 50. For this purpose, the selection control of the intervention amount is supplemented by adding one switch to the configuration of FIG.

図5(b)〜図5(e)は、操作信号MVに対する具体的な介入制御の様子を示しており、操作信号の波形図に基づいての介入制御の実態が示されている。まず介入制御の開始(終了)は、操作信号MVが制御不安定領域に突入する近傍の値で行う。本実施形態においては制御不安定領域に突入する近傍の値としてα、βを設定し、操作信号MVがα(=90%近傍の値)、β(=10%近傍の値)を上限側あるいは下限側に超えた場合に介入制御の開始(終了)を行う。いま図5(b)では操作信号MV1がβを下限側に超えたために介入制御を開始させ、スイッチSW1をONする。ランプ関数を用いて生成される介入元信号g(t)は定常状態ではこのランプ関数の出力値は0%(介入無)になっているが、介入必要状態になった場合にはスイッチSW1をONすることでランプ関数の出力値はA%に向かってランプ状に上昇する。スイッチSW1のON状態は操作信号MV1がβを下限側に超えている間は継続される。 FIG. 5B to FIG. 5E show a specific state of intervention control for the operation signal MV, and the actual state of intervention control based on the waveform diagram of the operation signal is shown. First, the start (end) of the intervention control is performed with a value in the vicinity where the operation signal MV enters the control unstable region. In the present embodiment, α and β are set as values in the vicinity of entering the control unstable region, and the operation signal MV is set to α (= value near 90%) and β (= value near 10%) on the upper limit side or Intervention control starts (ends) when the lower limit is exceeded. In FIG. 5B, since the operation signal MV 1 exceeds β to the lower limit side, intervention control is started and the switch SW1 is turned on. The intervention source signal g (t) generated using the ramp function is 0% (no intervention) in the steady state, but when the intervention is necessary, the switch SW1 is turned on. When turned ON, the output value of the ramp function rises in a ramp shape toward A%. ON state of the switch SW1 is while the operation signal MV 1 exceeds the β to the lower side is continued.

ここで操作信号の変動方向は一様ではなく、操作信号MVの変動方向が逆転する場合がある。すなわち操作信号MVの微分波形をチェックしある定数を越えるかを監視する。図5(b)に示すように操作信号MVの変動方向がある定数を越えた場合には、介入元信号g(t)であるランプ関数出力をフィードバックして入力に戻すようにする。つまり、図5(a)に示すようにスイッチSW1をON状態にしたままスイッチSW2をONにする。これによりランプ機能を一旦停止させ、操作信号への悪影響を防止する。また変動方向が復帰すれば、スイッチSW2をOFFにし、再度g(t)の信号は、設定値Aを目標に
ランプ状に出力される。図5(c)ないし図5(e)に示すように目標値である設定値Aに近づくにつれて、操作信号MV1は0%に、すなわち操作信号MV1を絞り込み、制御
系から実質切り離し状態にし、操作信号MV2、MV3には介入量の1/2(図3(b)参照)だけ上乗せさせるようにして炉圧を安定に維持させる。なお図5(d)および図5(e)は図1に示した操作端が3台の例について例示しているものであり、これに限定されないことは云うまでもない。
Here, the fluctuation direction of the operation signal is not uniform, and the fluctuation direction of the operation signal MV may be reversed. That is, the differential waveform of the operation signal MV is checked to monitor whether it exceeds a certain constant. As shown in FIG. 5B, when the fluctuation direction of the operation signal MV exceeds a certain constant, the ramp function output as the intervention source signal g (t) is fed back and returned to the input. That is, as shown in FIG. 5A, the switch SW2 is turned on while the switch SW1 is kept on. As a result, the lamp function is temporarily stopped to prevent an adverse effect on the operation signal. If the changing direction is restored, the switch SW2 is turned off, and the signal g (t) is output in a ramp shape with the set value A as a target. As shown in FIGS. 5 (c) to 5 (e), as the set value A which is the target value is approached, the operation signal MV1 is reduced to 0%, i.e., the operation signal MV1 is narrowed down so as to be substantially disconnected from the control system. The furnace pressure is stably maintained by adding ½ of the intervention amount (see FIG. 3B) to the signals MV2 and MV3. 5 (d) and 5 (e) illustrate an example in which there are three operation ends shown in FIG. 1, and it goes without saying that the present invention is not limited to this.

このように本実施形態に係る操作信号の演算分配方法によれば、オペレータの介入なしに常に操作信号を制御性の良好な領域に維持できるので、制御装置(例.プラント)の制御量(PV)を常に安定状態に保つことができる。   As described above, according to the operation signal calculation / distribution method according to the present embodiment, the operation signal can always be maintained in a region having good controllability without operator intervention. ) Can always be kept stable.

本発明は、転炉の排ガス処理装置であるOGに具備している炉圧制御装置RSEによる炉圧の操作に特に適しているが、複数の操作端を有する制御装置全てに適応可能である。   The present invention is particularly suitable for the operation of the furnace pressure by the furnace pressure control device RSE provided in the OG which is an exhaust gas treatment device of the converter, but can be applied to all the control devices having a plurality of operation ends.

本発明の適用に係る炉圧制御装置RSEによる転炉内圧力制御の概要を説明するための図である。It is a figure for demonstrating the outline | summary of the pressure control in a converter by the furnace pressure control apparatus RSE which concerns on application of this invention. 本発明の実施形態に係る操作信号を操作端の必要容量値に換算する方法を説明するための図である。It is a figure for demonstrating the method to convert the operation signal which concerns on embodiment of this invention into the required capacitance value of an operation end. 本発明の実施形態に係る全体必要容量値の演算分配方法と各操作信号への逆換算方法を説明するための図である。It is a figure for demonstrating the calculation distribution method of the total required capacity | capacitance value which concerns on embodiment of this invention, and the reverse conversion method to each operation signal. 本発明の実施形態に係る操作信号の演算分配を実施するための他の構成を示す図である。It is a figure which shows the other structure for implementing the calculation distribution of the operation signal which concerns on embodiment of this invention. 本発明の実施形態に係る操作信号に対する介入の制御方法を説明するための図である。It is a figure for demonstrating the control method of the intervention with respect to the operation signal which concerns on embodiment of this invention.

符号の説明Explanation of symbols

11 操作端
12 RSE(炉圧制御装置)
30 操作信号-必要容量値変換器
40 演算器
50 介入元信号生成演算器
60 必要容量値-操作信号変換器
11 Operation end 12 RSE (Reactor pressure controller)
30 Operation Signal-Required Capacitance Value Converter 40 Calculator 50 Intervention Source Signal Generation Calculator 60 Required Capacitance Value-Operation Signal Converter

Claims (4)

同一の制御系に対し複数の操作端を有し、制御対象を所望の制御量とするために調節計から出力される操作信号で操作される前記複数の操作端を有する制御装置に対する操作信号の演算分配方法であって、
前記調節計から出力される操作信号が所定の範囲を逸脱したとき、前記制御対象への制御量変動を伴わないように操作端への介入に基づいて演算分配手段が当該調節計から出力される操作信号を演算分配し、一部の操作端に対する演算分配後の操作信号を徐々に減少させ、前記一部の操作端を除いた操作端に対する前記演算分配後の操作信号を徐々に増加させることで、操作端の全閉近傍の制御不安定領域での操作を避け制御量を安定させるようにした操作信号の演算分配方法。
A plurality of operation terminals for the same control system, operation signals and control target to the control device which have a plurality of operation terminal that is operated by the operation signal output from the controllers to the desired control quantity The calculation distribution method of
When the operation signal output from the controller deviates from a predetermined range, the calculation / distribution means is output from the controller based on the intervention at the operation end so that the control amount fluctuation to the control target is not accompanied. an operation signal calculated distribution, it is gradually reducing the operation signal after computation distribution for some operations end, gradually increasing the operation signal after the calculation distribution with respect to the operation end, excluding the operating end of said portion in, calculating the distribution method of operation signal to stabilize the controlled variable to avoid the operation of the control unstable region fully closed near the operating end.
前記一部の操作端に対する演算分配後の操作信号を減少させている時に、前記調節計から出力される操作信号が増加方向に転じた場合には、前記一部の操作端に対する前記演算分配後の操作信号の減少を一旦停止させるようにした請求項1記載の操作信号の演算分配方法。 When the operation signal output from the controller turns in an increasing direction when the operation signal after the operation distribution for the part of the operation ends is decreased, the operation signal after the operation distribution to the part of the operation ends is changed. 2. The operation signal calculation / distribution method according to claim 1, wherein a decrease in the operation signal is temporarily stopped . 同一の制御系に対し複数の操作端を有し、制御対象を所望の制御量とするために調節計から出力される操作信号で操作される前記複数の操作端を有する制御装置に対する操作信号の演算分配方法であって、An operation signal for a control device having a plurality of operation ends for the same control system and operated by an operation signal output from a controller to set a control target to a desired control amount. A calculation distribution method,
前記調節計から出力される操作信号が所定の範囲を逸脱したとき、前記制御対象への制御量変動を伴わないように操作端への介入に基づいて演算分配手段が当該調節計から出力される操作信号を演算分配し、一部の操作端に対する演算分配後の操作信号を徐々に増加させ、前記一部の操作端を除いた操作端に対する前記演算分配後の操作信号を徐々に減少させることで、操作端の全開近傍の制御不安定領域での操作を避け制御量を安定させるようにした操作信号の演算分配方法。When the operation signal output from the controller deviates from a predetermined range, the calculation / distribution means is output from the controller based on the intervention at the operation end so that the control amount fluctuation to the control target is not accompanied. Distributing operation signals, gradually increasing operation signals after operation distribution to some operation ends, and gradually decreasing operation signals after operation distribution to operation ends excluding the some operation ends. Thus, an operation signal calculation / distribution method in which the control amount is stabilized by avoiding the operation in the unstable control region near the fully open end of the operation end.
前記一部の操作端に対する演算分配後の操作信号を増加させている時に、前記調節計から出力される操作信号が減少方向に転じた場合には、前記一部の操作端に対する前記演算分配後の操作信号の増加を一旦停止させるようにした請求項3記載の操作信号の演算分配方法。When the operation signal output from the controller turns in a decreasing direction while increasing the operation signal after the operation distribution to the some operation ends, after the operation distribution to the some operation ends. 4. The operation signal calculation and distribution method according to claim 3, wherein an increase in the operation signal is temporarily stopped.
JP2005372089A 2005-12-26 2005-12-26 Operation signal distribution method Active JP4545087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005372089A JP4545087B2 (en) 2005-12-26 2005-12-26 Operation signal distribution method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005372089A JP4545087B2 (en) 2005-12-26 2005-12-26 Operation signal distribution method

Publications (2)

Publication Number Publication Date
JP2007172481A JP2007172481A (en) 2007-07-05
JP4545087B2 true JP4545087B2 (en) 2010-09-15

Family

ID=38298928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005372089A Active JP4545087B2 (en) 2005-12-26 2005-12-26 Operation signal distribution method

Country Status (1)

Country Link
JP (1) JP4545087B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545183A (en) * 1977-06-15 1979-01-16 Hitachi Ltd Pump number controller
JPS60209801A (en) * 1984-04-02 1985-10-22 Hitachi Ltd Advance control type automatic controller
JPH04358781A (en) * 1991-06-03 1992-12-11 Chiyoda Corp Operating method of pumps connected in parallel
JPH0511801A (en) * 1991-07-03 1993-01-22 Toshiba Corp Adjustment controller
JP2000097159A (en) * 1998-09-21 2000-04-04 Chiyoda Corp Operating method for pump connected in parallel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545183A (en) * 1977-06-15 1979-01-16 Hitachi Ltd Pump number controller
JPS60209801A (en) * 1984-04-02 1985-10-22 Hitachi Ltd Advance control type automatic controller
JPH04358781A (en) * 1991-06-03 1992-12-11 Chiyoda Corp Operating method of pumps connected in parallel
JPH0511801A (en) * 1991-07-03 1993-01-22 Toshiba Corp Adjustment controller
JP2000097159A (en) * 1998-09-21 2000-04-04 Chiyoda Corp Operating method for pump connected in parallel

Also Published As

Publication number Publication date
JP2007172481A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
KR101523543B1 (en) Boiler system
JP2010043768A (en) Control method of boiler and boiler system using the control method
JP2008165674A (en) Pid control method and pid control device
JP4545087B2 (en) Operation signal distribution method
US7720653B2 (en) Mathematical model for a metallurgical plant, and method for optimizing the operation of a metallurgical plant using a model
JP6375914B2 (en) Boiler system
JP2004086858A (en) Controller, thermoregulator and thermal treatment equipment
JP2002130604A (en) Method for controlling number of boilers in continuous control of burning rate
JP7089335B2 (en) Control device
JP5001659B2 (en) Dissolved oxygen control device
JPH0929057A (en) Device for controlling model forecast and gas refining plant using this device
JPH09187625A (en) Device and method for controlling injection of ammonia into stack gas denitrating equipment
JPS5813809B2 (en) Combustion control method using low excess air
JP2010020705A (en) Control device
JP3611026B2 (en) Smoke removal equipment
JP4256236B2 (en) Control apparatus and control method
JP4110780B2 (en) Estimation method of hot metal temperature and disturbance in blast furnace
JP3850628B2 (en) Control device
CN112503957A (en) Temperature control method of holding furnace
JPH0553533B2 (en)
SU798707A1 (en) Pi-controller
JPS62233604A (en) Method of operating steam generating facility
JPH0335922Y2 (en)
US9391573B2 (en) Digital AGC control method and feedback control apparatus
RU2324215C2 (en) Temperature control device of electric resistance furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4545087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250