JP4542992B2 - Residual heat removal system and operation method thereof - Google Patents

Residual heat removal system and operation method thereof Download PDF

Info

Publication number
JP4542992B2
JP4542992B2 JP2006005631A JP2006005631A JP4542992B2 JP 4542992 B2 JP4542992 B2 JP 4542992B2 JP 2006005631 A JP2006005631 A JP 2006005631A JP 2006005631 A JP2006005631 A JP 2006005631A JP 4542992 B2 JP4542992 B2 JP 4542992B2
Authority
JP
Japan
Prior art keywords
heat exchanger
valve
pipe
coolant
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006005631A
Other languages
Japanese (ja)
Other versions
JP2007187543A (en
Inventor
弘詞 山崎
和夫 久島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006005631A priority Critical patent/JP4542992B2/en
Publication of JP2007187543A publication Critical patent/JP2007187543A/en
Application granted granted Critical
Publication of JP4542992B2 publication Critical patent/JP4542992B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

この発明は、沸騰水型原子炉の炉停止時および冷却材喪失事故時に使用される残留熱除去系およびその運転方法に関する。   The present invention relates to a residual heat removal system used when a boiling water reactor is shut down and when a coolant loss accident occurs, and an operation method thereof.

沸騰水型原子炉の残留熱除去系は、冷却材喪失事故時の非常用炉心冷却系としての機能と、原子炉停止後に原子炉内燃料から発生する崩壊熱を除去する停止時冷却系としての機能を兼ね備えている(特許文献1参照)。   The residual heat removal system for boiling water reactors functions as an emergency core cooling system in the event of a loss of coolant and as a shutdown cooling system that removes decay heat generated from reactor fuel after the reactor shuts down. It also has a function (see Patent Document 1).

残留熱除去系を非常用炉心冷却系の一つとして運転する場合は、原子炉冷却材喪失事故時に規定時間以内に原子炉圧力に応じた冷却水流量を注水する必要があるため、系統抵抗は規定したポンプ揚程以下でなければならない。   When operating the residual heat removal system as one of the emergency core cooling systems, it is necessary to inject the cooling water flow rate according to the reactor pressure within the specified time at the time of the reactor coolant loss accident. Must be below the specified pump head.

一方、停止時冷却系として運転する場合においては、特に原子炉停止時の燃料交換作業を行なう際は原子炉水の揺れや濁りを最小限に抑え炉心燃料の確認および燃料の交換作業を効率的に行なうために、冷却に支障のない範囲で残留熱除去系の系統流量を必要最小限の流量に調整する必要がある。   On the other hand, when operating as a shutdown cooling system, especially when performing fuel replacement work when the reactor is shut down, it is efficient to check the core fuel and replace the fuel while minimizing the shaking and turbidity of the reactor water. Therefore, it is necessary to adjust the system flow rate of the residual heat removal system to the minimum required flow rate within a range that does not hinder cooling.

残留熱除去系ポンプの吸込側は、原子炉圧力容器と接続した原子炉冷却材再循環系ポンプの吸込配管より分岐しており、プラントの通常運転時に接続している非常用炉心冷却系の水源であるサプレッションプールとは水源切り替え用の止め弁により分離されている。原子炉冷却材は、原子炉冷却材再循環ポンプの吸込配管より分岐した後、残留熱除去系ポンプにより加圧され、残留熱除去系熱交換器により冷却された後、原子炉冷却材再循環系ポンプの吐出配管に合流して原子炉圧力容器へ戻される。残留熱除去系の原子炉圧力容器への注入配管上には注入弁がある。   The suction side of the residual heat removal system pump is branched from the suction pipe of the reactor coolant recirculation system pump connected to the reactor pressure vessel, and the water source of the emergency core cooling system connected during normal plant operation The suppression pool is separated by a stop valve for switching the water source. The reactor coolant is branched from the suction pipe of the reactor coolant recirculation pump, then pressurized by the residual heat removal system pump, cooled by the residual heat removal system heat exchanger, and then recycled to the reactor coolant. It joins the discharge pipe of the system pump and returns to the reactor pressure vessel. There is an injection valve on the injection pipe to the reactor pressure vessel of the residual heat removal system.

原子炉圧力容器へ水を供給する注入配管は、非常用炉心冷却系としての機能と停止時冷却系としての機能を共有しており、非常用炉心冷却系として起動する時は、注入弁は自動で全開となり原子炉圧力容器への冷却水の注入が行なわれる。一方、停止時冷却系として運用する際は注入弁の遠隔手動操作にて流量調整が行なわれる。したがって、注入配管上の注入弁は事故時の流量および差圧条件と原子炉停止時の流量および差圧条件の両方を満たす必要がある。   The injection piping that supplies water to the reactor pressure vessel shares the functions of the emergency core cooling system and the shutdown cooling system, and when starting up as the emergency core cooling system, the injection valve is automatically Then, it is fully opened and cooling water is injected into the reactor pressure vessel. On the other hand, when operating as a cooling system during stoppage, the flow rate is adjusted by remote manual operation of the injection valve. Therefore, the injection valve on the injection pipe must satisfy both the flow rate and differential pressure conditions at the time of the accident and the flow rate and differential pressure conditions at the time of reactor shutdown.

停止時冷却系運転時に原子炉冷却材温度降下速度を設計値以下に抑えなければならないため、熱交換器バイパス弁の開度によって熱交換器への通水流量を調整する。特に原子炉停止直後の原子炉冷却材の温度が高いときには熱交換器への通水流量を絞る必要がある。一部のプラントでは熱交換器側の弁にも絞り機能が付加されており熱交換器側への通水流量を直接調整することも可能であるが、熱交換器側の弁に絞り機能がないプラントでは、熱交換器バイパス流量のみを調整している。
特公昭64−6716号公報
Since the reactor coolant temperature drop rate must be kept below the design value during shutdown cooling system operation, the water flow rate to the heat exchanger is adjusted by the opening of the heat exchanger bypass valve. In particular, when the temperature of the reactor coolant immediately after the reactor shutdown is high, it is necessary to reduce the flow rate of water to the heat exchanger. In some plants, a throttle function is also added to the heat exchanger side valve, and it is possible to directly adjust the water flow rate to the heat exchanger side, but the heat exchanger side valve has a throttle function. In plants that do not, only the heat exchanger bypass flow rate is adjusted.
Japanese Patent Publication No. 64-6716

停止時冷却系で運用時に系統流量を低下させる場合は注入弁を低開度で運用する必要があり、弁のエロージョンによる補修作業が負担となっている。エロージョンを防止するためには、注入弁の流量および差圧条件を緩和させる必要があり、対策として残留熱除去系の注入弁の上流または下流に流量調整オリフィスまたは絞り弁を追加する案もあるが、非常用炉心冷却系として規定されたポンプ揚程に対する圧損値の余裕が限られており、十分な差圧のある絞り機構を付加することができない。また、大口径の弁またはオリフィスを追加設置することはレイアウトの制約もあり、実現が困難な場合もある。   When the system flow rate is reduced during operation in the cooling system at the time of stoppage, it is necessary to operate the injection valve at a low opening degree, and repair work by erosion of the valve is a burden. In order to prevent erosion, it is necessary to relax the flow rate and differential pressure conditions of the injection valve. As a countermeasure, there is a plan to add a flow adjustment orifice or throttle valve upstream or downstream of the injection valve of the residual heat removal system. The margin of pressure loss with respect to the pump head defined as the emergency core cooling system is limited, and a throttle mechanism having a sufficient differential pressure cannot be added. In addition, additional installation of a large-diameter valve or orifice may be difficult due to layout restrictions.

また、原子炉停止時における原子炉冷却材の温度降下速度を調整する場合は、系統流量を一定に保ちながら熱交換器への通水流量を調整する必要があり、熱交換器バイパス側の弁にしか流量調整機能がないプラントでは、熱交換器側の通水流量調整が難しい。   In addition, when adjusting the temperature drop rate of the reactor coolant when the reactor is shut down, it is necessary to adjust the water flow rate to the heat exchanger while keeping the system flow rate constant. In a plant with only a flow rate adjustment function, it is difficult to adjust the water flow rate on the heat exchanger side.

本発明は以上の課題を解決するためになされたもので、沸騰水型原子炉の残留熱除去系において、非常用炉心冷却系として規定されたポンプ揚程の範囲内で注入弁のエロージョンを防止する装置・方法と、系統流量の調整と原子炉冷却材の温度調整を容易に行なう機能を加える装置・方法を提供することを目的とする。   The present invention has been made to solve the above problems, and in the residual heat removal system of a boiling water reactor, prevents erosion of the injection valve within the range of the pump head defined as an emergency core cooling system. It is an object of the present invention to provide an apparatus and method, and an apparatus and method for adding a function of easily adjusting the system flow rate and adjusting the temperature of the reactor coolant.

本発明の一つの態様では、沸騰水型原子炉の炉停止時に原子炉内の冷却材を循環させて残留熱を除去するとともに、冷却材喪失事故時にサプレッションプールの水を原子炉内に注入させる残留熱除去系において、冷却材の熱を除去する熱交換器と、前記熱交換器に連通する熱交換器通水配管と、前記熱交換器通水配管上に配置された熱交換器通水弁と、前記熱交換器通水配管から分岐して前記熱交換器をバイパスする熱交換器バイパス配管と、前記熱交換器バイパス配管上に配置された熱交換器バイパス弁と、前記熱交換器通水配管を通った冷却材および前記熱交換器バイパス配管を通った冷却材を合流させて原子炉へ注入する注入配管と、前記注入配管上に配置された注入弁と、前記熱交換器通水配管から分岐して前記熱交換器通水弁をバイパスしてまた前記熱交換器通水配管と合流する熱交換器通水弁バイパス配管と、前記熱交換器通水弁バイパス配管上に配置された熱交換器通水弁バイパス弁と、を有し、前記熱交換器通水弁バイパス弁の開度と前記熱交換器バイパス弁の開度とを調整することにより、前記熱交換器の流量と前記熱交換器バイパス配管の流量とを制御するように構成されていること、を特徴とする。
本発明の他の一つの態様では、沸騰水型原子炉の炉停止時に原子炉内の冷却材を循環させて残留熱を除去するとともに、冷却材喪失事故時にサプレッションプールの水を原子炉内に注入させる残留熱除去系において、冷却材の熱を除去する熱交換器と、前記熱交換器に連通する熱交換器通水配管と、前記熱交換器通水配管上に配置された熱交換器通水弁と、前記熱交換器通水配管から分岐して前記熱交換器をバイパスする熱交換器バイパス配管と、前記熱交換器バイパス配管上に配置された熱交換器バイパス弁と、前記熱交換器通水配管を通った冷却材および前記熱交換器バイパス配管を通った冷却材を合流させて原子炉へ注入する注入配管と、前記注入配管上に配置された注入弁と、前記熱交換器通水配管から分岐して前記熱交換器通水弁をバイパスしてまた前記熱交換器通水配管と合流する熱交換器通水弁バイパス配管と、前記熱交換器通水弁バイパス配管上に配置された熱交換器通水弁バイパス弁と、を有し、前記熱交換器通水弁バイパス弁の開度と前記熱交換器バイパス弁の開度と前記注入弁の開度とを調整することにより、前記熱交換器の流量と前記熱交換器バイパス配管の流量と前記注入弁の流量とを制御するように構成されていること、を特徴とする。
In one aspect of the present invention, to remove the residual heat by circulating coolant in the reactor during reactor shutdown in a boiling water reactor, to inject the water in the suppression pool into the reactor during a loss of coolant accident In the residual heat removal system, a heat exchanger that removes heat from the coolant, a heat exchanger water pipe that communicates with the heat exchanger, and a heat exchanger water that is disposed on the heat exchanger water pipe A heat exchanger bypass pipe that bypasses the heat exchanger by branching from the valve, the heat exchanger bypass pipe, the heat exchanger bypass valve disposed on the heat exchanger bypass pipe, and the heat exchanger An injection pipe that joins the coolant that has passed through the water flow pipe and the coolant that has passed through the heat exchanger bypass pipe and injected it into the nuclear reactor, an injection valve disposed on the injection pipe, and the heat exchanger passage Branch from the water pipe and connect the heat exchanger water valve. Yes and the heat exchanger through a water valve bypass piping path to also be joined with the heat exchanger water passage pipe, and the heat exchanger through a water valve bypass valve arranged in the heat exchanger through a water valve bypass on piping, the The flow rate of the heat exchanger and the flow rate of the heat exchanger bypass pipe are controlled by adjusting the opening degree of the heat exchanger water passage valve bypass valve and the opening degree of the heat exchanger bypass valve. It is comprised as follows.
In another embodiment of the present invention, when the boiling water reactor is shut down, the coolant in the reactor is circulated to remove residual heat, and the water in the suppression pool is passed into the reactor in the event of a coolant loss accident. In the residual heat removal system to be injected, a heat exchanger for removing heat of the coolant, a heat exchanger water passage pipe communicating with the heat exchanger, and a heat exchanger disposed on the heat exchanger water passage pipe A heat exchanger valve, a heat exchanger bypass pipe branched from the heat exchanger water pipe and bypassing the heat exchanger, a heat exchanger bypass valve disposed on the heat exchanger bypass pipe, and the heat An injection pipe that joins the coolant that has passed through the exchanger water-passing pipe and the coolant that has passed through the heat exchanger bypass pipe to inject into the reactor, an injection valve disposed on the injection pipe, and the heat exchange The heat exchanger water supply valve branched from the water supply water pipe A heat exchanger water valve bypass pipe that bypasses and merges with the heat exchanger water pipe, and a heat exchanger water valve bypass valve disposed on the heat exchanger water valve bypass pipe. The flow rate of the heat exchanger and the heat exchanger bypass are adjusted by adjusting the opening of the heat exchanger water passage valve bypass valve, the opening of the heat exchanger bypass valve, and the opening of the injection valve. The flow rate of the piping and the flow rate of the injection valve are configured to be controlled.

本発明の他の一つの態様では、沸騰水型原子炉の炉停止時に原子炉内の冷却材を循環させて残留熱を除去するとともに、冷却材喪失事故時にサプレッションプールの水を原子炉内に注入させる残留熱除去系の運転方法において、前記残留熱除去系は、冷却材の熱を除去する熱交換器と、前記熱交換器に連通する熱交換器通水配管と、前記熱交換器通水配管上に配置された熱交換器通水弁と、前記熱交換器通水配管から分岐して前記熱交換器をバイパスする熱交換器バイパス配管と、前記熱交換器バイパス配管上に配置された熱交換器バイパス弁と、前記熱交換器通水配管を通った冷却材および前記熱交換器バイパス配管を通った冷却材を合流させて原子炉へ注入する注入配管と、前記注入配管上に配置された注入弁と、前記熱交換器通水配管から分岐して前記熱交換器通水弁をバイパスしてまた前記熱交換器通水配管と合流する熱交換器通水弁バイパス配管と、前記熱交換器通水弁バイパス配管上に配置された熱交換器通水弁バイパス弁と、を有し、当該運転方法は、前記熱交換器通水弁バイパス弁の開度を調整することにより前記原子炉内の冷却材温度を調整する工程と、前記熱交換器バイパス弁の開度を調整することにより前記注入弁を通る冷却材の流量を調整する工程と、を含むこと、を特徴とする。
In another embodiment of the present invention, when the boiling water reactor is shut down, the coolant in the reactor is circulated to remove residual heat, and the water in the suppression pool is passed into the reactor in the event of a coolant loss accident. In the operation method of the residual heat removal system to be injected, the residual heat removal system includes a heat exchanger that removes heat of the coolant, a heat exchanger water pipe that communicates with the heat exchanger, and the heat exchanger passage. A heat exchanger water supply valve arranged on the water pipe, a heat exchanger bypass pipe branched from the heat exchanger water supply pipe to bypass the heat exchanger, and arranged on the heat exchanger bypass pipe and a heat exchanger bypass valve, the injection pipe for injecting into the heat exchanger through water piping coolant and is combined with coolant which has passed through the heat exchanger bypass piping passing through to the reactor, on the injection pipe The arranged injection valve and the heat exchanger water piping Et branched and heat exchanger through a water valve bypass pipe merges with bypass to also the heat exchanger water flow pipe the heat exchanger through a water valve, the disposed in the heat exchanger through a water valve bypass on pipe A heat exchanger water valve bypass valve, and the operation method adjusts the coolant temperature in the reactor by adjusting the opening of the heat exchanger water valve bypass valve; Adjusting the flow rate of the coolant passing through the injection valve by adjusting the opening of the heat exchanger bypass valve.

本発明の他の一つの態様では、沸騰水型原子炉の炉停止時に原子炉内の冷却材を循環させて残留熱を除去するとともに、冷却材喪失事故時にサプレッションプールの水を原子炉内に注入させる残留熱除去系の運転方法において、前記残留熱除去系は、冷却材の熱を除去する熱交換器と、前記熱交換器に連通する熱交換器通水配管と、前記熱交換器通水配管上に配置された熱交換器通水弁と、前記熱交換器通水配管から分岐して前記熱交換器をバイパスする熱交換器バイパス配管と、前記熱交換器バイパス配管上に配置された熱交換器バイパス弁と、前記熱交換器通水配管を通った冷却材および前記熱交換器バイパス配管を通った冷却材を合流させて原子炉へ注入する注入配管と、前記注入配管上に配置された注入弁と、前記熱交換器通水配管から分岐して前記熱交換器通水弁をバイパスしてまた前記熱交換器通水配管と合流する熱交換器通水弁バイパス配管と、前記熱交換器通水弁バイパス配管上に配置された熱交換器通水弁バイパス弁と、を有し、当該運転方法は、前記熱交換器通水弁バイパス弁の開度および前記熱交換器バイパス弁の開度を調整することにより前記原子炉内の冷却材温度の低下速度を調整する工程と、前記注入弁の開度を調整することにより前記注入弁を通る冷却材の流量を調整する工程と、を含むこと、を特徴とする。 In another embodiment of the present invention, when the boiling water reactor is shut down, the coolant in the reactor is circulated to remove residual heat, and the water in the suppression pool is passed into the reactor in the event of a coolant loss accident. In the operation method of the residual heat removal system to be injected, the residual heat removal system includes a heat exchanger that removes heat of the coolant, a heat exchanger water pipe that communicates with the heat exchanger, and the heat exchanger passage. A heat exchanger water supply valve arranged on the water pipe, a heat exchanger bypass pipe branched from the heat exchanger water supply pipe and bypassing the heat exchanger, and arranged on the heat exchanger bypass pipe and a heat exchanger bypass valve, the injection pipe for injecting into the heat exchanger through water piping coolant and is combined with coolant which has passed through the heat exchanger bypass piping passing through to the reactor, on the injection pipe The arranged injection valve and the heat exchanger water piping Et branched and heat exchanger through a water valve bypass pipe merges with bypass to also the heat exchanger water flow pipe the heat exchanger through a water valve, the disposed in the heat exchanger through a water valve bypass on pipe A heat exchanger water passage valve bypass valve, and the operation method includes adjusting the opening degree of the heat exchanger water passage valve bypass valve and the opening degree of the heat exchanger bypass valve in the reactor. Adjusting the rate of decrease in the coolant temperature, and adjusting the flow rate of the coolant passing through the injection valve by adjusting the opening of the injection valve.

この発明によれば、沸騰水型原子炉の残留熱除去系において、非常用炉心冷却系として規定されたポンプ揚程の範囲内で注入弁のエロージョンを防止する装置・方法と、系統流量の調整と原子炉冷却材の温度調整を容易に行なう機能を加える装置・方法を提供することができる。   According to the present invention, in a residual heat removal system of a boiling water reactor, an apparatus and method for preventing erosion of an injection valve within the range of a pump head defined as an emergency core cooling system, and adjustment of a system flow rate It is possible to provide an apparatus and method for adding a function of easily adjusting the temperature of the reactor coolant.

以下、本発明に係る残留熱除去系の実施形態について、図面を参照して説明する。   Embodiments of a residual heat removal system according to the present invention will be described below with reference to the drawings.

[第1の実施形態]
まず、図1を用いて本発明に係る残留熱除去系の第1の実施形態を説明する。残留熱除去系ポンプ6の吸込側は、原子炉圧力容器10と接続した原子炉冷却材再循環系ポンプ7の吸込配管22より分岐しており、プラント(原子炉)の通常運転時に接続している非常用炉心冷却系の水源であるサプレッションプール19とは、非常用炉心冷却系水源側水源切替用止め弁21により分離されている。
[First Embodiment]
First, a first embodiment of a residual heat removal system according to the present invention will be described with reference to FIG. The suction side of the residual heat removal system pump 6 branches off from the suction pipe 22 of the reactor coolant recirculation system pump 7 connected to the reactor pressure vessel 10 and is connected during normal operation of the plant (reactor). The suppression pool 19 which is the water source of the emergency core cooling system is separated by the emergency core cooling system water source side water source switching stop valve 21.

原子炉冷却材は、原子炉冷却材再循環ポンプ7の吸込配管22より分岐した後、原子炉側水源切替用止め弁20を経て、残留熱除去系ポンプ6により加圧され、熱交換器1に送られて除熱され冷却される。その後、注入配管13を経て、原子炉冷却材再循環系ポンプ7の吐出配管14に合流して、原子炉圧力容器10へ戻される。残留熱除去系の原子炉圧力容器10への注入配管13上には注入弁5が配置されている。系統流量の計測は注入配管13上の流量計8で行なわれる。   After the reactor coolant branches off from the suction pipe 22 of the reactor coolant recirculation pump 7, the reactor coolant is pressurized by the residual heat removal system pump 6 through the reactor-side water source switching stop valve 20, and the heat exchanger 1. The heat is removed and cooled. Thereafter, it passes through the injection pipe 13, joins the discharge pipe 14 of the reactor coolant recirculation system pump 7, and returns to the reactor pressure vessel 10. An injection valve 5 is arranged on the injection pipe 13 to the reactor pressure vessel 10 of the residual heat removal system. The system flow rate is measured by the flow meter 8 on the injection pipe 13.

残留熱除去系ポンプ6を通った冷却材は、熱交換器1の上流側で熱交換器バイパス配管12によって分岐し、熱交換器バイパス配管12は、熱交換器1の下流側、流量計8の上流側で再び熱交換器1を通った冷却材と合流する。熱交換器バイパス配管12には熱交換器バイパス弁4が配置されている。   The coolant that has passed through the residual heat removal system pump 6 is branched by the heat exchanger bypass pipe 12 on the upstream side of the heat exchanger 1, and the heat exchanger bypass pipe 12 is connected to the flow meter 8 on the downstream side of the heat exchanger 1. The coolant again passes through the heat exchanger 1 on the upstream side. A heat exchanger bypass valve 4 is disposed in the heat exchanger bypass pipe 12.

熱交換器1の入口側の熱交換器入口配管(熱交換器通水配管)11には熱交換器入口弁(熱交換器通水弁)2が配置され、この熱交換器入口弁2をバイパスするように熱交換器入口弁バイパス配管(熱交換器通水弁バイパス配管)16が配置され、熱交換器入口弁バイパス配管16の途中に熱交換器入口弁バイパス弁(熱交換器通水弁バイパス弁)15が配置されている。熱交換器1の出口側には熱交換器出口弁(熱交換器通水弁)3が配置されている。   A heat exchanger inlet valve (heat exchanger water passage valve) 2 is arranged in a heat exchanger inlet pipe (heat exchanger water passage pipe) 11 on the inlet side of the heat exchanger 1, and this heat exchanger inlet valve 2 is connected to the heat exchanger inlet valve 2. A heat exchanger inlet valve bypass pipe (heat exchanger water-pass valve bypass pipe) 16 is arranged so as to bypass, and a heat exchanger inlet valve bypass valve (heat exchanger water-pass water) is provided in the middle of the heat exchanger inlet valve bypass pipe 16. A valve bypass valve) 15 is arranged. On the outlet side of the heat exchanger 1, a heat exchanger outlet valve (heat exchanger water passage valve) 3 is arranged.

また、残留熱除去系の注入配管13上の注入弁5まわりに注入弁バイパス配管17が配置され、この注入弁バイパス配管17の途中に注入弁バイパス弁18が配置されている。   An injection valve bypass pipe 17 is arranged around the injection valve 5 on the injection pipe 13 of the residual heat removal system, and an injection valve bypass valve 18 is arranged in the middle of the injection valve bypass pipe 17.

本実施の形態によれば、原子炉停止時に残留熱除去系を停止時冷却系として運転する場合は、注入弁5を閉じたままで流量計8の指示値を確認しながら注入弁バイパス弁18により流量調整を行ない、非常用炉心冷却系として運転する場合は従来と同様に注入弁5を使用する。   According to the present embodiment, when the residual heat removal system is operated as a shutdown cooling system when the reactor is shut down, the injection valve bypass valve 18 checks the indicated value of the flow meter 8 while the injection valve 5 is closed. When adjusting the flow rate and operating as an emergency core cooling system, the injection valve 5 is used as in the conventional case.

注入弁バイパス配管17を注入配管13と比較して小口径とし、注入弁バイパス弁18を低流量で調整可能とすることにより、冷却材喪失事故時に注入弁5を通水する際の系統抵抗の増加を最小限に抑えながら、原子炉停止時において低流量かつ高差圧での流量調整が可能となり注入弁5のエロージョンを防止することができる。なお、注入弁バイパス配管17上に流量制限オリフィスを設置し、オリフィスにより系統流量を調整することも可能である。   Since the injection valve bypass pipe 17 has a smaller diameter than the injection pipe 13 and the injection valve bypass valve 18 can be adjusted at a low flow rate, the system resistance when the injection valve 5 is allowed to flow in the event of a coolant loss accident is reduced. The flow rate can be adjusted at a low flow rate and a high differential pressure when the reactor is stopped while minimizing the increase, and erosion of the injection valve 5 can be prevented. It is also possible to install a flow restricting orifice on the injection valve bypass pipe 17 and adjust the system flow rate by the orifice.

さらに、原子炉停止時における原子炉冷却材の温度降下速度の調整のために、熱交換器入口弁2を閉じ、原子炉再循環ポンプ7の吸込配管22に設置された温度計9で指示値を確認しながら熱交換器入口弁バイパス弁15の開度により熱交換器1への通水流量を調整することも可能である。   Furthermore, in order to adjust the temperature drop rate of the reactor coolant when the reactor is shut down, the heat exchanger inlet valve 2 is closed, and the indicated value is indicated by the thermometer 9 installed in the suction pipe 22 of the reactor recirculation pump 7. It is also possible to adjust the water flow rate to the heat exchanger 1 by checking the opening degree of the heat exchanger inlet valve bypass valve 15.

これにより、熱交換器バイパス弁4とともに原子炉冷却材の温度降下速度の調整を行なうことも可能となる。なお、熱交換器入口弁バイパス配管16および熱交換器入口弁バイパス弁15を設ける代わりに熱交換器出口弁3まわりに熱交換器出口弁バイパス配管(熱交換器通水弁バイパス配管。図示せず)および熱交換器出口弁バイパス弁(熱交換器通水弁バイパス弁。図示せず)を設けてもよい。また、熱交換器出口弁バイパス配管上に流量制限オリフィスを設置し、オリフィスにより系統流量を調整することも可能である。   Thereby, it becomes possible to adjust the temperature drop rate of the reactor coolant together with the heat exchanger bypass valve 4. In addition, instead of providing the heat exchanger inlet valve bypass pipe 16 and the heat exchanger inlet valve bypass valve 15, a heat exchanger outlet valve bypass pipe (heat exchanger water-pass valve bypass pipe. And a heat exchanger outlet valve bypass valve (heat exchanger water-passage valve bypass valve, not shown) may be provided. It is also possible to install a flow restriction orifice on the heat exchanger outlet valve bypass pipe and adjust the system flow rate by the orifice.

この実施形態ではさらに、注入弁バイパス弁18に、注入弁5と同様に、冷却材喪失事故信号で開となるインターロックを付加し、事故時に開作動させる。これにより、原子炉冷却材喪失時には注入弁バイパス配管18側にも通水されることから、注入弁5に通水される流量が低下するため注入弁5の差圧が低下する。   In this embodiment, an interlock that is opened by a coolant loss accident signal is added to the injection valve bypass valve 18 in the same manner as the injection valve 5, and is opened at the time of an accident. As a result, when the reactor coolant is lost, water is also passed to the injection valve bypass pipe 18 side, so that the flow rate of water supplied to the injection valve 5 is reduced and the pressure difference of the injection valve 5 is reduced.

さらに、冷却材喪失事故時に熱交換器入口弁バイパス弁15を開作動させることもできる。この場合も同様に熱交換器入口弁2での差圧が低下する。   Furthermore, the heat exchanger inlet valve bypass valve 15 can be opened when a coolant loss accident occurs. In this case as well, the differential pressure at the heat exchanger inlet valve 2 similarly decreases.

これにより、系統抵抗が下がるため、非常用炉心冷却系として規定されたポンプ揚程に対する系統抵抗の裕度を広げることできる。系統抵抗の裕度が広がることにより、たとえば他の目的で系統抵抗が増加する改造を行なう際に、引き廻しを変更する配管に対する系統抵抗増加の制約や、残留熱除去系の機器のリプレース時における差圧等の要求条件の裕度を広げることが可能となる。   Thereby, since system resistance falls, the tolerance of system resistance with respect to the pump head prescribed | regulated as an emergency core cooling system can be expanded. When the tolerance of system resistance increases, for example, when remodeling that increases system resistance for other purposes, restrictions on system resistance increase for piping whose routing is changed, and when residual heat removal system equipment is replaced It becomes possible to widen the tolerance of required conditions such as differential pressure.

[第2の実施形態]
図2および図3を用いて、本発明に係る残留熱除去系の第2の実施形態を説明する。第1の実施形態と同一または類似の構成には、同一の符号を付し、重複する説明は省略する。
[Second Embodiment]
A second embodiment of the residual heat removal system according to the present invention will be described with reference to FIGS. The same or similar components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

第2の実施形態では、第1の実施形態における原子炉冷却材の減温速度の制御を制御装置30による自動で行なう。このために、原子炉再循環ポンプ7の吸込配管22に設置された温度計9の計測値により算出された減温速度に応じて、熱交換器入口弁バイパス弁15で熱交換器1の冷却能力の調整を行なう。図3の制御インターロックの構成に示すように、熱交換器入口弁バイパス弁15の開度を変更すると系統流量の再調整が必要となるため、残留熱除去系の流量計8の計測値に応じ熱交換器バイパス弁4および注入弁5の開度を調整する操作を繰り返し実施する。   In the second embodiment, the control device 30 automatically controls the temperature reduction rate of the reactor coolant in the first embodiment. For this purpose, the heat exchanger 1 is cooled by the heat exchanger inlet valve bypass valve 15 according to the temperature reduction rate calculated from the measured value of the thermometer 9 installed in the suction pipe 22 of the reactor recirculation pump 7. Adjust the ability. As shown in the configuration of the control interlock in FIG. 3, if the opening degree of the heat exchanger inlet valve bypass valve 15 is changed, it is necessary to readjust the system flow rate. Accordingly, the operation of adjusting the opening degree of the heat exchanger bypass valve 4 and the injection valve 5 is repeatedly performed.

図3は、図2に示された残留熱除去系の停止時冷却モードの第2の実施形態における手順を示すものである。工程S1で、温度計9で計測された原子炉冷却材温度Tが読み込まれ、工程S2で、原子炉冷却材温度Tに基いて原子炉冷却材減温速度が算出される。工程S3で、原子炉冷却材減温速度が所定の設定値以上か否かが判断される。原子炉冷却材減温速度が所定の設定値以上の場合は、工程S4で、熱交換器入口弁バイパス弁15の開度を減少させる。工程S3で原子炉冷却材減温速度が所定の設定値未満の場合は、工程S5で、熱交換器入口弁バイパス弁15の開度を増加させる。   FIG. 3 shows the procedure in the second embodiment of the cooling mode when the residual heat removal system shown in FIG. 2 is stopped. In step S1, the reactor coolant temperature T measured by the thermometer 9 is read. In step S2, the reactor coolant temperature reduction rate is calculated based on the reactor coolant temperature T. In step S3, it is determined whether or not the reactor coolant temperature reduction rate is equal to or higher than a predetermined set value. If the reactor coolant temperature reduction rate is equal to or higher than the predetermined set value, the opening degree of the heat exchanger inlet valve bypass valve 15 is decreased in step S4. When the reactor coolant temperature reduction rate is less than the predetermined set value in step S3, the opening degree of the heat exchanger inlet valve bypass valve 15 is increased in step S5.

工程S4または工程S5の後に、工程S6で、流量計8で計測された残留熱除去系系統流量Fが読み込まれ、工程S7で、残留熱除去系系統流量Fが所定の設定値以上か否かが判断される。残留熱除去系系統流量Fが所定の設定値以上の場合は、工程S8で、熱交換器バイパス弁4の開度を減少させる。工程S7で、残留熱除去系系統流量Fが所定の設定値未満の場合は、工程S9で、熱交換器バイパス弁4の開度を増加させる。   After step S4 or step S5, the residual heat removal system flow rate F measured by the flow meter 8 is read in step S6, and in step S7, the residual heat removal system flow rate F is greater than or equal to a predetermined set value. Is judged. If the residual heat removal system flow rate F is greater than or equal to a predetermined set value, the opening degree of the heat exchanger bypass valve 4 is decreased in step S8. If the residual heat removal system flow rate F is less than the predetermined set value in step S7, the opening degree of the heat exchanger bypass valve 4 is increased in step S9.

工程S8または工程S9の後に、工程S1に戻り、以下、繰り返される。   After step S8 or step S9, the process returns to step S1 and is repeated thereafter.

本実施形態によれば、一定の減温速度で安定した流量にて冷却を行なうことができる。   According to this embodiment, cooling can be performed at a constant flow rate and a stable flow rate.

これにより、原子炉停止時に所定値以下の温度降下(減温)速度にて原子炉冷却材を冷却することが可能となり、原子炉の開放時期が早まり、原子炉停止期間を短縮することが可能である。   This makes it possible to cool the reactor coolant at a temperature drop (decrease) rate that is less than or equal to the specified value when the reactor is shut down, thereby shortening the reactor shutdown period and the reactor shutdown period. It is.

[第3の実施形態]
図2および図4を用いて、本発明に係る残留熱除去系の第3の実施形態を説明する。第2の実施形態と同一または類似の構成には、同一の符号を付し、重複する説明は省略する。
[Third Embodiment]
A third embodiment of the residual heat removal system according to the present invention will be described with reference to FIGS. The same or similar components as those in the second embodiment are denoted by the same reference numerals, and redundant description is omitted.

この実施形態では、図4の制御インターロックの構成に示すように、原子炉冷却材の減温速度の制御を熱交換器入口弁バイパス弁15および熱交換器バイパス弁4で行ない、注入弁5で流量調整を行なう。   In this embodiment, as shown in the configuration of the control interlock in FIG. 4, the temperature reduction rate of the reactor coolant is controlled by the heat exchanger inlet valve bypass valve 15 and the heat exchanger bypass valve 4, and the injection valve 5. Adjust the flow rate with.

図4は、図2に示された残留熱除去系の停止時冷却モードの第3の実施形態における手順を示すものである。工程S11で、温度計9で計測された原子炉冷却材温度Tが読み込まれ、工程S12で、原子炉冷却材温度Tに基いて原子炉冷却材減温速度が算出される。工程S13で、原子炉冷却材減温速度が所定の設定値以上か否かが判断される。原子炉冷却材減温速度が所定の設定値以上の場合は、工程S14で、熱交換器バイパス弁4の開度を増大させ、さらに、熱交換器バイパス弁4が全開の時には、熱交換器入口弁バイパス弁15の開度を減少させる。工程S13で原子炉冷却材減温速度が所定の設定値未満の場合は、工程S15で、熱交換器入口弁バイパス弁15の開度を増大させ、さらに、熱交換器入口弁バイパス弁15が全開の時には、熱交換器バイパス弁4の開度を減少させる。   FIG. 4 shows the procedure in the third embodiment of the cooling mode when the residual heat removal system shown in FIG. 2 is stopped. In step S11, the reactor coolant temperature T measured by the thermometer 9 is read. In step S12, the reactor coolant temperature reduction rate is calculated based on the reactor coolant temperature T. In step S13, it is determined whether or not the reactor coolant temperature reduction rate is equal to or higher than a predetermined set value. When the reactor coolant decelerating rate is equal to or higher than a predetermined set value, the opening degree of the heat exchanger bypass valve 4 is increased in step S14, and when the heat exchanger bypass valve 4 is fully opened, the heat exchanger The opening degree of the inlet valve bypass valve 15 is decreased. If the reactor coolant temperature reduction rate is less than the predetermined set value in step S13, the opening degree of the heat exchanger inlet valve bypass valve 15 is increased in step S15, and the heat exchanger inlet valve bypass valve 15 is When fully open, the opening degree of the heat exchanger bypass valve 4 is decreased.

工程S14または工程S15の後に、工程S16で、流量計8で計測された残留熱除去系系統流量Fが読み込まれ、工程S17で、残留熱除去系系統流量Fが所定の設定値以上か否かが判断される。残留熱除去系系統流量Fが所定の設定値以上の場合は、工程S18で、注入弁5の開度を減少させる。工程S17で、残留熱除去系系統流量Fが所定の設定値未満の場合は、工程S19で、注入弁5の開度を増加させる。   After step S14 or step S15, the residual heat removal system flow rate F measured by the flowmeter 8 is read in step S16, and in step S17, whether the residual heat removal system flow rate F is greater than or equal to a predetermined set value. Is judged. If the residual heat removal system flow rate F is greater than or equal to a predetermined set value, the opening of the injection valve 5 is decreased in step S18. If the residual heat removal system flow rate F is less than the predetermined set value in step S17, the opening of the injection valve 5 is increased in step S19.

工程S18または工程S19の後に、工程S11に戻り、以下、繰り返される。   After step S18 or step S19, the process returns to step S11 and is repeated thereafter.

本実施形態によれば、注入弁5の絞り機能を利用しながら所定の減温速度以下で安定した流量で、原子炉冷却材を冷却することが可能となる。   According to the present embodiment, the reactor coolant can be cooled at a stable flow rate at a predetermined temperature reduction rate or less while utilizing the throttle function of the injection valve 5.

本発明の第1の実施形態に係る残留熱除去系を示す系統図。1 is a system diagram showing a residual heat removal system according to a first embodiment of the present invention. 本発明の第2の実施形態に係る残留熱除去系を示す系統図。The systematic diagram which shows the residual heat removal system which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る残留熱除去系の停止時冷却モードの自動制御の手順を示すフロー図。The flowchart which shows the procedure of the automatic control of the cooling mode at the time of a stop of the residual heat removal system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る残留熱除去系の停止時冷却モードの自動制御の手順を示すフロー図。The flowchart which shows the procedure of the automatic control of the cooling mode at the time of a stop of the residual heat removal system which concerns on the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1…熱交換器、2…熱交換器入口弁(熱交換器通水弁)、3…熱交換器出口弁(熱交換器通水弁)、4…熱交換器バイパス弁、5…注入弁、6…残留熱除去系ポンプ、7…原子炉冷却材再循環系ポンプ、8…流量計、9…温度計、10…原子炉圧力容器、11…熱交換器入口配管(熱交換器通水配管)、12…熱交換器バイパス配管、13…注入配管、14…原子炉冷却材再循環系戻り配管、15…熱交換器入口弁バイパス弁(熱交換器通水弁バイパス弁)、16…熱交換器入口弁バイパス配管(熱交換器通水弁バイパス配管)、17…注入弁バイパス配管、18…注入弁バイパス弁、19…サプレッションプール、20…原子炉側水源切替用止め弁、21…非常用炉心冷却系水源側水源切替用止め弁、22…原子炉再循環系ポンプ吸込配管、30…制御装置 DESCRIPTION OF SYMBOLS 1 ... Heat exchanger, 2 ... Heat exchanger inlet valve (heat exchanger water valve), 3 ... Heat exchanger outlet valve (heat exchanger water valve), 4 ... Heat exchanger bypass valve, 5 ... Injection valve , 6 ... Residual heat removal system pump, 7 ... Reactor coolant recirculation system pump, 8 ... Flow meter, 9 ... Thermometer, 10 ... Reactor pressure vessel, 11 ... Heat exchanger inlet piping (heat exchanger water flow Piping), 12 ... heat exchanger bypass piping, 13 ... injection piping, 14 ... reactor coolant recirculation system return piping, 15 ... heat exchanger inlet valve bypass valve (heat exchanger water supply valve bypass valve), 16 ... Heat exchanger inlet valve bypass pipe (heat exchanger water valve bypass pipe), 17 ... injection valve bypass pipe, 18 ... injection valve bypass valve, 19 ... suppression pool, 20 ... reactor side water source switching stop valve, 21 ... Emergency core cooling system water source side water source switching stop valve, 22 ... Reactor recirculation system pump suction pipe 30 ... control device

Claims (9)

沸騰水型原子炉の炉停止時に原子炉内の冷却材を循環させて残留熱を除去するとともに、冷却材喪失事故時にサプレッションプールの水を原子炉内に注入させる残留熱除去系において、
冷却材の熱を除去する熱交換器と、
前記熱交換器に連通する熱交換器通水配管と、
前記熱交換器通水配管上に配置された熱交換器通水弁と、
前記熱交換器通水配管から分岐して前記熱交換器をバイパスする熱交換器バイパス配管と、
前記熱交換器バイパス配管上に配置された熱交換器バイパス弁と、
前記熱交換器通水配管を通った冷却材および前記熱交換器バイパス配管を通った冷却材を合流させて原子炉へ注入する注入配管と、
前記注入配管上に配置された注入弁と、
前記熱交換器通水配管から分岐して前記熱交換器通水弁をバイパスしてまた前記熱交換器通水配管と合流する熱交換器通水弁バイパス配管と、
前記熱交換器通水弁バイパス配管上に配置された熱交換器通水弁バイパス弁と、
を有し、
前記熱交換器通水弁バイパス弁の開度と前記熱交換器バイパス弁の開度とを調整することにより、前記熱交換器の流量と前記熱交換器バイパス配管の流量とを制御するように構成されていること、
を特徴とする残留熱除去系。
In the residual heat removal system that removes residual heat by circulating coolant in the reactor when the boiling water reactor shuts down, and injects water from the suppression pool into the reactor in the event of a loss of coolant,
A heat exchanger that removes heat from the coolant;
A heat exchanger water pipe communicating with the heat exchanger;
A heat exchanger water valve arranged on the heat exchanger water pipe;
A heat exchanger bypass pipe that branches off from the heat exchanger water pipe and bypasses the heat exchanger;
A heat exchanger bypass valve disposed on the heat exchanger bypass pipe;
An injection pipe for joining the coolant passing through the heat exchanger water- passing pipe and the coolant passing through the heat exchanger bypass pipe and injecting the coolant into the reactor;
An injection valve disposed on the injection pipe;
A heat exchanger water valve bypass pipe branching from the heat exchanger water pipe and bypassing the heat exchanger water valve and joining the heat exchanger water pipe ;
A heat exchanger water valve bypass valve disposed on the heat exchanger water valve bypass pipe;
I have a,
The flow rate of the heat exchanger and the flow rate of the heat exchanger bypass pipe are controlled by adjusting the opening degree of the heat exchanger water passage valve bypass valve and the opening degree of the heat exchanger bypass valve. That it is configured,
Residual heat removal system.
前記原子炉内の冷却材の温度を検出する温度検出器をさらに有し、
前記温度検出器で検出された冷却材の温度の低下速度が所定の値を越えた場合に前記熱交換器通水弁バイパス弁の開度を減少させ、前記温度検出器で検出された冷却材の温度の低下速度が所定の値未満の場合に前記熱交換器通水弁バイパス弁の開度を増加させるように構成されていること、
を特徴とする請求項1に記載の残留熱除去系。
A temperature detector for detecting the temperature of the coolant in the reactor;
When the temperature decrease rate of the coolant detected by the temperature detector exceeds a predetermined value, the opening degree of the heat exchanger water valve bypass valve is decreased, and the coolant detected by the temperature detector When the rate of temperature decrease is less than a predetermined value, it is configured to increase the opening of the heat exchanger water-passage valve bypass valve,
The residual heat removal system according to claim 1.
前記注水弁を通る冷却材の流量を検出する流量検出器をさらに有し、
前記流量検出器で検出された冷却材の流量が所定の値を越えた場合に前記熱交換器バイパス弁の開度を減少させ、流量検出器で検出された冷却材の流量が所定の値未満の場合に前記熱交換器バイパス弁の開度を増加させるように構成されていること、
を特徴とする請求項1または請求項2に記載の残留熱除去系。
A flow rate detector for detecting a flow rate of the coolant passing through the water injection valve;
When the coolant flow rate detected by the flow rate detector exceeds a predetermined value, the opening degree of the heat exchanger bypass valve is decreased, and the coolant flow rate detected by the flow rate detector is less than the predetermined value. Is configured to increase the opening of the heat exchanger bypass valve in the case of
The residual heat removal system according to claim 1 or 2, wherein
沸騰水型原子炉の炉停止時に原子炉内の冷却材を循環させて残留熱を除去するとともに、冷却材喪失事故時にサプレッションプールの水を原子炉内に注入させる残留熱除去系において、
冷却材の熱を除去する熱交換器と、
前記熱交換器に連通する熱交換器通水配管と、
前記熱交換器通水配管上に配置された熱交換器通水弁と、
前記熱交換器通水配管から分岐して前記熱交換器をバイパスする熱交換器バイパス配管と、
前記熱交換器バイパス配管上に配置された熱交換器バイパス弁と、
前記熱交換器通水配管を通った冷却材および前記熱交換器バイパス配管を通った冷却材を合流させて原子炉へ注入する注入配管と、
前記注入配管上に配置された注入弁と、
前記熱交換器通水配管から分岐して前記熱交換器通水弁をバイパスしてまた前記熱交換器通水配管と合流する熱交換器通水弁バイパス配管と、
前記熱交換器通水弁バイパス配管上に配置された熱交換器通水弁バイパス弁と、
を有し、
前記熱交換器通水弁バイパス弁の開度と前記熱交換器バイパス弁の開度と前記注入弁の開度とを調整することにより、前記熱交換器の流量と前記熱交換器バイパス配管の流量と前記注入弁の流量とを制御するように構成されていること、
を特徴とする残留熱除去系。
In the residual heat removal system that removes residual heat by circulating coolant in the reactor when the boiling water reactor shuts down, and injects water from the suppression pool into the reactor in the event of a loss of coolant,
A heat exchanger that removes heat from the coolant;
A heat exchanger water pipe communicating with the heat exchanger;
A heat exchanger water valve arranged on the heat exchanger water pipe;
A heat exchanger bypass pipe that branches off from the heat exchanger water pipe and bypasses the heat exchanger;
A heat exchanger bypass valve disposed on the heat exchanger bypass pipe;
An injection pipe for joining the coolant passing through the heat exchanger water-passing pipe and the coolant passing through the heat exchanger bypass pipe and injecting the coolant into the reactor;
An injection valve disposed on the injection pipe;
A heat exchanger water valve bypass pipe branched from the heat exchanger water pipe and bypassing the heat exchanger water valve and joining the heat exchanger water pipe;
A heat exchanger water valve bypass valve disposed on the heat exchanger water valve bypass pipe;
Have
By adjusting the opening of the heat exchanger water valve bypass valve, the opening of the heat exchanger bypass valve, and the opening of the injection valve, the flow rate of the heat exchanger and the heat exchanger bypass pipe Configured to control the flow rate and the flow rate of the injection valve;
Residual heat removal system according to claim.
前記原子炉内の冷却材の温度を検出する温度検出器をさらに有し、
前記温度検出器で検出された冷却材の温度の低下速度が所定の値を越えた場合に、前記熱交換器バイパス弁の開度を増加させ、さらに前記熱交換器バイパス弁が全開の時には前記熱交換器通水弁バイパス弁の開度を減少させ、
前記温度検出器で検出された冷却材の温度の低下速度が所定の値未満の場合に、前記熱交換器通水弁バイパス弁の開度を増大させ、さらに前記熱交換器通水弁バイパス弁が全開の時には前記熱交換器バイパス弁の開度を減少させるように構成されていること、
を特徴とする請求項4に記載の残留熱除去系。
A temperature detector for detecting the temperature of the coolant in the reactor;
When the cooling rate of the coolant detected by the temperature detector exceeds a predetermined value, the opening degree of the heat exchanger bypass valve is increased, and when the heat exchanger bypass valve is fully open, Reduce the opening of the heat exchanger water bypass valve bypass valve,
When the temperature decrease rate of the coolant detected by the temperature detector is less than a predetermined value, the opening degree of the heat exchanger water valve bypass valve is increased, and the heat exchanger water valve bypass valve is further increased. Is configured to reduce the opening of the heat exchanger bypass valve when fully open,
The residual heat removal system according to claim 4.
前記注水弁を通る冷却材の流量を検出する流量検出器をさらに有し、
前記流量検出器で検出された冷却材の流量が所定の値を越えた場合に前記注入弁の開度を減少させ、流量検出器で検出された冷却材の流量が所定の値未満の場合に前記注入弁の開度を増大させるように構成されていること、
を特徴とする請求項4または請求項5に記載の残留熱除去系。
A flow rate detector for detecting a flow rate of the coolant passing through the water injection valve;
When the coolant flow rate detected by the flow rate detector exceeds a predetermined value, the opening of the injection valve is decreased, and when the coolant flow rate detected by the flow rate detector is less than a predetermined value Being configured to increase the opening of the injection valve;
The residual heat removal system according to claim 4 or 5 , characterized in that:
冷却材喪失事故時に前記注入弁および前記熱交換器通水弁バイパス弁が開くように構成されていること、を特徴とする請求項1ないし請求項6のいずれか一項に記載の残留熱除去系。 The residual heat removal according to any one of claims 1 to 6, wherein the injection valve and the heat exchanger water-passage valve bypass valve are configured to open in the event of a coolant loss accident. system. 沸騰水型原子炉の炉停止時に原子炉内の冷却材を循環させて残留熱を除去するとともに、冷却材喪失事故時にサプレッションプールの水を原子炉内に注入させる残留熱除去系の運転方法において、In the operation method of the residual heat removal system, the coolant in the reactor is circulated when the boiling water reactor is shut down to remove residual heat, and the water in the suppression pool is injected into the reactor in the event of a loss of coolant. ,
前記残留熱除去系は、  The residual heat removal system is
冷却材の熱を除去する熱交換器と、  A heat exchanger that removes heat from the coolant;
前記熱交換器に連通する熱交換器通水配管と、  A heat exchanger water pipe communicating with the heat exchanger;
前記熱交換器通水配管上に配置された熱交換器通水弁と、  A heat exchanger water valve arranged on the heat exchanger water pipe;
前記熱交換器通水配管から分岐して前記熱交換器をバイパスする熱交換器バイパス配管と、  A heat exchanger bypass pipe that branches off from the heat exchanger water pipe and bypasses the heat exchanger;
前記熱交換器バイパス配管上に配置された熱交換器バイパス弁と、  A heat exchanger bypass valve disposed on the heat exchanger bypass pipe;
前記熱交換器通水配管を通った冷却材および前記熱交換器バイパス配管を通った冷却材を合流させて原子炉へ注入する注入配管と、  An injection pipe for joining the coolant passing through the heat exchanger water-passing pipe and the coolant passing through the heat exchanger bypass pipe and injecting the coolant into the reactor;
前記注入配管上に配置された注入弁と、  An injection valve disposed on the injection pipe;
前記熱交換器通水配管から分岐して前記熱交換器通水弁をバイパスしてまた前記熱交換器通水配管と合流する熱交換器通水弁バイパス配管と、  A heat exchanger water valve bypass pipe branching from the heat exchanger water pipe and bypassing the heat exchanger water valve and joining the heat exchanger water pipe;
前記熱交換器通水弁バイパス配管上に配置された熱交換器通水弁バイパス弁と、  A heat exchanger water valve bypass valve disposed on the heat exchanger water valve bypass pipe;
を有し、Have
当該運転方法は、  The driving method is
前記熱交換器通水弁バイパス弁の開度を調整することにより前記原子炉内の冷却材温度を調整する工程と、  Adjusting the coolant temperature in the reactor by adjusting the degree of opening of the heat exchanger water valve bypass valve;
前記熱交換器バイパス弁の開度を調整することにより前記注入弁を通る冷却材の流量を調整する工程と、  Adjusting the flow rate of coolant through the injection valve by adjusting the opening of the heat exchanger bypass valve;
を含むこと、を特徴とする残留熱除去系の運転方法。  A method for operating a residual heat removal system.
沸騰水型原子炉の炉停止時に原子炉内の冷却材を循環させて残留熱を除去するとともに、冷却材喪失事故時にサプレッションプールの水を原子炉内に注入させる残留熱除去系の運転方法において、In the operation method of the residual heat removal system, the coolant in the reactor is circulated when the boiling water reactor is shut down to remove residual heat, and the water in the suppression pool is injected into the reactor in the event of a loss of coolant. ,
前記残留熱除去系は、  The residual heat removal system is
冷却材の熱を除去する熱交換器と、  A heat exchanger that removes heat from the coolant;
前記熱交換器に連通する熱交換器通水配管と、  A heat exchanger water pipe communicating with the heat exchanger;
前記熱交換器通水配管上に配置された熱交換器通水弁と、  A heat exchanger water valve arranged on the heat exchanger water pipe;
前記熱交換器通水配管から分岐して前記熱交換器をバイパスする熱交換器バイパス配管と、  A heat exchanger bypass pipe that branches off from the heat exchanger water pipe and bypasses the heat exchanger;
前記熱交換器バイパス配管上に配置された熱交換器バイパス弁と、  A heat exchanger bypass valve disposed on the heat exchanger bypass pipe;
前記熱交換器通水配管を通った冷却材および前記熱交換器バイパス配管を通った冷却材を合流させて原子炉へ注入する注入配管と、  An injection pipe for joining the coolant passing through the heat exchanger water-passing pipe and the coolant passing through the heat exchanger bypass pipe and injecting the coolant into the reactor;
前記注入配管上に配置された注入弁と、  An injection valve disposed on the injection pipe;
前記熱交換器通水配管から分岐して前記熱交換器通水弁をバイパスしてまた前記熱交換器通水配管と合流する熱交換器通水弁バイパス配管と、  A heat exchanger water valve bypass pipe branching from the heat exchanger water pipe and bypassing the heat exchanger water valve and joining the heat exchanger water pipe;
前記熱交換器通水弁バイパス配管上に配置された熱交換器通水弁バイパス弁と、  A heat exchanger water valve bypass valve disposed on the heat exchanger water valve bypass pipe;
を有し、  Have
当該運転方法は、  The driving method is
前記熱交換器通水弁バイパス弁の開度および前記熱交換器バイパス弁の開度を調整することにより前記原子炉内の冷却材温度の低下速度を調整する工程と、  Adjusting the rate of decrease in coolant temperature in the reactor by adjusting the opening of the heat exchanger water-passage valve bypass valve and the opening of the heat exchanger bypass valve;
前記注入弁の開度を調整することにより前記注入弁を通る冷却材の流量を調整する工程と、  Adjusting the flow rate of coolant through the injection valve by adjusting the opening of the injection valve;
を含むこと、を特徴とする残留熱除去系の運転方法。  A method for operating a residual heat removal system.
JP2006005631A 2006-01-13 2006-01-13 Residual heat removal system and operation method thereof Expired - Fee Related JP4542992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006005631A JP4542992B2 (en) 2006-01-13 2006-01-13 Residual heat removal system and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006005631A JP4542992B2 (en) 2006-01-13 2006-01-13 Residual heat removal system and operation method thereof

Publications (2)

Publication Number Publication Date
JP2007187543A JP2007187543A (en) 2007-07-26
JP4542992B2 true JP4542992B2 (en) 2010-09-15

Family

ID=38342809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005631A Expired - Fee Related JP4542992B2 (en) 2006-01-13 2006-01-13 Residual heat removal system and operation method thereof

Country Status (1)

Country Link
JP (1) JP4542992B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078086A (en) * 2014-06-04 2014-10-01 中国核电工程有限公司 Active and passive combined containment sump water cooling system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4592773B2 (en) * 2008-02-29 2010-12-08 株式会社東芝 Static cooling decompression system and pressurized water nuclear plant
CN102426864B (en) * 2011-12-12 2014-03-26 曾祥炜 Passive emergency cooling system for severe accident in reactor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235798A (en) * 1985-04-11 1986-10-21 株式会社日立製作所 Nuclear reactor coolant purification system pressure and flow controller
JPS63157100A (en) * 1986-12-22 1988-06-30 株式会社東芝 Nuclear-reactor auxiliary cooling facility
JPS63247693A (en) * 1987-04-03 1988-10-14 株式会社東芝 Residual-heat removal device
JPH02222878A (en) * 1989-02-21 1990-09-05 Toshiba Corp Residual heat removal system of nuclear power plant
JPH0915381A (en) * 1995-06-27 1997-01-17 Hitachi Ltd Washing method for auxiliary cooling equipment and heat exchanger for the auxiliary cooling equipment
JPH0943381A (en) * 1995-07-26 1997-02-14 Toshiba Corp Operating method for residual heat removal system for reactor
JPH1138174A (en) * 1997-07-23 1999-02-12 Toshiba Corp Residual heat removal device
JPH1184055A (en) * 1997-09-03 1999-03-26 Toshiba Eng Co Ltd Reactor cooling system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100386A (en) * 1980-12-16 1982-06-22 Tokyo Shibaura Electric Co Residual heat removal system at reactor shutdown

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235798A (en) * 1985-04-11 1986-10-21 株式会社日立製作所 Nuclear reactor coolant purification system pressure and flow controller
JPS63157100A (en) * 1986-12-22 1988-06-30 株式会社東芝 Nuclear-reactor auxiliary cooling facility
JPS63247693A (en) * 1987-04-03 1988-10-14 株式会社東芝 Residual-heat removal device
JPH02222878A (en) * 1989-02-21 1990-09-05 Toshiba Corp Residual heat removal system of nuclear power plant
JPH0915381A (en) * 1995-06-27 1997-01-17 Hitachi Ltd Washing method for auxiliary cooling equipment and heat exchanger for the auxiliary cooling equipment
JPH0943381A (en) * 1995-07-26 1997-02-14 Toshiba Corp Operating method for residual heat removal system for reactor
JPH1138174A (en) * 1997-07-23 1999-02-12 Toshiba Corp Residual heat removal device
JPH1184055A (en) * 1997-09-03 1999-03-26 Toshiba Eng Co Ltd Reactor cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078086A (en) * 2014-06-04 2014-10-01 中国核电工程有限公司 Active and passive combined containment sump water cooling system

Also Published As

Publication number Publication date
JP2007187543A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP2008185572A (en) Alternative cooling system for nuclear reactor and the like
JP4542992B2 (en) Residual heat removal system and operation method thereof
KR20150003848A (en) Method for providing a cooling medium in a secondary circuit
US20110249784A1 (en) Driving system of relief safety valve
CN113266756B (en) Unit shutdown recirculation cooling system and method
JP2010261618A (en) Hot water storage type hot water supply device
JPH056082B2 (en)
JP4260787B2 (en) District heat supply system and heat supply plant switching method of district heat supply system
KR100448876B1 (en) Emergency feed water system in nuclear power plant
KR101501457B1 (en) Apparatus for breaking siphon effect of reactor pool and control method therefor
US20240062923A1 (en) Gas management systems for a molten salt nuclear reactor
RU2102800C1 (en) Power plant
CN216384146U (en) High-pressure water supply system for gas generator set
JP7228477B2 (en) Residual heat removal equipment, its operating method and residual heat removal method
JP2007107735A (en) Water cooling equipment and water cooling method
KR102007252B1 (en) System for responding to loss of coolant accident
JP3392563B2 (en) Circulation heater for control rod drive system
JP2001091684A (en) Fuel pool cooling equipment
JPH0574036B2 (en)
JPH0472471A (en) Feedwater heater drain pump up system
JPS63247693A (en) Residual-heat removal device
CZ34408U1 (en) Hydrogen concentrator
KR20210044067A (en) Apparatus for controlling reactor coolant inventory in Reactor Coolant System at an emergency event
JPS63187194A (en) Nuclear reactor pressure controller
JPS62287192A (en) Purge water feeder for nuclear reactor inside circulating pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees