JP4541089B2 - Ferritic stainless steel welding wire with excellent antibacterial properties - Google Patents
Ferritic stainless steel welding wire with excellent antibacterial properties Download PDFInfo
- Publication number
- JP4541089B2 JP4541089B2 JP2004286749A JP2004286749A JP4541089B2 JP 4541089 B2 JP4541089 B2 JP 4541089B2 JP 2004286749 A JP2004286749 A JP 2004286749A JP 2004286749 A JP2004286749 A JP 2004286749A JP 4541089 B2 JP4541089 B2 JP 4541089B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- stainless steel
- antibacterial
- welding wire
- weld metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000003466 welding Methods 0.000 title claims description 64
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 38
- 230000000844 anti-bacterial effect Effects 0.000 title description 59
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 description 51
- 239000002184 metal Substances 0.000 description 51
- 239000000463 material Substances 0.000 description 20
- 230000007797 corrosion Effects 0.000 description 19
- 238000005260 corrosion Methods 0.000 description 19
- 230000000694 effects Effects 0.000 description 17
- 238000005336 cracking Methods 0.000 description 15
- 239000010935 stainless steel Substances 0.000 description 10
- 229910000975 Carbon steel Inorganic materials 0.000 description 7
- 239000010962 carbon steel Substances 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 244000052616 bacterial pathogen Species 0.000 description 6
- 229910000851 Alloy steel Inorganic materials 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 5
- 230000001954 sterilising effect Effects 0.000 description 5
- 238000004659 sterilization and disinfection Methods 0.000 description 5
- 238000005491 wire drawing Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 206010016952 Food poisoning Diseases 0.000 description 1
- 208000019331 Foodborne disease Diseases 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
Images
Landscapes
- Arc Welding In General (AREA)
Description
本発明は、フェライト系ステンレス鋼材あるいは低合金鋼材,炭素鋼材の各種鋼材を溶接するにあたって、病原性細菌の繁殖を抑制する効果(以下、抗菌性という)を溶接金属に付与する溶接ワイヤに関するものである。 The present invention relates to a welding wire that imparts an effect of suppressing the propagation of pathogenic bacteria (hereinafter referred to as antibacterial) to a weld metal when welding ferritic stainless steel materials, low alloy steel materials, and various steel materials such as carbon steel materials. is there.
本発明のフェライト系ステンレス鋼溶接ワイヤは、フェライト系ステンレス鋼材の溶接金属に耐食性のみならず抗菌性が要求される分野(たとえば厨房,医療,食品加工,土中埋蔵管,貯水槽,温水器,各種配管等)に適用できる。また本発明のフェライト系ステンレス鋼溶接ワイヤを用いて、低合金鋼材や炭素鋼材の肉盛り溶接を行なうと、耐食性を兼ね備えた抗菌性クラッド材として使用できる。 The ferritic stainless steel welding wire of the present invention is used in fields in which antibacterial properties are required in addition to corrosion resistance for weld metals of ferritic stainless steel materials (for example, kitchens, medical treatment, food processing, underground buried pipes, water storage tanks, water heaters, Applicable to various pipes). Moreover, when build-up welding of a low alloy steel material or a carbon steel material is performed using the ferritic stainless steel welding wire of the present invention, it can be used as an antibacterial clad material having corrosion resistance.
Agは大腸菌やサルモネラ菌に代表される病原性細菌の繁殖を抑制し、病原性細菌に起因する食中毒を防止する効果があることは従来から知られている。病原性細菌の繁殖を抑制する効果(すなわち抗菌性)は、Agイオンが病原性細菌にダメージを与えるためであるとされており、また同じく抗菌性を持つCuイオンに比べて、Agイオンの方が顕著な効果を発揮することが明らかになっている。そこでステンレス鋼の内部および/または表面にAgを析出させることによって、一般的なステンレス鋼が有する耐食性に加えて、抗菌性を持たせる技術が種々提案されている。 It has been conventionally known that Ag has an effect of suppressing the growth of pathogenic bacteria represented by Escherichia coli and Salmonella and preventing food poisoning caused by the pathogenic bacteria. The effect of inhibiting the growth of pathogenic bacteria (ie, antibacterial) is attributed to the damage of Ag ions to pathogenic bacteria, and Ag ions are also more effective than Cu ions, which also have antibacterial properties. Has been shown to exert significant effects. Thus, various techniques for providing antibacterial properties in addition to the corrosion resistance of general stainless steel by depositing Ag in and / or on the surface of stainless steel have been proposed.
たとえば特許文献1や特許文献2には、Agを0.0005〜0.30質量%含有するステンレス鋼板が開示されている。これらのステンレス鋼板は優れた耐食性と抗菌性を有するが、ステンレス鋼製品を製造する過程でこれらのステンレス鋼板を溶接すると、その溶接部で抗菌性の低下が生じる。何故なら、従来のステンレス鋼溶接ワイヤは溶接金属の耐食性を母材(すなわちステンレス鋼板)と同等に維持できる成分設計になっているが、溶接金属の抗菌性については考慮されていないので、母材と同等の抗菌性を溶接金属に付与することは不可能である。
本発明は上記のような問題を解消し、フェライト系ステンレス鋼材あるいは低合金鋼材,炭素鋼材を溶接するにあたって、溶接金属に抗菌性および耐食性を付与できるフェライト系ステンレス鋼溶接ワイヤを提供することを目的とする。 An object of the present invention is to provide a ferritic stainless steel welding wire capable of providing antibacterial and corrosion resistance to a weld metal when welding a ferritic stainless steel material, a low alloy steel material, or a carbon steel material. And
本発明者らは、抗菌性と耐食性に優れた溶接金属を得るためのフェライト系ステンレス鋼溶接ワイヤを開発するべく、抗菌性に優れかつ人体に対する安全性の高いAgを活用する技術について鋭意研究を重ねた。その結果、フェライト系ステンレス鋼溶接ワイヤの成分を好適な範囲に規定し、かつAgを配合することによって、溶接金属の耐食性を高めるとともに、溶接金属の表層でAgが濃化することが分かった。 In order to develop a ferritic stainless steel welding wire for obtaining a weld metal with excellent antibacterial and corrosion resistance, the present inventors have conducted intensive research on a technology that utilizes Ag that has excellent antibacterial properties and high safety to the human body. Piled up. As a result, it was found that, by specifying the components of the ferritic stainless steel welding wire within a suitable range and adding Ag, the corrosion resistance of the weld metal is increased and Ag is concentrated on the surface layer of the weld metal.
Agが溶接金属の表層で濃化すれば、溶接金属の抗菌性を確保することができる。本発明は、このような知見に基づいてなされたものである。 If Ag concentrates on the surface of the weld metal, the antibacterial properties of the weld metal can be ensured. The present invention has been made based on such knowledge.
すなわち本発明は、C:0.0010〜0.150 質量%,Si:0.20〜1.0 質量%,Mn:0.20〜2.5 質量%,P: 0.010〜0.030 質量%,S: 0.00010〜0.020 質量%,Al: 0.00050〜0.30質量%,Cr:10〜30質量%,N: 0.005〜0.40質量%,Ag: 0.010〜1.0 質量%を含み、残部がFeおよび不可避的不純物からなる組成を有するフェライト系ステンレス鋼溶接ワイヤである。 That is, the present invention includes C: 0.0010 to 0.150 mass%, Si: 0.20 to 1.0 mass%, Mn: 0.20 to 2.5 mass%, P: 0.010 to 0.030 mass%, S: 0.00010 to 0.020 mass%, Al: 0.00050 to 0.30. It is a ferritic stainless steel welding wire having a composition comprising: mass%, Cr: 10 to 30 mass%, N: 0.005 to 0.40 mass%, Ag: 0.010 to 1.0 mass%, and the balance consisting of Fe and inevitable impurities.
本発明のフェライト系ステンレス鋼溶接ワイヤは、前記した組成に加えて、Mo:0.01〜6.0 質量%,Cu:0.01〜2.5 質量%およびW:0.01〜0.30質量%のうちの1種または2種以上を含有することが好ましい。さらにNb:0.01〜2.0 質量%,Ti:0.01〜1.0 質量%,Zr: 0.001〜1.0 質量%,Ta:0.01〜2.0 質量%およびB:0.0001〜0.0050質量%のうちの1種または2種以上を含有することが好ましい。 In addition to the composition described above, the ferritic stainless steel welding wire of the present invention includes one or more of Mo: 0.01 to 6.0 mass%, Cu: 0.01 to 2.5 mass%, and W: 0.01 to 0.30 mass%. It is preferable to contain. Further, Nb: 0.01 to 2.0 mass%, Ti: 0.01 to 1.0 mass%, Zr: 0.001 to 1.0 mass%, Ta: 0.01 to 2.0 mass%, and B: 0.0001 to 0.0050 mass% It is preferable to contain.
本発明の抗菌性に優れたフェライト系ステンレス鋼溶接ワイヤ(以下、抗菌性溶接ワイヤという)を用いて、抗菌性を有するフェライト系ステンレス鋼材を溶接すれば、母材のフェライト系ステンレス鋼材と同等の抗菌性と耐食性を溶接金属に付与できる。 If a ferritic stainless steel material having antibacterial properties is welded using a ferritic stainless steel welding wire (hereinafter referred to as an antibacterial welding wire) excellent in antibacterial properties of the present invention, it is equivalent to the ferritic stainless steel material of the base material. Antibacterial and corrosion resistance can be imparted to weld metal.
また本発明の抗菌性溶接ワイヤを用いて、低合金鋼材,炭素鋼材あるいは抗菌性を付与していない通常のフェライト系ステンレス鋼材の肉盛り溶接を行なうことによって、抗菌性と耐食性を兼ね備えたクラッド材として使用できる。 In addition, by using the antibacterial welding wire of the present invention, the cladding material having antibacterial properties and corrosion resistance by performing build-up welding of low alloy steel materials, carbon steel materials, or ordinary ferritic stainless steel materials not imparted with antibacterial properties Can be used as
さらにフェライト系ステンレス鋼管,低合金鋼管,炭素鋼管をそれぞれ溶接して連結した配管を構築する際に本発明の抗菌性溶接ワイヤを用いると、抗菌性を有する溶接金属からなる溶接継手を形成できるので、溶接金属の切削研磨を必要とせず、溶接のままの状態で微生物の付着を抑制できる。従来のステンレス鋼溶接ワイヤを用いて配管を構築する場合、配管内を流れる流体が溶接金属のマクロ的な凹凸によって滞留して、流体中を浮遊する微生物が溶接金属に容易に付着し繁殖していた。そこで従来は、微生物の付着を防止するために、溶接金属(特に配管の内側)を切削研磨して平滑な面に仕上げる必要があった。これに対して本発明の抗菌性溶接ワイヤを用いると、溶接金属のマクロ的な凹凸は存在するものの、溶接金属が抗菌性を有する故に微生物の付着繁殖を抑制できるのである。 Furthermore, when the antibacterial welding wire of the present invention is used to construct a pipe in which ferritic stainless steel pipe, low alloy steel pipe, and carbon steel pipe are welded and connected, a welded joint made of a weld metal having antibacterial properties can be formed. The cutting and polishing of the weld metal is not required, and the adhesion of microorganisms can be suppressed in the welded state. When pipes are constructed using conventional stainless steel welding wires, the fluid flowing in the pipes is retained by macro unevenness of the weld metal, and microorganisms floating in the fluid easily adhere to and propagate on the weld metal. It was. Therefore, conventionally, in order to prevent the adhesion of microorganisms, it has been necessary to cut and polish the weld metal (especially the inner side of the pipe) to obtain a smooth surface. On the other hand, when the antibacterial welding wire of the present invention is used, although there is a macro unevenness of the weld metal, the weld metal has antibacterial properties, so that the growth of microorganisms can be suppressed.
以上に説明した通り、本発明の抗菌性溶接ワイヤは、多大かつ顕著な効果を発揮する。 As explained above, the antibacterial welding wire of the present invention exhibits a great and remarkable effect.
一般に溶接ワイヤは、ソリッドワイヤとフラックスコアドワイヤに大別される。ソリッドワイヤは、炭素鋼製の素線やステンレス鋼製の素線からなる溶接ワイヤであり、素線の表面にめっきを施したり、あるいは潤滑剤を塗布したものもある。フラックスコアドワイヤは、炭素鋼製の外殻やステンレス鋼製の外殻の内側に溶接用フラックスを充填した溶接ワイヤである。 Generally, welding wires are roughly classified into solid wires and flux cored wires. The solid wire is a welding wire made of a carbon steel wire or a stainless steel wire, and there is a wire in which the surface of the wire is plated or a lubricant is applied. The flux cored wire is a welding wire in which a welding flux is filled inside a carbon steel outer shell or a stainless steel outer shell.
本発明の抗菌性に優れたフェライト系ステンレス鋼溶接ワイヤ(すなわち抗菌性溶接ワイヤ)は、ソリッドワイヤとフラックスコアドワイヤに大別される溶接ワイヤのうち、ソリッドワイヤを対象とする。 The ferritic stainless steel welding wire (that is, the antibacterial welding wire) excellent in antibacterial property of the present invention is a solid wire among welding wires roughly classified into a solid wire and a flux cored wire.
本発明の抗菌性溶接ワイヤの成分を限定した理由について説明する。 The reason which limited the component of the antibacterial welding wire of this invention is demonstrated.
C:0.0010〜0.150 質量%
Cは、固溶体強化型元素であり、溶接金属の強度を高めるためには0.0010質量%以上含有する必要がある。しかし 0.150質量%を超えて含有すると、後述するCrと結合して溶接金属中にCr炭化物を生成し、耐食性が低下する。したがって、Cは0.0010〜0.150 質量%の範囲内を満足する必要がある。
C: 0.0010 to 0.150 mass%
C is a solid solution strengthened element and needs to be contained in an amount of 0.0010% by mass or more in order to increase the strength of the weld metal. However, if it exceeds 0.150% by mass, it combines with Cr, which will be described later, to produce Cr carbide in the weld metal, resulting in reduced corrosion resistance. Therefore, C needs to satisfy the range of 0.0010 to 0.150 mass%.
Si:0.20〜1.0 質量%
Siは、耐酸化性を高めるので、溶接金属の耐食性を向上するのに有効な元素である。また溶融メタルの流動性を向上させる効果も有するので、Siを添加することによって平滑なビード形状が得られ、溶接作業性の改善に有効である。この効果を発揮するためには0.20質量%以上含有する必要がある。しかし、 1.0質量%を超えて含有すると、溶接金属の高温割れ感受性を高める(すなわち高温割れが生じ易くなる)ばかりでなく、抗菌性溶接ワイヤの冷間加工性の低下に起因して伸線加工の生産性が低下する。したがって、Siは0.20〜1.0 質量%の範囲内を満足する必要がある。
Si: 0.20 to 1.0 mass%
Si increases the oxidation resistance and is therefore an effective element for improving the corrosion resistance of the weld metal. Also, since it has an effect of improving the fluidity of the molten metal, a smooth bead shape can be obtained by adding Si, which is effective in improving the welding workability. In order to exhibit this effect, it is necessary to contain 0.20 mass% or more. However, if the content exceeds 1.0% by mass, not only the high temperature cracking susceptibility of the weld metal is increased (that is, high temperature cracking is likely to occur), but also wire drawing due to a decrease in the cold workability of the antibacterial welding wire. Productivity is reduced. Therefore, Si needs to satisfy the range of 0.20 to 1.0 mass%.
Mn:0.20〜2.5 質量%
Mnは、脱酸作用と脱硫作用があり、溶接割れの原因となるSを固定して、溶接金属の高温割れ感受性を低下させる(すなわち高温割れが生じ難くなる)効果を有する。この効果を発揮するためには0.20質量%以上含有する必要がある。しかし、 2.5質量%を超えて含有すると、溶融メタルの流動性が悪化し、溶接作業性が低下する。しかも抗菌性溶接ワイヤの冷間加工性の低下に起因して伸線加工の生産性が低下する。したがって、Mnは0.20〜2.5 質量%の範囲内を満足する必要がある。
Mn: 0.20 to 2.5 mass%
Mn has a deoxidizing action and a desulfurizing action, and has the effect of fixing S that causes weld cracking and lowering the hot cracking susceptibility of the weld metal (that is, hot cracking is less likely to occur). In order to exhibit this effect, it is necessary to contain 0.20 mass% or more. However, if the content exceeds 2.5% by mass, the fluidity of the molten metal is deteriorated and the welding workability is lowered. Moreover, the productivity of wire drawing decreases due to the decrease in cold workability of the antibacterial welding wire. Therefore, Mn needs to satisfy the range of 0.20 to 2.5% by mass.
P: 0.010〜0.030 質量%
Pは、溶接金属の高温割れ感受性を高める元素であるから可能な限り低減する必要がある。P含有量が 0.030質量%を超えると高温割れ感受性が著しく上昇するので、 0.030質量%以下とした。しかし、Pを 0.010質量%未満に低減するためには、抗菌性溶接ワイヤの素材となるフェライト系ステンレス鋼の溶製段階で多大な精錬時間を要するので、精錬能率の低下,精錬コストの上昇を招く。したがって、Pは 0.010〜0.030 質量%の範囲内を満足する必要がある。
P: 0.010 to 0.030 mass%
P is an element that enhances the hot cracking susceptibility of the weld metal, so it needs to be reduced as much as possible. When the P content exceeds 0.030% by mass, the hot cracking susceptibility increases remarkably, so the content was made 0.030% by mass or less. However, in order to reduce P to less than 0.010% by mass, a large amount of refining time is required at the melting stage of ferritic stainless steel, which is the material of the antibacterial welding wire. Invite. Therefore, P needs to satisfy the range of 0.010-0.030 mass%.
S: 0.00010〜0.020 質量%
Sは、溶接金属の結晶粒界に偏析し易く、粒界脆化を促進させて高温割れ感受性を高める元素である。また、抗菌性溶接ワイヤ製造時の冷間加工性を低下させるので、伸線加工の生産性が低下する。そのため、Sは可能な限り低減する必要がある。しかし、S含有量を 0.00010質量%未満に低減するためには、抗菌性溶接ワイヤの素材となるフェライト系ステンレス鋼の溶製段階で多大な精錬時間を要するので、精錬能率の低下,精錬コストの上昇を招く。一方、Sが 0.020質量%を超えると高温割れ感受性が著しく上昇する。したがって、Sは 0.00010〜0.020 質量%の範囲内を満足する必要がある。
S: 0.00010 to 0.020 mass%
S is an element that is easily segregated at the crystal grain boundaries of the weld metal and promotes intergranular embrittlement to increase the hot cracking susceptibility. Moreover, since the cold workability at the time of manufacturing an antibacterial welding wire is lowered, the productivity of the wire drawing process is lowered. Therefore, S needs to be reduced as much as possible. However, in order to reduce the S content to less than 0.00010% by mass, a great amount of refining time is required at the melting stage of ferritic stainless steel, which is the material of the antibacterial welding wire. Invite rise. On the other hand, when S exceeds 0.020% by mass, the hot cracking sensitivity is remarkably increased. Therefore, S needs to satisfy the range of 0.00010-0.020 mass%.
Al: 0.00050〜0.30質量%
Alは、脱酸に有効な元素であるので、 0.00050質量%以上必要とするが、過剰な添加はアルミナ系介在物を増加させ、表面疵を多発させるとともに加工性を低下させるため0.30質量%以下に限定した。したがって、Alは 0.00050〜0.30質量%の範囲内を満足する必要がある。
Al: 0.00050 to 0.30 mass%
Since Al is an element effective for deoxidation, it needs to be 0.00050% by mass or more. However, excessive addition increases the amount of alumina inclusions, causes frequent surface flaws and lowers workability, and is 0.30% by mass or less. Limited to. Therefore, Al needs to satisfy the range of 0.00050 to 0.30 mass%.
Cr:10〜30質量%
Crは、溶接金属の耐食性を維持するために必須の元素であり、10質量%未満では十分な耐食性が得られない。一方、30質量%を超えると、溶接金属に金属間化合物が生じ易くなり、靭性が低下する。また、抗菌性溶接ワイヤの冷間加工性を低下させるので、伸線加工の生産性が低下する。したがって、Crは10〜30質量%の範囲内を満足する必要がある。
Cr: 10-30% by mass
Cr is an essential element for maintaining the corrosion resistance of the weld metal, and if it is less than 10% by mass, sufficient corrosion resistance cannot be obtained. On the other hand, when it exceeds 30% by mass, an intermetallic compound is easily generated in the weld metal, and the toughness is lowered. Moreover, since the cold workability of the antibacterial welding wire is lowered, the productivity of the wire drawing process is lowered. Therefore, Cr needs to satisfy the range of 10-30 mass%.
N: 0.005〜0.40質量%
Nは、Cと同様に、固溶体強化型元素であり、溶接金属の強度を高めるために有効な元素である。その効果を得るためには 0.005質量%以上含有する必要がある。しかし、0.40質量%を超えて含有すると、溶接金属中にNによるブローホールが発生する。したがって、Nは 0.005〜0.40質量%の範囲内を満足する必要がある。
N: 0.005-0.40 mass%
N, like C, is a solid solution strengthened element and is an effective element for increasing the strength of the weld metal. In order to acquire the effect, it is necessary to contain 0.005 mass% or more. However, when it contains exceeding 0.40 mass%, the blow hole by N will generate | occur | produce in a weld metal. Therefore, N needs to satisfy the range of 0.005-0.40 mass%.
Ag: 0.010〜1.0 質量%
Agは、本発明で最も重要な元素である。抗菌性溶接ワイヤにAgを添加することによって、溶接金属の表面にAgの濃化領域が形成され、病原性細菌の繁殖を抑制し、溶接金属の抗菌性を高めることができる。ただしAgは酸化され易い元素であるから、溶接による酸化消耗を考慮すると、Ag含有量が 0.010質量%未満では十分な抗菌性が得られない。一方、 1.0質量%を超えて含有すると、溶接金属の高温割れが発生し易くなる。また、高価なAgを 1.0質量%を超えて過剰に添加しても、抗菌性の一層の向上は期待できず、経済性の観点から好ましくない。したがって、Agは 0.010〜1.0 質量%の範囲内を満足する必要がある。
Ag: 0.010 to 1.0 mass%
Ag is the most important element in the present invention. By adding Ag to the antibacterial welding wire, a concentrated region of Ag is formed on the surface of the weld metal, and the propagation of pathogenic bacteria can be suppressed and the antibacterial property of the weld metal can be enhanced. However, since Ag is an easily oxidizable element, considering the oxidative consumption due to welding, sufficient antibacterial properties cannot be obtained if the Ag content is less than 0.010% by mass. On the other hand, if the content exceeds 1.0% by mass, hot cracking of the weld metal tends to occur. Moreover, even if expensive Ag is added excessively exceeding 1.0 mass%, further improvement in antibacterial properties cannot be expected, which is not preferable from the viewpoint of economy. Therefore, Ag must satisfy the range of 0.010 to 1.0 mass%.
さらに本発明では、上記した組成に加えて、抗菌性溶接ワイヤがMo,Cu,W,Nb,Ti,Zr,Ta,Bを含有することが好ましい。 Furthermore, in the present invention, in addition to the above composition, the antibacterial welding wire preferably contains Mo, Cu, W, Nb, Ti, Zr, Ta, and B.
Mo:0.01〜6.0 %質量,Cu:0.01〜2.5 質量%およびW:0.01〜0.30質量%のうちの1種または2種以上
Mo,Cu,Wは、いずれも0.01質量%以上添加することによって耐応力腐食割れ性,耐孔食性を高めることができる。さらに、これらの効果に加えて、Cuは、Agとともに、抗菌性を高める効果も有する。Wは、Agとの複合効果によって抗菌性を一層高める効果のみならず、固溶体強化型元素として溶接金属の強度を高める効果も有する。しかしMo,Cu,Wを過剰に添加すると、溶接金属の機械的性質が劣化する。すなわちMoが 6.0質量%を超えると、溶接金属に金属間化合物が生じ易くなり、耐食性や靭性が低下する。Cuが 2.5質量%を超えると、溶接金属の高温割れが生じ易くなる。Wが0.30質量%を超えると、抗菌性溶接ワイヤの冷間加工性を低下させるので、伸線加工の生産性が低下する。したがってMo,Cu,Wを添加する場合は、Mo:0.01〜6.0 %質量,Cu:0.01〜2.5 質量%,W:0.01〜0.30質量%の範囲内を満足するのが好ましい。
One or more of Mo: 0.01 to 6.0% by mass, Cu: 0.01 to 2.5% by mass and W: 0.01 to 0.30% by mass
By adding 0.01% by mass or more of Mo, Cu, and W, stress corrosion cracking resistance and pitting corrosion resistance can be improved. Further, in addition to these effects, Cu has an effect of enhancing antibacterial properties together with Ag. W has not only the effect of further increasing the antibacterial property by the combined effect with Ag, but also the effect of increasing the strength of the weld metal as a solid solution strengthened element. However, if Mo, Cu, W is added excessively, the mechanical properties of the weld metal deteriorate. That is, when Mo exceeds 6.0% by mass, an intermetallic compound is easily generated in the weld metal, and the corrosion resistance and toughness are lowered. If Cu exceeds 2.5% by mass, hot cracking of the weld metal tends to occur. When W exceeds 0.30% by mass, the cold workability of the antibacterial welding wire is lowered, so that the productivity of the wire drawing process is lowered. Therefore, when adding Mo, Cu, and W, it is preferable to satisfy the ranges of Mo: 0.01 to 6.0% by mass, Cu: 0.01 to 2.5% by mass, and W: 0.01 to 0.30% by mass.
Nb:0.01〜2.0 %質量,Ti:0.01〜1.0 質量%,Zr: 0.001〜1.0 質量%,Ta:0.01〜2.0 質量%およびB:0.0001〜0.0050質量%のうちの1種または2種以上
Nb,Ti,Zr,Taは、いずれもCとの親和力が強く優先的に炭化物を生成させるので、溶接金属におけるCr炭化物の粒界析出を抑制し、耐粒界腐食性を高める効果を有する。Bは、フェライト系ステンレス鋼の結晶粒界を強化し、抗菌性溶接ワイヤの熱間加工性を高める効果を有する。これらの効果は、Nb:0.01質量%以上,Ti:0.01質量%以上,Zr: 0.001質量%以上,Ta:0.01質量%以上,B:0.0001質量%以上添加することによって発揮される。しかしNbが 2.0質量%を超えると、溶接金属の高温割れ感受性が上昇する。Tiが 1.0質量%を超えると、溶融メタルの流動性が低下し、溶接作業性が悪化する。Zrが 1.0質量%を超えると、溶融メタルの流動性が低下し、溶接作業性が悪化する。Taが 2.0質量%を超えると、溶接金属の高温割れ感受性が上昇する。Bが0.0050質量%を超えると、溶接金属の高温割れ感受性が上昇する。したがってNb,Ti,Zr,Ta,Bを添加する場合は、Nb:0.01〜2.0 %質量,Ti:0.01〜1.0 質量%,Zr: 0.001〜1.0 質量%,Ta:0.01〜2.0 質量%,B:0.0001〜0.0050質量%の範囲内を満足するのが好ましい。
Nb: 0.01 to 2.0% by mass, Ti: 0.01 to 1.0% by mass, Zr: 0.001 to 1.0% by mass, Ta: 0.01 to 2.0% by mass and B: 0.0001 to 0.0050% by mass or two or more
Since Nb, Ti, Zr, and Ta all have a strong affinity with C and preferentially generate carbides, they have the effect of suppressing grain boundary precipitation of Cr carbides in the weld metal and increasing intergranular corrosion resistance. B has the effect of strengthening the grain boundaries of ferritic stainless steel and enhancing the hot workability of the antibacterial welding wire. These effects are exhibited by adding Nb: 0.01% by mass or more, Ti: 0.01% by mass or more, Zr: 0.001% by mass or more, Ta: 0.01% by mass or more, and B: 0.0001% by mass or more. However, if Nb exceeds 2.0 mass%, the hot cracking susceptibility of the weld metal increases. When Ti exceeds 1.0% by mass, the fluidity of the molten metal is lowered and welding workability is deteriorated. When Zr exceeds 1.0% by mass, the fluidity of the molten metal is lowered and welding workability is deteriorated. When Ta exceeds 2.0 mass%, the hot cracking susceptibility of the weld metal increases. When B exceeds 0.0050 mass%, the hot cracking sensitivity of the weld metal increases. Therefore, when Nb, Ti, Zr, Ta, and B are added, Nb: 0.01 to 2.0% by mass, Ti: 0.01 to 1.0% by mass, Zr: 0.001 to 1.0% by mass, Ta: 0.01 to 2.0% by mass, B: It is preferable to satisfy the range of 0.0001 to 0.0050 mass%.
上記した抗菌性溶接ワイヤの成分以外は、Feおよび不可避的不純物である。フェライト系ステンレス鋼を溶製する段階や抗菌性溶接ワイヤを製造する段階で不可避的に混入する不純物は、可能な限り低減することが好ましい。 Other than the components of the antibacterial welding wire described above, Fe and unavoidable impurities. Impurities that are inevitably mixed at the stage of melting ferritic stainless steel or the stage of manufacturing an antibacterial welding wire are preferably reduced as much as possible.
なお、本発明の抗菌性溶接ワイヤを用いて溶接を行なう際には、抗菌性溶接ワイヤ中のAgが溶接によって酸化消耗するのを抑制するために、不活性ガスをシールドガスとして用いたTIG溶接またはMIG溶接を採用するのが好ましい。 In addition, when performing welding using the antibacterial welding wire of the present invention, TIG welding using an inert gas as a shielding gas in order to prevent Ag in the antibacterial welding wire from being oxidized and consumed by welding. Or it is preferable to employ | adopt MIG welding.
Agを含有するフェライト系ステンレス鋼を溶製し、さらに熱間加工と冷間加工を施して、直径1.2mm のフェライト系ステンレス鋼溶接ワイヤ(すなわち抗菌性溶接ワイヤ)を製造した。得られた抗菌性溶接ワイヤの成分は表1,表2に示す通りである。表1に示した試料番号1〜26は、成分が本発明の範囲を満足する例であり、これを発明例とする。表2に示した試料番号27〜42は、成分が本発明の範囲を外れる例であり、これを比較例とする。すなわち試料番号27はP含有量が本発明の範囲を外れる例,試料番号28〜31,33,34,37,38,42はP含有量とAg含有量が本発明の範囲を外れる例,試料番号32,35,36,39,41はAg含有量が本発明の範囲を外れる例,試料番号40はC含有量とP含有量とAg含有量が本発明の範囲を外れる例である。 Ferritic stainless steel containing Ag was melted, and hot working and cold working were further performed to produce a ferritic stainless steel welding wire (ie, antibacterial welding wire) having a diameter of 1.2 mm. The components of the obtained antibacterial welding wire are as shown in Tables 1 and 2. Sample Nos. 1 to 26 shown in Table 1 are examples in which the components satisfy the scope of the present invention, and this is an invention example. Sample numbers 27 to 42 shown in Table 2 are examples in which the components are outside the scope of the present invention, and this is used as a comparative example. That is, sample number 27 is an example in which the P content is outside the scope of the present invention, sample numbers 28 to 31, 33, 34, 37, 38, 42 are examples in which the P content and the Ag content are outside the scope of the present invention, Numbers 32, 35, 36, 39 and 41 are examples in which the Ag content is outside the scope of the present invention, and sample number 40 is an example in which the C content, the P content and the Ag content are outside the scope of the present invention.
これらの抗菌性溶接ワイヤを用いて、SUS430鋼板1(厚さ12mm,幅100mm ,長さ150mm )に3層肉盛り溶接を行なった。溶接条件は表3に示す通りである。 Using these antibacterial welding wires, three-layer overlay welding was performed on SUS430 steel plate 1 (thickness 12 mm, width 100 mm, length 150 mm). The welding conditions are as shown in Table 3.
次いで、図1に示すように、溶着金属の中央部表面において抗菌性試験をJIS規格Z2801 に準拠して実施した。抗菌性の評価は、抗菌製品技術協会がJIS規格Z2801 に準拠して制定したフィルム密着法を用いて行なった。フィルム密着法の手順は下記の通りである。
(1) 純度99.5%のエタノールを含有する脱脂綿等で、25cm2 の試験片を洗浄・脱脂する。
(2) 大腸菌を1/500 NB溶液に分散して、大腸菌の個数を2×106 〜6×106cfu/mlに調整する。
(3) 上記の (2)の菌液を 0.5ml/2.5cm2の割合で試験片(各々3枚)に接種する。
(4) 溶着金属2の表面に被覆フィルム3を被せて密着させ、温度を35±1℃,相対湿度(RH)を90%以上の条件で24時間保存する。
(5) 接種した試験菌を洗い出す。
(6) 寒天培養法(温度:35±1℃,時間:40〜48hr)により生菌数を測定する。
(7) 減菌率を算出する。
Next, as shown in FIG. 1, an antibacterial test was performed on the surface of the central portion of the weld metal in accordance with JIS standard Z2801. Antibacterial properties were evaluated using the film adhesion method established by the Antibacterial Product Technology Association in accordance with JIS standard Z2801. The procedure of the film adhesion method is as follows.
(1) with absorbent cotton or the like containing 99.5% ethanol, washed, degreased test piece 25 cm 2.
(2) Disperse E. coli in 1/500 NB solution and adjust the number of E. coli to 2 × 10 6 to 6 × 10 6 cfu / ml.
(3) Inoculate the test solution (3 pieces each) with the above bacterial solution of (2) at a ratio of 0.5 ml / 2.5 cm 2 .
(4) Cover the surface of the
(5) Wash out the inoculated test bacteria.
(6) Measure the viable cell count by agar culture method (temperature: 35 ± 1 ° C, time: 40-48hr).
(7) Calculate the sterilization rate.
なお、NB溶液とは、ブイオン培地(NB)を滅菌精製水で500倍に希釈したものである。また、ブイオン培地とは、肉エキス 5.0g,塩化ナトリウム 5.0g,ペプトン10.0g,精製水1000ml,pH 7.0±0.2 のものを指す。 The NB solution is a solution obtained by diluting a Buion medium (NB) 500 times with sterilized purified water. Buion medium refers to a meat extract of 5.0 g, sodium chloride 5.0 g, peptone 10.0 g, purified water 1000 ml, pH 7.0 ± 0.2.
減菌率は下記の式で算出される値である。式中の対照の菌数とは、滅菌シャーレにて抗菌試験を行なった後の生菌数であり、9.30×107cfu/mlであった。試験後の菌数とは、測定した生菌数を指す。 The sterilization rate is a value calculated by the following formula. The number of control bacteria in the formula was the number of viable bacteria after the antibacterial test was performed in a sterile petri dish, and was 9.30 × 10 7 cfu / ml. The number of bacteria after the test refers to the measured number of viable bacteria.
減菌率(%)= 100×(対照の菌数−試験後の菌数)/対照の菌数
このようにして求めた減菌率を表1,表2に併せて示す。発明例は、表1に示す通り、全て減菌率が99.9%であった。ところが比較例は、表2に示す通り、32.0%以下であった。したがって本発明の抗菌性溶接ワイヤを用いて溶接を行なうことによって、優れた抗菌性を有する溶接金属が得られることが確かめられた。
Bacterial sterilization rate (%) = 100 × (bacterial number of control−bacterial number after test) / bacterial number of control The sterilization rate thus obtained is shown in Tables 1 and 2 together. As shown in Table 1, the inventive examples all had a sterilization rate of 99.9%. However, as shown in Table 2, the comparative example was 32.0% or less. Therefore, it was confirmed that a weld metal having excellent antibacterial properties can be obtained by welding using the antibacterial welding wire of the present invention.
しかも本発明の抗菌性溶接ワイヤは、表1に示す通り、通常のフェライト系ステンレス
鋼と同等の成分を有するので、優れた耐食性を有する溶接金属が得られるのは明らかである。
In addition, as shown in Table 1, the antibacterial welding wire of the present invention has a component equivalent to that of ordinary ferritic stainless steel, so that it is clear that a weld metal having excellent corrosion resistance can be obtained.
1 SUS430鋼板
2 溶着金属
3 被覆フィルム
1
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004286749A JP4541089B2 (en) | 2004-09-30 | 2004-09-30 | Ferritic stainless steel welding wire with excellent antibacterial properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004286749A JP4541089B2 (en) | 2004-09-30 | 2004-09-30 | Ferritic stainless steel welding wire with excellent antibacterial properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006095581A JP2006095581A (en) | 2006-04-13 |
JP4541089B2 true JP4541089B2 (en) | 2010-09-08 |
Family
ID=36235890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004286749A Expired - Lifetime JP4541089B2 (en) | 2004-09-30 | 2004-09-30 | Ferritic stainless steel welding wire with excellent antibacterial properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4541089B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5183916B2 (en) * | 2006-11-28 | 2013-04-17 | 新日鐵住金ステンレス株式会社 | Solid wire for ferritic stainless steel welding |
JP2010234418A (en) * | 2009-03-31 | 2010-10-21 | Ihi Corp | Structure of different material joint and method for manufacturing different material joint |
WO2016010782A1 (en) * | 2014-07-16 | 2016-01-21 | Chemetics Inc. | Method of welding ferritic stainless steel to carbon steel using a filler material made of duplex stainless stell; corresponding welded article |
CN104690447B (en) * | 2015-02-12 | 2016-08-24 | 西安理工大学 | 0Cr13 ferritic stainless steel self-protection flux-cored wire and preparation method thereof |
CN105057917A (en) * | 2015-08-14 | 2015-11-18 | 中国科学院金属研究所 | Austenitic stainless steel welding wire having antibacterial function |
CN111411308A (en) * | 2020-05-15 | 2020-07-14 | 江苏联峰实业有限公司 | Method for improving performance of tin-containing carbon structural steel |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51137636A (en) * | 1975-05-24 | 1976-11-27 | Nippon Steel Corp | Inert gas arc welding wire for chrome stainless steel |
JPS57156893A (en) * | 1981-03-23 | 1982-09-28 | Daido Steel Co Ltd | Welding material |
JPH1112692A (en) * | 1997-06-25 | 1999-01-19 | Kawasaki Steel Corp | Ferritic stainless steel having excellent antibacterial property |
JPH11158585A (en) * | 1997-11-28 | 1999-06-15 | Kawasaki Steel Corp | Ferritic stainless steel excellent in antibacterial property and ridging resistance |
JP2001219291A (en) * | 2000-02-09 | 2001-08-14 | Daido Steel Co Ltd | Weld zone of ferritic stainless steel and welding method |
JP2003320476A (en) * | 2002-05-02 | 2003-11-11 | Daido Steel Co Ltd | Ferritic stainless steel welding wire |
-
2004
- 2004-09-30 JP JP2004286749A patent/JP4541089B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51137636A (en) * | 1975-05-24 | 1976-11-27 | Nippon Steel Corp | Inert gas arc welding wire for chrome stainless steel |
JPS57156893A (en) * | 1981-03-23 | 1982-09-28 | Daido Steel Co Ltd | Welding material |
JPH1112692A (en) * | 1997-06-25 | 1999-01-19 | Kawasaki Steel Corp | Ferritic stainless steel having excellent antibacterial property |
JPH11158585A (en) * | 1997-11-28 | 1999-06-15 | Kawasaki Steel Corp | Ferritic stainless steel excellent in antibacterial property and ridging resistance |
JP2001219291A (en) * | 2000-02-09 | 2001-08-14 | Daido Steel Co Ltd | Weld zone of ferritic stainless steel and welding method |
JP2003320476A (en) * | 2002-05-02 | 2003-11-11 | Daido Steel Co Ltd | Ferritic stainless steel welding wire |
Also Published As
Publication number | Publication date |
---|---|
JP2006095581A (en) | 2006-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI604912B (en) | Cored welding wires, the method for making the same and its use | |
JP5010323B2 (en) | Ferritic stainless steel for hot water container with welded structure, hot water container and manufacturing method thereof | |
JP5202862B2 (en) | High-strength welded steel pipe with weld metal having excellent cold cracking resistance and method for producing the same | |
TWI526549B (en) | Ferritic stainless steel | |
JP2002113591A (en) | Flux-cored wire for two-phase stainless steel having excellent stress corrosion cracking resistance, pitting resistance and weldability | |
EP0867256B1 (en) | Welding material for stainless steels | |
JP2008519165A (en) | Duplex stainless steel | |
JPWO2012176586A1 (en) | Carburization-resistant metal material | |
WO1980002161A1 (en) | Iron-base alloy having excellent molten zinc corrosion resistance | |
JP4541089B2 (en) | Ferritic stainless steel welding wire with excellent antibacterial properties | |
JP2011105976A (en) | Drain pipe | |
JPH06279951A (en) | Ferritic stainless steel for water heater | |
JP5676896B2 (en) | Ferritic stainless steel with excellent local corrosion resistance | |
WO2008120409A1 (en) | Ferritic stainless steel for warm-water vessel with welded structure, and warm-water vessel | |
JPS61283489A (en) | Composite wire for build-up welding | |
JP2003311472A (en) | Wire for welding austenitic stainless steel having excellent sulfuric acid corrosion resistance and pitting corrosion resistance | |
AU758316B2 (en) | High Cr steel pipe for line pipe | |
JP7343691B2 (en) | Welded structures, stainless steel welded structures, stainless steel welded vessels and stainless steel | |
JP6958707B2 (en) | Duplex stainless steel sheet with austenite / ferrite type | |
JP4080729B2 (en) | Stainless steel for food plant | |
JPS60121099A (en) | Compound wire for welding | |
JPS59127991A (en) | Deposited metal of austenitic stainless steel having resistance to chloride stress corrosion cracking | |
JP2017190522A (en) | Steel material | |
JP4774588B2 (en) | Manufacturing method of high strength oil well steel pipe joint with excellent corrosion resistance and high strength oil well steel pipe joint | |
JP4512434B2 (en) | Stainless steel welding material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070920 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20071017 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20071017 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100615 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100622 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100623 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4541089 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130702 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |