JP4539936B2 - Deodorizing composition - Google Patents

Deodorizing composition Download PDF

Info

Publication number
JP4539936B2
JP4539936B2 JP2000190239A JP2000190239A JP4539936B2 JP 4539936 B2 JP4539936 B2 JP 4539936B2 JP 2000190239 A JP2000190239 A JP 2000190239A JP 2000190239 A JP2000190239 A JP 2000190239A JP 4539936 B2 JP4539936 B2 JP 4539936B2
Authority
JP
Japan
Prior art keywords
deodorizing
titanium dioxide
iron hydroxide
hydrogen sulfide
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000190239A
Other languages
Japanese (ja)
Other versions
JP2002001105A (en
Inventor
圭一郎 乾
顕 矢原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Enviro Science Co Ltd
Original Assignee
Sumika Enviro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Enviro Science Co Ltd filed Critical Sumika Enviro Science Co Ltd
Priority to JP2000190239A priority Critical patent/JP4539936B2/en
Publication of JP2002001105A publication Critical patent/JP2002001105A/en
Application granted granted Critical
Publication of JP4539936B2 publication Critical patent/JP4539936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、硫化水素、アンモニア、ホルマリン、アセトアルデヒド、アミン類、メルカプタン類等の悪臭成分を除去あるいは低減するための脱臭組成物及びそれを用いる脱臭方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
空気中に含まれる硫化水素、メルカプタン類、アンモニア、アルデヒド類等の悪臭成分を除去、脱臭する方法については様々な方法が提案されている。活性炭を用いて吸着、脱臭する方法は、そのひとつとして有効であるが、脱臭性能はすべての悪臭成分に対して優れているわけではなく、また吸着が飽和になったときに効果が著しく低下する問題があった。
【0003】
特開平10−43593にはα水酸化鉄とγ水酸化鉄を含有する複合水酸化鉄が硫化水素の除去剤として提案されているが、この複合水酸化鉄はアンモニア等のガスに対しては脱臭能が低く、硫化水素に対しても脱臭能は十分とは言えない。また、この組成物を調製する際には水酸化物沈殿のスラリーを10日間撹拌を続けて熟成を行う必要があるという問題があった。
【0004】
一方、二酸化チタン等の光触媒を用いた悪臭の除去に関しても多くの提案がなされている。二酸化チタンが紫外線等の光エネルギーによって有機物を酸化分解することを利用したものである。しかし、分解する速度は比較的遅く、悪臭成分の濃度が高い場合には脱臭効果が得られにくい欠点があった。また光の照射がない場合には分解反応が起こらない等、脱臭剤としては不十分であった。
【0005】
【課題を解決するための手段】
本発明者らは、このような課題を解決するため、鋭意研究の結果、3価の鉄塩より調製した水酸化鉄と二酸化チタンを含有させた組成物が、高い脱臭性能と脱臭性能の持続力を有することを見いだし、本発明を完成させた。すなわち本発明は、3価の鉄塩より調製した水酸化鉄と二酸化タンを含有することを特徴とする脱臭組成物を提供するものである。これまでの二酸化チタンの脱臭力に関しては、光触媒性能を利用したものであるが、本発明では紫外線等の光を照射しなくても高い脱臭性能を示す。
【0006】
【発明の実施の形態】
本発明の脱臭組成物における3価の鉄塩は、硫酸塩、硝酸塩、塩化物塩、臭化物塩、ヨウ化物塩、クエン酸塩等いずれの塩を用いても差し支えないが、塩化物塩が好ましい。水酸化鉄は、3価の鉄塩の水溶液を撹拌しながらアルカリを添加し、pHを上昇させることによって調製する。pHは、4〜13の範囲で調製することが可能であり、好ましくはpH4〜9が良い。水酸化鉄を調製する際に添加するアルカリはアンモニア水、水酸化ナトリウム水溶液、水酸化カリウム水溶液等いずれを用いても差し支えないが、水酸化ナトリウムが好ましい。水溶液中の鉄塩の濃度は、1〜100g/Lの範囲で可能であるが、好ましくは20〜50g/Lで行われる。3価の鉄塩から調製した水酸化鉄は、ほとんどがβ水酸化鉄として存在していると考えられ、乾燥後には一部が酸化鉄に変化していると考えられる。
【0007】
二酸化チタンはアナターゼ型、ルチル型、ブルカイト型のいずれでも差し支えないが、アナターゼ型が好ましい。一般に光触媒として市販されているものが使用可能である。
【0008】
水酸化鉄と二酸化チタンの混合方法については、水酸化鉄を調製したスラリー液に二酸化チタン粉末を添加し、ろ過、水洗、乾燥を行う方法、水酸化鉄粉末と二酸化チタン粉末を混合させる方法等が可能で、いずれの方法で混合しても良い。水酸化鉄スラリーまたは二酸化チタン粉末を混合した水酸化鉄スラリーを脱水する方法としては、吸引濾過器または遠心濾過装置を用いる方法や、静置した後に上澄み液を除去する方法等いずれの方法でも差し支えない。混合した脱臭組成物を乾燥させる方法及び条件に特に制限はないが、50〜150℃の範囲の温度で加温しながら乾燥させることが好ましい。水酸化鉄と二酸化チタンの混合比は、Fe:Tiが1:9〜4:1が良い。
【0009】
本発明の脱臭組成物は、粉体そのもので脱臭剤として使用することが可能であるが、粉末状ではその取り扱いにおいて粉立ちの問題があるため、造粒して用いるか、金属、ガラス、セラミックス、紙、プラスチック、木材等の基質に担持あるいは塗布して使用することも可能である。コーティング剤として使用する場合にはバインダー等の樹脂と混合することも可能である。またアルミナ、タルク、クレー、炭酸カルシウム等のフィラーを混合して使用することも可能である。
【0010】
本発明の脱臭組成物によって除去される悪臭成分には、硫化水素、アンモニア、ホルマリン、アセトアルデヒド、アミン類、メルカプタン類が挙げられる。
【0011】
【実施例】
本発明を実施例、試験例により更に詳しく説明するが、本発明がこれらによって限定されるものではない。
【0012】
【実施例1〜3】
塩化第二鉄(FeCl・6HO)20gを蒸留水400gに溶解した。この場合の溶液のpHは約1.5であった。次に、この溶液にpHが約8.5になるまで水酸化ナトリウム水溶液(10重量%)を徐々に滴下し、濃茶色の水酸化鉄沈殿のスラリーを得た。2時間熟成後ろ過し、110℃の乾燥機中に入れ、乾燥させた。乾燥後、乳鉢を用いて粉砕を行い粉末の水酸化鉄を得た。この水酸化鉄とアナターゼ型光触媒用二酸化チタン(タイノックA-100:多木化学工業株式会社製)を表1に示す重量比で混合し、実施例1〜3を得た。
【0013】
【表1】

Figure 0004539936
【0014】
【実施例4】
塩化第二鉄(FeCl・6HO)20gを蒸留水400gに溶解した。この場合の溶液のpHは約1.5であった。次に、この溶液にpHが約7.0になるまで水酸化ナトリウム水溶液(10重量%)を徐々に滴下し、濃茶色の水酸化鉄沈殿のスラリーを得た。続いてこのスラリー液に二酸化チタン(多木化学工業株式会社製タイノックA−100(アナターゼ型))62gを加え、十分に攪拌した後、更に水酸化ナトリウム溶液(10重量%)を攪拌しながらpHが約8.5になるまで滴下して薄茶色の沈殿を得た。2時間熟成後、この沈殿を吸引濾過し、水洗後、30℃以下で乾燥した。これを乳鉢で100ミクロン以下まで粉砕して、FeとTiが1:9の重量比で混合されている粉体の脱臭組成物を得た。
【0015】
【実施例5】
実施例4において二酸化チタン(多木化学工業株式会社製タイノックA−100(アナターゼ型))28gを加えたものを調製し、同様にFeとTiが2:8の重量比で混合されている粉体の脱臭組成物を得た。
【0016】
【実施例6】
実施例4において二酸化チタン(多木化学工業株式会社製タイノックA−100(アナターゼ型))28gを加えたものを調製し、水洗後110℃の乾燥機中で乾燥させた。乳鉢で100ミクロン以下まで粉砕し、FeとTiが2:8の重量比で混合されている粉体の脱臭組成物を得た。
【0017】
【比較例1】
塩化第二鉄(FeCl・6HO)20gを蒸留水400gに溶解した。この場合の溶液のpHは約1.5であった。次に、この溶液にpHが約8.5になるまで水酸化ナトリウム溶液(10重量%)を徐々に滴下し、濃茶色の水酸化鉄沈殿のスラリーを得た。2時間熟成後ろ過し、室温で乾燥させた。これを乳鉢で100ミクロン以下まで粉砕して粉体を得た。
【0018】
【比較例2】
塩化第二鉄(FeCl・6HO)20gを蒸留水400gに溶解した。この場合の溶液のpHは約1.5であった。次に、この溶液にpHが約8.5になるまで水酸化ナトリウム溶液(10重量%)を徐々に滴下し、濃茶色の水酸化鉄沈殿のスラリーを得た。続いてこのスラリー液に酸化亜鉛63gを加え、十分に攪拌した後、更に水酸化ナトリウム溶液(10重量%)を攪拌しながらpHが約8.5になるまで滴下して薄茶色の沈殿を得た。2時間熟成後、この沈殿を吸引濾過し、30℃以下で乾燥した。これを乳鉢で100ミクロン以下まで粉砕してFeとZnが1:9の重量比で混合されている粉体の脱臭組成物を得た。
【0019】
【比較例3】
比較例2に用いた酸化亜鉛の代わりにアルミナ粉末を用いて同様に調製し、FeとAlが1:9の重量比で混合されている粉体の脱臭組成物を得た。
【0020】
【比較例4】
二酸化チタン(多木化学工業株式会社製タイノックA−100(アナターゼ型))の粉末を比較例4とした。
【0021】
【試験例1】
実施例1〜5及び比較例1〜4の粉末100mgを内容積2500mlのガラス製三角フラスコに入れ、活栓付きゴム栓にて密封した。次にシリンジを使って硫化水素ガスを三角フラスコ内に濃度300ppmになるように注入した。この時点から1時間後の三角フラスコ内の硫化水素濃度を硫化水素用検知管(株式会社ガステック製)にて測定した。結果を表2に示した。
【0022】
【表2】
Figure 0004539936
【0023】
【試験例2】
実施例4〜6及び比較例1及び4の粉体100mgを内容積2500mlのガラス製三角フラスコに入れ、活栓付きゴム栓にて密封した。次にシリンジを使って硫化水素ガスを三角フラスコ内に濃度3000ppmになるように注入した。
定期的に三角フラスコ内の硫化水素濃度を硫化水用検知管(株式社ガステック製)にて測定し、もしも24時間以内にほぼ0ppmになったことが確認された場合には、更に濃度3000ppmになるよう新たに硫化水素ガスを添加した。これを硫化水素ガス濃度が変化しなくなるまで継続し、粉体の硫化水素に対する除去性能を求めた。結果を表3に示した。
【0024】
【表3】
Figure 0004539936
【0025】
【試験例3】
実施例6及び比較例4の粉末100mgを内容積2500mlのガラス製三角フラスコに入れ、活栓付きゴム栓にて密封した。次にシリンジを使って硫化水素ガスを三角フラスコ内に濃度3000ppmになるように注入し、それぞれ室内と屋外(太陽光照射)に置いた。この時点から、表4記載の時点で三角フラスコ内の硫化水素濃度を検知管(株式会社ガステック製)にて測定した。結果を表4に示した。
【0026】
【表4】
Figure 0004539936
【0027】
【発明の効果】
本発明の脱臭組成物は二酸化チタンと水酸化鉄を含有するもので、硫化水素、アンモニア、ホルマリン、アセトアルデヒド、アミン類、メルカプタン類等の悪臭成分を簡易に、しかも長期にわたって吸着、除去が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a deodorizing composition for removing or reducing malodorous components such as hydrogen sulfide, ammonia, formalin, acetaldehyde, amines and mercaptans, and a deodorizing method using the same.
[0002]
[Prior art and problems to be solved by the invention]
Various methods have been proposed for removing and deodorizing malodorous components such as hydrogen sulfide, mercaptans, ammonia, and aldehydes contained in the air. Adsorption and deodorization using activated carbon is effective as one of them, but the deodorization performance is not excellent for all offensive odor components, and the effect is remarkably reduced when adsorption is saturated. There was a problem.
[0003]
In Japanese Patent Laid-Open No. 10-43593, composite iron hydroxide containing α iron hydroxide and γ iron hydroxide is proposed as a hydrogen sulfide removing agent. The deodorizing ability is low, and it cannot be said that the deodorizing ability is sufficient for hydrogen sulfide. Moreover, when preparing this composition, there was a problem that the hydroxide precipitation slurry had to be aged by continuing stirring for 10 days.
[0004]
On the other hand, many proposals have been made regarding the removal of malodor using a photocatalyst such as titanium dioxide. Titanium dioxide utilizes the fact that organic substances are oxidatively decomposed by light energy such as ultraviolet rays. However, the decomposition rate is relatively slow, and there is a drawback that it is difficult to obtain a deodorizing effect when the concentration of malodorous components is high. In addition, the decomposition reaction did not occur in the absence of light irradiation, so that it was insufficient as a deodorant.
[0005]
[Means for Solving the Problems]
In order to solve such problems, the present inventors have conducted intensive research, and a composition containing iron hydroxide and titanium dioxide prepared from a trivalent iron salt has high deodorizing performance and sustained deodorizing performance. It was found that it has power, and the present invention was completed. That is, the present invention provides a deodorizing composition comprising iron hydroxide and tan dioxide prepared from a trivalent iron salt. Regarding the deodorizing power of titanium dioxide so far, the photocatalytic performance is utilized. However, in the present invention, high deodorizing performance is exhibited without irradiation with light such as ultraviolet rays.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The trivalent iron salt in the deodorizing composition of the present invention may be any salt such as sulfate, nitrate, chloride, bromide, iodide, citrate, but is preferably chloride. . Iron hydroxide is prepared by adding an alkali while stirring an aqueous solution of a trivalent iron salt to raise the pH. The pH can be adjusted in the range of 4 to 13, preferably pH 4 to 9. The alkali added when preparing iron hydroxide may be ammonia water, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution or the like, but sodium hydroxide is preferred. The concentration of the iron salt in the aqueous solution can be in the range of 1 to 100 g / L, but preferably 20 to 50 g / L. Most of the iron hydroxide prepared from the trivalent iron salt is considered to exist as β-iron hydroxide, and a part thereof is considered to be changed to iron oxide after drying.
[0007]
Titanium dioxide may be any of anatase type, rutile type and brookite type, but anatase type is preferred. In general, commercially available photocatalysts can be used.
[0008]
About the mixing method of iron hydroxide and titanium dioxide, adding titanium dioxide powder to slurry liquid prepared iron hydroxide, filtering, washing with water, drying, mixing iron hydroxide powder and titanium dioxide powder, etc. It is possible to mix by any method. As a method of dehydrating the iron hydroxide slurry or the iron hydroxide slurry mixed with the titanium dioxide powder, any method such as a method using a suction filter or a centrifugal filter, or a method of removing the supernatant liquid after standing may be used. Absent. Although there is no restriction | limiting in particular in the method and conditions which dry the mixed deodorizing composition, It is preferable to dry, heating at the temperature of the range of 50-150 degreeC. The mixing ratio of iron hydroxide and titanium dioxide is preferably 1: 9 to 4: 1 for Fe: Ti.
[0009]
The deodorizing composition of the present invention can be used as a deodorizing agent in the powder itself, but in the powder form, there is a problem of powdering in the handling thereof. It can also be used by being supported on or coated on a substrate such as paper, plastic or wood. When used as a coating agent, it can be mixed with a resin such as a binder. It is also possible to use a mixture of fillers such as alumina, talc, clay and calcium carbonate.
[0010]
Malodorous components removed by the deodorizing composition of the present invention include hydrogen sulfide, ammonia, formalin, acetaldehyde, amines and mercaptans.
[0011]
【Example】
The present invention will be described in more detail with reference to examples and test examples, but the present invention is not limited thereto.
[0012]
Examples 1 to 3
It was dissolved ferric chloride (FeCl 3 · 6H 2 O) 20g of distilled water 400 g. In this case, the pH of the solution was about 1.5. Next, an aqueous sodium hydroxide solution (10% by weight) was gradually added dropwise to this solution until the pH reached about 8.5 to obtain a dark brown iron hydroxide precipitate slurry. After aging for 2 hours, it was filtered, put in a dryer at 110 ° C. and dried. After drying, the mixture was pulverized using a mortar to obtain powdered iron hydroxide. This iron hydroxide and titanium dioxide for anatase photocatalyst (Tynoch A-100: manufactured by Taki Chemical Co., Ltd.) were mixed at a weight ratio shown in Table 1 to obtain Examples 1 to 3.
[0013]
[Table 1]
Figure 0004539936
[0014]
[Example 4]
It was dissolved ferric chloride (FeCl 3 · 6H 2 O) 20g of distilled water 400 g. In this case, the pH of the solution was about 1.5. Next, an aqueous sodium hydroxide solution (10% by weight) was gradually added dropwise to this solution until the pH reached about 7.0 to obtain a dark brown iron hydroxide precipitate slurry. Subsequently, 62 g of titanium dioxide (Tynoch A-100 (Anatase type) manufactured by Taki Chemical Industry Co., Ltd.) was added to this slurry, and after stirring sufficiently, the pH was increased while stirring sodium hydroxide solution (10% by weight). Was added dropwise until about 8.5 was obtained to obtain a light brown precipitate. After aging for 2 hours, the precipitate was suction filtered, washed with water, and dried at 30 ° C. or lower. This was pulverized to 100 microns or less with a mortar to obtain a deodorizing composition of powder in which Fe and Ti were mixed at a weight ratio of 1: 9.
[0015]
[Example 5]
A powder prepared by adding 28 g of titanium dioxide (Tynoch A-100 (anatase type) manufactured by Taki Chemical Co., Ltd.) in Example 4 and similarly mixing Fe and Ti in a weight ratio of 2: 8 A body deodorizing composition was obtained.
[0016]
[Example 6]
In Example 4, 28 g of titanium dioxide (Tynoch A-100 (anatase type) manufactured by Taki Chemical Co., Ltd.) was added, washed with water and dried in a dryer at 110 ° C. The mixture was pulverized to 100 microns or less in a mortar to obtain a deodorized composition of powder in which Fe and Ti were mixed at a weight ratio of 2: 8.
[0017]
[Comparative Example 1]
It was dissolved ferric chloride (FeCl 3 · 6H 2 O) 20g of distilled water 400 g. In this case, the pH of the solution was about 1.5. Next, sodium hydroxide solution (10% by weight) was gradually added dropwise to this solution until the pH reached about 8.5 to obtain a dark brown iron hydroxide precipitate slurry. After aging for 2 hours, it was filtered and dried at room temperature. This was pulverized in a mortar to 100 microns or less to obtain a powder.
[0018]
[Comparative Example 2]
It was dissolved ferric chloride (FeCl 3 · 6H 2 O) 20g of distilled water 400 g. In this case, the pH of the solution was about 1.5. Next, sodium hydroxide solution (10% by weight) was gradually added dropwise to this solution until the pH reached about 8.5 to obtain a dark brown iron hydroxide precipitate slurry. Subsequently, 63 g of zinc oxide was added to the slurry, and after stirring sufficiently, a sodium hydroxide solution (10 wt%) was further added dropwise with stirring until the pH reached about 8.5 to obtain a light brown precipitate. It was. After aging for 2 hours, the precipitate was filtered with suction and dried at 30 ° C. or lower. This was pulverized to 100 microns or less in a mortar to obtain a deodorizing composition of powder in which Fe and Zn were mixed at a weight ratio of 1: 9.
[0019]
[Comparative Example 3]
It prepared similarly using the alumina powder instead of the zinc oxide used for the comparative example 2, and obtained the deodorizing composition of the powder in which Fe and Al were mixed by the weight ratio of 1: 9.
[0020]
[Comparative Example 4]
A powder of titanium dioxide (Tynoch A-100 manufactured by Taki Chemical Co., Ltd. (anatase type)) was used as Comparative Example 4.
[0021]
[Test Example 1]
100 mg of the powders of Examples 1 to 5 and Comparative Examples 1 to 4 were put into a glass Erlenmeyer flask having an internal volume of 2500 ml and sealed with a rubber stopper with a stopcock. Next, hydrogen sulfide gas was injected into the Erlenmeyer flask to a concentration of 300 ppm using a syringe. The hydrogen sulfide concentration in the Erlenmeyer flask one hour after this point was measured with a hydrogen sulfide detector tube (manufactured by Gastec Co., Ltd.). The results are shown in Table 2.
[0022]
[Table 2]
Figure 0004539936
[0023]
[Test Example 2]
100 mg of the powders of Examples 4 to 6 and Comparative Examples 1 and 4 were put into a glass Erlenmeyer flask having an internal volume of 2500 ml and sealed with a rubber stopper with a stopcock. Next, hydrogen sulfide gas was injected into the Erlenmeyer flask to a concentration of 3000 ppm using a syringe.
Periodically, the hydrogen sulfide concentration in the Erlenmeyer flask was measured with a sulfurized water detector tube (manufactured by Gastec Co., Ltd.). Hydrogen sulfide gas was newly added so that This was continued until the hydrogen sulfide gas concentration ceased to change, and the removal performance of the powder with respect to hydrogen sulfide was determined. The results are shown in Table 3.
[0024]
[Table 3]
Figure 0004539936
[0025]
[Test Example 3]
100 mg of the powders of Example 6 and Comparative Example 4 were placed in a glass Erlenmeyer flask having an internal volume of 2500 ml and sealed with a rubber stopper with a stopcock. Next, hydrogen sulfide gas was injected into the Erlenmeyer flask to a concentration of 3000 ppm using a syringe and placed indoors and outdoors (sunlight irradiation), respectively. From this time point, the hydrogen sulfide concentration in the Erlenmeyer flask was measured with a detector tube (manufactured by Gastec Co., Ltd.) at the time point shown in Table 4. The results are shown in Table 4.
[0026]
[Table 4]
Figure 0004539936
[0027]
【The invention's effect】
The deodorizing composition of the present invention contains titanium dioxide and iron hydroxide, and can easily adsorb and remove malodorous components such as hydrogen sulfide, ammonia, formalin, acetaldehyde, amines and mercaptans over a long period of time. Become.

Claims (4)

3価の鉄塩より調製した水酸化鉄二酸化チタンを混合し、重量比でFe:Ti=1:9〜4:1の範囲の比率で含有することを特徴とする脱臭組成物 Trivalent iron hydroxide prepared from iron salt of a mixture of titanium dioxide, Fe ratio by weight: Ti = 1: 9~4: deodorant composition characterized in that it contains a ratio of 1 range 3価の鉄塩より調製した水酸化鉄に二酸化チタンを混合し、脱水、水洗して製造した組成物を含有することを特徴とする請求項1記載の脱臭組成物2. A deodorizing composition according to claim 1, comprising a composition produced by mixing titanium dioxide with iron hydroxide prepared from a trivalent iron salt, dehydrating and washing with water. 3価の鉄塩より調製した水酸化鉄に二酸化チタンを混合し、脱水、水洗した後、50〜150℃以下の温度で加温して乾燥させて製造した組成物を含有することを特徴とする請求項1または2記載の脱臭組成物It contains a composition produced by mixing titanium dioxide with iron hydroxide prepared from a trivalent iron salt, dehydrating and washing with water, then heating and drying at a temperature of 50 to 150 ° C. or less. The deodorizing composition according to claim 1 or 2 請求項1〜3のいずれかに記載の脱臭組成物を用いることを特徴とする脱臭方法A deodorizing method using the deodorizing composition according to any one of claims 1 to 3.
JP2000190239A 2000-06-23 2000-06-23 Deodorizing composition Expired - Fee Related JP4539936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000190239A JP4539936B2 (en) 2000-06-23 2000-06-23 Deodorizing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000190239A JP4539936B2 (en) 2000-06-23 2000-06-23 Deodorizing composition

Publications (2)

Publication Number Publication Date
JP2002001105A JP2002001105A (en) 2002-01-08
JP4539936B2 true JP4539936B2 (en) 2010-09-08

Family

ID=18689740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000190239A Expired - Fee Related JP4539936B2 (en) 2000-06-23 2000-06-23 Deodorizing composition

Country Status (1)

Country Link
JP (1) JP4539936B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4365168B2 (en) * 2002-08-30 2009-11-18 エスケー化研株式会社 Method for producing porous photocatalyst composite powder
DE102011017090B3 (en) * 2011-04-14 2012-08-30 Kronos International Inc. Process for the preparation of a photocatalyst based on titanium dioxide
JP6577734B2 (en) * 2015-03-31 2019-09-18 住化エンバイロメンタルサイエンス株式会社 Deodorizing composition and method for producing deodorizing composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303835A (en) * 1994-02-07 1995-11-21 Ishihara Sangyo Kaisha Ltd Titanium oxide for photocatalyst, and manufacture of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379659A (en) * 1986-09-22 1988-04-09 村上 哲夫 Deodorant and its production
JPH06102155B2 (en) * 1988-02-29 1994-12-14 株式会社日立製作所 Deodorant, deodorant manufacturing method, deodorizing method, deodorizing device, and refrigeration cycle device equipped with this deodorizing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303835A (en) * 1994-02-07 1995-11-21 Ishihara Sangyo Kaisha Ltd Titanium oxide for photocatalyst, and manufacture of the same

Also Published As

Publication number Publication date
JP2002001105A (en) 2002-01-08

Similar Documents

Publication Publication Date Title
US5234884A (en) Adsorbent composition and method of producing same
JP4293801B2 (en) Active tubular titanium oxide particles, catalyst containing the titanium oxide particles, and deodorant
KR20160047609A (en) Porous copper-manganese filter media and the preparation of the same
JP4539936B2 (en) Deodorizing composition
JP4164759B2 (en) Method for producing deodorant
JP2001276194A (en) Deodorizing catalyst material
JPS63246167A (en) White deodorant and its production
JP2001314491A (en) Air purifying filter
JP2001232206A (en) Porous photocatalyst and method of manufacturing the same
WO1996022827A1 (en) Deodorant material, process for producing the same, and method of deodorization
JP2002159865A (en) Titanium oxide photocatalyst for basic gas removal
JP3276297B2 (en) Photocatalyst
JP2585157B2 (en) Adsorbent composition and method for producing the same
JPH08103487A (en) Deodorant
US5603928A (en) Air purification agent and process for production of same
JPS6354935A (en) White deodorant and its production
JP4296533B2 (en) Titanium oxide photocatalyst with excellent nitrogen oxide removal performance
JP2663230B2 (en) Air-purified product and method for producing the same
JP2560067B2 (en) Deodorant
JP3132934B2 (en) Method for producing deodorant
JP3707616B2 (en) Method for producing deodorant and deodorant
JP3146037B2 (en) Deodorant
JPH09192206A (en) Deodorizer
JPH03267143A (en) Deodorizer
JPH0549862A (en) Method for deodorization and treating agent therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070611

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100617

R150 Certificate of patent or registration of utility model

Ref document number: 4539936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees