JP4539397B2 - Method for producing ceramic dental prosthesis - Google Patents

Method for producing ceramic dental prosthesis Download PDF

Info

Publication number
JP4539397B2
JP4539397B2 JP2005090747A JP2005090747A JP4539397B2 JP 4539397 B2 JP4539397 B2 JP 4539397B2 JP 2005090747 A JP2005090747 A JP 2005090747A JP 2005090747 A JP2005090747 A JP 2005090747A JP 4539397 B2 JP4539397 B2 JP 4539397B2
Authority
JP
Japan
Prior art keywords
dental prosthesis
sintering
cutting
sintered
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005090747A
Other languages
Japanese (ja)
Other versions
JP2006271435A (en
Inventor
功一 増川
秀雄 中西
康彦 末廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2005090747A priority Critical patent/JP4539397B2/en
Publication of JP2006271435A publication Critical patent/JP2006271435A/en
Application granted granted Critical
Publication of JP4539397B2 publication Critical patent/JP4539397B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Dental Prosthetics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、セラミック製歯科補綴物の製造方法に関する。   The present invention relates to a method for producing a ceramic dental prosthesis.

近年、歯科医療におけてCAD(Computer Aided Design)/CAM(Computer Aided Manufacturing)が応用されており、セラミック製歯科補綴物をCAD/CAMを利用して製造する方法が知られている。このような方法においては、緻密焼結されたセラミック材料を切削加工する際、緻密焼結されたセラミック材料の硬さゆえに切削加工に甚大な時間が必要であり、また、加工工具の磨耗が著しくなるという問題があった。   In recent years, CAD (Computer Aided Design) / CAM (Computer Aided Manufacturing) has been applied in dentistry, and a method of manufacturing a ceramic dental prosthesis using CAD / CAM is known. In such a method, when cutting a densely sintered ceramic material, a great amount of time is required for the cutting because of the hardness of the densely sintered ceramic material, and the wear of the processing tool is remarkably high. There was a problem of becoming.

このような問題を解決すべく、例えば、特許文献1及び特許文献2などには、ある程度の硬度まで予備焼結された材料を切削加工し、その後、緻密焼結することにより歯科補綴物を製造する方法が記載されている。
特許第3492419号公報 特表2003−506191号公報
In order to solve such problems, for example, in Patent Document 1 and Patent Document 2, a dental prosthesis is manufactured by cutting a material that has been pre-sintered to a certain degree of hardness and then performing dense sintering. How to do is described.
Japanese Patent No. 3492419 Special table 2003-506191 gazette

しかしながら、上記特許文献1及び特許文献2に記載される製造方法においては、酸化セリウムを含む正方晶酸化ジルコニア粒子と酸化アルミニウム粒子を主成分とするセラミック粉末を原料とする場合については十分な検討がなされておらず、このような原料から製造される歯科補綴物については、使用に耐え得る高強度な歯科補綴物が得られると共に、短時間で製造可能な製造方法は知られていない。また、上記特許文献1及び特許文献2においては、予備焼結工程における処理温度(以下、予備焼結温度という)と製造された歯科補綴物の強度に関する検討が十分になされていない。   However, in the production methods described in Patent Document 1 and Patent Document 2 described above, sufficient study has been made in the case of using ceramic powder mainly composed of tetragonal zirconia oxide particles containing cerium oxide and aluminum oxide particles as raw materials. As for a dental prosthesis manufactured from such a raw material, a high-strength dental prosthesis that can be used is obtained, and a manufacturing method that can be manufactured in a short time is not known. Moreover, in the said patent document 1 and patent document 2, examination regarding the process temperature (henceforth a presintering temperature) in the presintering process and the intensity | strength of the manufactured dental prosthesis is not fully made | formed.

本発明は、上記課題を解決するためになされたものであり、酸化セリウムを含む正方晶酸化ジルコニア粒子と酸化アルミニウム粒子を主成分とするセラミック粉末を原料として用い、使用に耐え得る高強度な歯科補綴物が得られると共に、短時間で歯科補綴物が製造可能なセラミック製歯科補綴物の製造方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and uses high-strength dental materials that can withstand use by using ceramic powders composed mainly of tetragonal zirconia oxide particles containing cerium oxide and aluminum oxide particles as raw materials. An object of the present invention is to provide a method for producing a ceramic dental prosthesis capable of producing a prosthesis and capable of producing the dental prosthesis in a short time.

上記目的を達成するために請求項1の発明は、酸化ジルコニウム65.9〜69.9重
量%、酸化セリウム10.1〜11.1重量%、酸化アルミニウム19.5〜23.5重
量%、酸化チタン0.01〜0.03%、及び酸化マグネシウム0.04〜0.08重量
%を原料配合物として含むセラミック複合体からなるセラミック製歯科補綴物を製造する
方法であって、前記正方晶酸化ジルコニウム粒子と酸化アルミニウム粒子を主成分とする
原料配合物を、冷間等方加圧(CIP:Cold Isostatic Pressing)により成形して圧粉
体を得る圧粉体成形工程と、前記圧粉体成形工程で得られた圧粉体を、所定形状に整形し
て整形加工体を得る整形加工工程と、前記整形加工工程で得られた整形加工体を、該整形
加工体が緻密焼結される温度より低い温度で予備焼結して予備焼結体を得る予備焼結工程
と、前記予備焼結工程で得られた予備焼結体を、完成品となる歯科補綴物と略同一形状に
切削加工して切削加工体を得る切削加工工程と、前記切削加工工程により得られた切削加
工体を、該切削加工体が緻密焼結される温度で緻密焼結して歯科補綴物を得る緻密焼結工
程と、を含み、前記予備焼結工程における処理温度が、1100℃以上1300℃以下で
あることを特徴とする。
In order to achieve the above object, the invention according to claim 1 is characterized in that zirconium oxide 65.9 to 69.9 layer
% By weight, cerium oxide 10.1-11.1% by weight, aluminum oxide 19.5-23.5 weight
% By weight, titanium oxide 0.01-0.03%, and magnesium oxide 0.04-0.08 weight
% Of a ceramic composite prosthesis comprising, as a raw material composition, a cold isotropic addition of a raw material composition mainly composed of tetragonal zirconium oxide particles and aluminum oxide particles. A green compact forming step for obtaining a green compact by molding by pressing (CIP: Cold Isostatic Pressing), and a green compact obtained in the green compact forming step is shaped into a predetermined shape to obtain a shaped body. A pre-sintering step in which a pre-sintered body is obtained by pre-sintering the shaping body obtained in the shaping step and the shaping body obtained in the shaping step at a temperature lower than the temperature at which the shaping body is densely sintered; A cutting process obtained by cutting the pre-sintered body obtained in the pre-sintering process into substantially the same shape as a dental prosthesis as a finished product, and a cutting obtained by the cutting process The machined body is densely sintered. Includes a dense sintered to obtain a dental prosthesis densely sintered at a temperature, a treatment temperature in the preliminary sintering process, characterized in that at 1100 ° C. or higher 1300 ° C. or less.

請求項の発明は、請求項に記載のセラミック製歯科補綴物の製造方法において、前記予備焼結工程で得られた予備焼結体の曲げ強度が、35〜500MPaの範囲であることを特徴とする。 The invention of claim 2 is the method for producing a ceramic dental prosthesis according to claim 1 , wherein the bending strength of the pre-sintered body obtained in the pre-sintering step is in the range of 35 to 500 MPa. Features.

本発明によれば、安定化剤として酸化セリウムを8〜12mol%含む正方晶酸化ジルコニウム粒子と酸化アルミニウム粒子を主成分とする原料配合物を用い、予備焼結して得られた予備焼結体を切削加工し、その後に、緻密焼結することにより歯科補綴物を製造するようにしたので、セラミック製歯科補綴物を短時間で製造することが可能となる。   According to the present invention, a pre-sintered body obtained by pre-sintering using a raw material blend mainly composed of tetragonal zirconium oxide particles containing 8 to 12 mol% of cerium oxide as a stabilizer and aluminum oxide particles. Since the dental prosthesis is manufactured by cutting and thereafter densely sintering, it becomes possible to manufacture the ceramic dental prosthesis in a short time.

また、予備焼結温度を1100℃以上1450未満の範囲とすることにより、製造された歯科補綴物の強度の低下を防止する共に、切削加工に要する時間を短縮することができる。   Moreover, by setting the pre-sintering temperature in the range of 1100 ° C. or more and less than 1450, it is possible to prevent the strength of the manufactured dental prosthesis from being lowered and shorten the time required for cutting.

また、予備焼結工程で得られた予備焼結体の曲げ強度を35〜500MPaの範囲とすることにより、製造された歯科補綴物の強度の低下を防止する共に、切削加工に要する時間を短縮することができる。   In addition, by setting the bending strength of the pre-sintered body obtained in the pre-sintering step to a range of 35 to 500 MPa, the strength of the manufactured dental prosthesis is prevented from being reduced and the time required for cutting is shortened. can do.

以下、本発明の一実施形態に係るセラミック製歯科補綴物の製造方法について、図1及び図2を参照して説明する。本製造方法は、安定化剤として酸化セリウムを8〜12mol%含む正方晶酸化ジルコニウム粒子と酸化アルミニウム粒子を主成分とするセラミック複合体からなる歯科補綴物を製造する方法であって、以下の圧粉体成形工程、整形加工工程、予備焼結工程、切削加工工程、及び緻密焼結工程を含んでいる。なお、図1及び図2においては、左側に各工程の説明図、右側に各工程より作製された成形体を示している。   Hereinafter, the manufacturing method of the ceramic dental prosthesis which concerns on one Embodiment of this invention is demonstrated with reference to FIG.1 and FIG.2. This production method is a method for producing a dental prosthesis comprising a ceramic composite mainly composed of tetragonal zirconium oxide particles containing 8 to 12 mol% of cerium oxide as a stabilizer and aluminum oxide particles, and has the following pressure. It includes a powder molding process, a shaping process, a pre-sintering process, a cutting process, and a dense sintering process. In FIGS. 1 and 2, an explanatory diagram of each process is shown on the left side, and a molded body produced from each process is shown on the right side.

図1(a)に示されるように、圧粉体成形工程では、冷間等方加圧(CIP:Cold Isostatic Pressing)装置10を用い、安定化剤として酸化セリウムを8〜12mol%含む正方晶酸化ジルコニウム粒子と酸化アルミニウム粒子を主成分とする原料配合物をバインダーと共に成形モールド10a内に密封し、上パンチ10b及び下パンチ10cを介して圧力を加えて圧粉体1を得る。なお、原料配合物の調整方法は、特に限定されるものではなく、例えば、特許第2945935号公報に記載される方法により調整される。   As shown in FIG. 1 (a), in the green compact forming process, a cold isostatic pressing (CIP) apparatus 10 is used, and tetragonal crystal containing 8 to 12 mol% of cerium oxide as a stabilizer. A raw material mixture mainly composed of zirconium oxide particles and aluminum oxide particles is sealed in a molding mold 10a together with a binder, and pressure is applied through an upper punch 10b and a lower punch 10c to obtain a green compact 1. In addition, the adjustment method of a raw material mixture is not specifically limited, For example, it adjusts by the method described in patent 2945935.

図1(b)に示されるように、整形加工工程では、圧粉体成形工程で得られた圧粉体1を旋盤装置20等を使って切削し、後述する切削加工工程において切削加工がし易いように圧粉体1を円柱状(所定形状)等に整形して整形加工体2を得る。   As shown in FIG. 1B, in the shaping process, the green compact 1 obtained in the green compact forming process is cut using a lathe device 20 or the like, and the cutting process is performed in a cutting process described later. The green compact 1 is shaped into a columnar shape (predetermined shape) or the like so as to make it easy to obtain a shaped body 2.

そして、図2(a)に示されるように、予備焼結工程おいて、整形加工工程で得られた整形加工体2を焼結炉30内に載置し、熱源30aにより整形加工体2を加熱してバインダーを除去し、整形加工体2が緻密焼結される温度より低い温度で予備焼結して予備焼結体3を得る。なお、予備焼結温度は、整形加工体2が緻密焼結される温度より低ければ、特に限定されるものではないが、1100℃以上1450℃未満の範囲であることが望ましい。1100℃未満だと後述するように製造した歯科補綴物の強度が低下し、1450℃以上だと整形加工体2が緻密焼結され、切削加工に甚大な時間が必要となる虞があるからである。また、予備焼結工程で得られた予備焼結体3の曲げ強度は、35〜500MPaの範囲であることが好ましい。予備焼結体3の曲げ強度が35MPaより小さいと製造した歯科補綴物の強度が低下し、500MPaより大きいと切削加工に甚大な時間が必要となるからである。なお、本明細書における曲げ強度とは、JIS R1601の3点曲げ試験より測定された曲げ強度を意味する。   Then, as shown in FIG. 2 (a), in the preliminary sintering step, the shaped body 2 obtained in the shaping step is placed in the sintering furnace 30, and the shaped body 2 is removed by the heat source 30a. The binder is removed by heating and presintered at a temperature lower than the temperature at which the shaped body 2 is densely sintered to obtain the presintered body 3. The pre-sintering temperature is not particularly limited as long as it is lower than the temperature at which the shaped body 2 is densely sintered, but is preferably in the range of 1100 ° C. or higher and lower than 1450 ° C. If the temperature is lower than 1100 ° C., the strength of the dental prosthesis manufactured as described later is lowered, and if it is 1450 ° C. or higher, the orthopedic processed body 2 is densely sintered, which may require an enormous amount of time for cutting. is there. The bending strength of the pre-sintered body 3 obtained in the pre-sintering step is preferably in the range of 35 to 500 MPa. This is because if the bending strength of the pre-sintered body 3 is smaller than 35 MPa, the strength of the manufactured dental prosthesis is lowered, and if it is larger than 500 MPa, a long time is required for cutting. In addition, the bending strength in this specification means the bending strength measured from the three-point bending test of JIS R1601.

図2(b)に示されるように、切削加工工程では、予備焼結工程で得られた予備焼結体3をCAD/CAM装置21等を使って完成品となる歯科補綴物と略同一形状に切削加工して、切削加工体4を得る。なお、後述する緻密焼結工程では、切削加工体4を緻密焼結する際、切削加工体4の収縮によりその寸法が変化する虞があるため、収縮による寸法変化を考慮して、切削加工体4を加工することが好ましい。   As shown in FIG. 2B, in the cutting process, the pre-sintered body 3 obtained in the pre-sintering process has substantially the same shape as a dental prosthesis that is a finished product using the CAD / CAM device 21 or the like. To obtain a cutting body 4. In the dense sintering step, which will be described later, when the cutting body 4 is densely sintered, the dimensions of the cutting body 4 may change due to the shrinkage of the cutting body 4. 4 is preferably processed.

図2(c)に示されるように、緻密焼結工程では、切削加工工程により得られた切削加工体4を焼結炉30内に載置し、切削加工体4が緻密焼結される温度で緻密焼結して歯科補綴物5を得る。   As shown in FIG. 2 (c), in the dense sintering step, the temperature at which the cutting body 4 obtained by the cutting step is placed in the sintering furnace 30 and the cutting body 4 is densely sintered. To obtain a dental prosthesis 5.

以下、実施例に基づいて本発明を更に詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples at all.

(実施例1)
特許第2945935号公報に記載される方法により、酸化ジルコニウム65.9〜69.9重量%、酸化セリウム10.1〜11.1重量%、酸化アルミニウム19.5〜23.5重量%、酸化チタン0.01〜0.03重量%、及び酸化マグネシウム0.04〜0.08重量%を含む原料配合物を調整し、調整した原料配合物をCIP成形して圧粉体を作成し、これを円柱体状に整形加工して整形加工体を得た。そして、得られた整形加工体を1200℃で予備焼結して予備焼結体を作成し、これを独Hint-ELs社製、DentaCAD systeme dmmxを使用して切削加工して切削加工体として3連歯冠を作成した。そして、この切削加工体を1450℃で緻密焼結し、最終的に歯科補綴物を得た。
Example 1
According to the method described in Japanese Patent No. 2945935, zirconium oxide 65.9 to 69.9% by weight, cerium oxide 10.1 to 11.1% by weight, aluminum oxide 19.5 to 23.5% by weight, titanium oxide A raw material mixture containing 0.01 to 0.03% by weight and magnesium oxide 0.04 to 0.08% by weight was prepared, and the prepared raw material mixture was CIP-molded to prepare a green compact. A shaped body was obtained by shaping into a cylindrical shape. Then, the shaped body thus obtained is pre-sintered at 1200 ° C. to prepare a pre-sintered body, and this is cut using a DentaCAD systeme dmmx manufactured by Hint-ELs, Germany, as a cutting body 3 A crown was created. And this cutting processed object was densely sintered at 1450 degreeC, and the dental prosthesis was finally obtained.

(実施例2)
予備焼結温度を1300℃とした以外は実施例1と同様にし、歯科補綴物を得た。
(Example 2)
A dental prosthesis was obtained in the same manner as in Example 1 except that the presintering temperature was 1300 ° C.

(比較例)
実施例1と同様の原料配合物を用い、CIP成形した圧粉体を円柱体状に整形加工して整形加工体を作製し、この整形加工体を1450℃で緻密焼結して緻密焼結体を作成した。更に、この緻密焼結体を独Hint-ELs社製、DentaCAD systeme dmmxを使用して切削加工して3連歯冠を作成し、歯科補綴物とした。
(Comparative example)
Using the same raw material composition as in Example 1, the CIP-molded green compact is shaped into a cylindrical body to produce a shaped body, and this shaped body is densely sintered at 1450 ° C. Created the body. Further, this dense sintered body was cut using a DentaCAD systeme dmmx manufactured by Hint-ELs, Germany, and a triple crown was created to obtain a dental prosthesis.

実施例1、実施例2、及び比較例の製造条件、並びに、実施例1及び実施例2により得られた予備焼結体の曲げ強度、比較例により得られた緻密焼結体の曲げ強度を表1に示す。なお、曲げ強度は、後述する実施例3乃至実施例5と同様に、40mm×3mm×4mmの試験片を作製し、JIS R1601に準拠して3点曲げ試験を行って測定した。
Production conditions of Example 1, Example 2 and Comparative Example, bending strength of the pre-sintered body obtained by Example 1 and Example 2, and bending strength of the dense sintered body obtained by Comparative Example Table 1 shows. The bending strength was measured by preparing a 40 mm × 3 mm × 4 mm test piece and conducting a three-point bending test in accordance with JIS R1601, as in Examples 3 to 5 described later.

実施例1及び実施例2、並びに、比較例について切削加工に要した時間を図3に示す。なお、同図において、(a)は実施例1、(b)は実施例2、(c)は比較例を示している。同図に示されるように、1200℃で予備焼結を行った実施例1について切削に要した時間は、1450℃で緻密焼結を行った比較例の切削に要した時間の1/3以下であり、切削時間の大幅な短縮が可能であることが分かる。   FIG. 3 shows the time required for cutting in Examples 1 and 2 and the comparative example. In this figure, (a) shows Example 1, (b) shows Example 2, and (c) shows a comparative example. As shown in the figure, the time required for cutting of Example 1 that was pre-sintered at 1200 ° C. was 1/3 or less of the time required for cutting of the comparative example that was densely sintered at 1450 ° C. It can be seen that the cutting time can be significantly reduced.

(実施例3乃至実施例5)
実施例3は、予備焼結温度を850℃とし、切削加工体の形状として3点曲げ強度試験用に40mm×3mm×4mmとした以外は実施例1と同様にし、歯科補綴物を得た。実施例4は、予備焼結温度を1050℃とした以外は実施例3と同様にし、歯科補綴物を得た。実施例5は、予備焼結温度を1100℃とした以外は実施例3と同様にし、歯科補綴物を得た。
(Example 3 to Example 5)
In Example 3, a dental prosthesis was obtained in the same manner as in Example 1 except that the pre-sintering temperature was set to 850 ° C., and the shape of the cut workpiece was set to 40 mm × 3 mm × 4 mm for a three-point bending strength test. In Example 4, a dental prosthesis was obtained in the same manner as in Example 3 except that the pre-sintering temperature was 1050 ° C. In Example 5, a dental prosthesis was obtained in the same manner as in Example 3 except that the pre-sintering temperature was 1100 ° C.

上記実施例3乃至実施例5の製造条件、並びに、JIS R1601に準拠して行った実施例3乃至実施例5の予備焼結体の3点曲げ強度及び緻密焼結体の3点曲げ強度を表2に示す。また、これら実施例3乃至実施例5の緻密焼結体の3点曲げ強度と予備焼結温度の関係を、比較例の緻密焼結体の3点曲げ強度と共に図4に示す。なお、同図において、(a)は実施例3、(b)は実施例4、(c)は実施例5、(d)は比較例を示している。
The manufacturing conditions of Examples 3 to 5 above, and the three-point bending strength of the pre-sintered body of Example 3 to Example 5 and the three-point bending strength of the dense sintered body performed according to JIS R1601. It shows in Table 2. FIG. 4 shows the relationship between the three-point bending strength and the pre-sintering temperature of the dense sintered bodies of Examples 3 to 5 together with the three-point bending strength of the dense sintered body of the comparative example. In the figure, (a) shows Example 3, (b) shows Example 4, (c) shows Example 5, and (d) shows a comparative example.

図4に示されるように、実施例5の緻密焼結体の3点曲げ強度は、実施例3及び実施例4の緻密焼結体の3点曲げ強度に比べて急激に上昇しており、予備焼結温度1100℃を境にして強度に大きな差が生じていることが分かる。また、緻密焼結体を切削加工した比較例の3点曲げ強度は、予備焼結体を切削加工した実施例3乃至実施例5の各3点曲げ強度と比較して、更に高いものとなっていることが分かる。   As shown in FIG. 4, the three-point bending strength of the dense sintered body of Example 5 is abruptly increased compared to the three-point bending strength of the dense sintered bodies of Example 3 and Example 4. It can be seen that there is a large difference in strength at the presintering temperature of 1100 ° C. Further, the three-point bending strength of the comparative example obtained by cutting the dense sintered body is higher than the respective three-point bending strengths of Examples 3 to 5 obtained by cutting the pre-sintered body. I understand that

このように、予備焼結体を切削加工した後に緻密焼結して得られた歯科補綴物の強度は、緻密焼結体を切削加工することによって得られる歯科補綴物と比較して、強度が低下するものの、予備焼結温度を所定温度以上、すなわち、本実施例において示された1100℃以上とすることにより、最終的に製造された歯科補綴物の強度低下を抑えることができる。   Thus, the strength of the dental prosthesis obtained by densely sintering after cutting the pre-sintered body is higher than that of a dental prosthesis obtained by cutting the dense sintered body. Although lowering, by setting the pre-sintering temperature to a predetermined temperature or higher, that is, to 1100 ° C. or higher shown in the present embodiment, it is possible to suppress a decrease in strength of the finally produced dental prosthesis.

このように予備焼結温度を、1100℃以上1450℃未満(1450℃以上の温度では切削加工体が緻密焼結してしまう)とし、得られた予備焼結体を切削加工した後に緻密焼結することにより、高強度を有する歯科補綴物を製造することができると共に、切削加工時間の短縮を図ることが可能となる。   In this way, the presintering temperature is set to 1100 ° C. or higher and lower than 1450 ° C. (the cutting body is densely sintered at a temperature of 1450 ° C. or higher), and the obtained presintered body is cut and then densely sintered. As a result, a dental prosthesis having high strength can be manufactured, and the cutting time can be shortened.

次に、予備焼結温度1050〜1100℃を境界とする急激な歯科補綴物の曲げ強度の変動の原因について、図5(a)(b)及び表3を参照して検討する。図5(a)は、実施例3により得られた歯科補綴物を円盤状(φ12mm×t1.0mm)に加工して、その表面を走査型電子顕微鏡(SEM)により観察したものであり、図5(b)は比較例と同様の方法により得られた緻密焼結体を同円盤状にして観察したものである。また、表3は、実施例3及び比較例により製造された歯科補綴物の密度を示したものである。
Next, the cause of the rapid bending strength fluctuation of the dental prosthesis with the pre-sintering temperature of 1050 to 1100 ° C. as a boundary will be discussed with reference to FIGS. FIG. 5A shows a dental prosthesis obtained in Example 3 processed into a disc shape (φ12 mm × t1.0 mm), and the surface thereof was observed with a scanning electron microscope (SEM). 5 (b) is an observation of a dense sintered body obtained by the same method as in the comparative example in the same disk shape. Table 3 shows the density of the dental prosthesis manufactured according to Example 3 and the comparative example.

これらSEM写真及び表3に示されるように、実施例3により得られたサンプルは、切削加工後に緻密焼結を行ったにもかかわらず粉末粒子が観察され、密度も比較例より低いことから空孔率が低くなっていることが分かる。したがって、予備焼結して得られた予備焼結体を切削加工し、その後に、緻密焼結することにより得られる歯科補綴物は、緻密焼結体した後に、切削加工することにより得られる歯科補綴物と比較して、緻密焼結時の焼結が完全には行われないために、強度の低下が起こっているものと考えられる。   As shown in these SEM photographs and Table 3, in the sample obtained in Example 3, powder particles were observed despite the dense sintering after cutting, and the density was lower than that of the comparative example. It can be seen that the porosity is low. Therefore, a dental prosthesis obtained by cutting a pre-sintered body obtained by pre-sintering and then densely sintering it is a dental prosthesis obtained by cutting after a dense sintered body. Compared to the prosthesis, it is considered that the strength is lowered because the sintering during the dense sintering is not completely performed.

本発明の一実施形態に係るセラミック製歯科補綴物の製造方法の説明図であり、(a)は圧粉体成形工程、(b)は整形加工工程をそれぞれ示す図。It is explanatory drawing of the manufacturing method of the ceramic dental prosthesis which concerns on one Embodiment of this invention, (a) is a compacting process, (b) is a figure which shows a shaping process, respectively. (a)は同製造方法の予備焼結工程、(b)は切削加工工程、(c)は緻密焼結工程をそれぞれ示す図。(A) is the preliminary | backup sintering process of the manufacturing method, (b) is a cutting process, (c) is a figure which shows a dense sintering process, respectively. 切削加工前の予備焼結温度と切削加工時間の関係を示すグラフ。The graph which shows the relationship between the pre-sintering temperature before cutting, and cutting time. 切削加工前の焼結温度と製造されたセラミック製歯科補綴物の3点曲げ強度の関係を示すグラフ。The graph which shows the relationship between the sintering temperature before cutting, and the three-point bending strength of the manufactured ceramic dental prosthesis. (a)は実施例3により得られたセラミック製歯科補綴物のSEM写真、(b)は比較例により得られたセラミック製歯科補綴物のSEM写真。(A) is a SEM photograph of the ceramic dental prosthesis obtained in Example 3, and (b) is a SEM photograph of the ceramic dental prosthesis obtained in the comparative example.

符号の説明Explanation of symbols

1 圧粉体
2 整形加工体
3 予備焼結体
4 切削加工体
5 歯科補綴物
DESCRIPTION OF SYMBOLS 1 Compact 2 Shaped body 3 Pre-sintered body 4 Cutting body 5 Dental prosthesis

Claims (2)

酸化ジルコニウム65.9〜69.9重量%、酸化セリウム10.1〜11.1重量%
、酸化アルミニウム19.5〜23.5重量%、酸化チタン0.01〜0.03%、及び
酸化マグネシウム0.04〜0.08重量%を原料配合物として含むセラミック複合体か
らなるセラミック製歯科補綴物を製造する方法であって、
前記正方晶酸化ジルコニウム粒子と酸化アルミニウム粒子を主成分とする原料配合物を
、冷間等方加圧(CIP:Cold Isostatic Pressing)により成形して圧粉体を得る圧粉
体成形工程と、
前記圧粉体成形工程で得られた圧粉体を、所定形状に整形して整形加工体を得る整形加
工工程と、
前記整形加工工程で得られた整形加工体を、該整形加工体が緻密焼結される温度より低
い温度で予備焼結して予備焼結体を得る予備焼結工程と、
前記予備焼結工程で得られた予備焼結体を、完成品となる歯科補綴物と略同一形状に切
削加工して切削加工体を得る切削加工工程と、
前記切削加工工程により得られた切削加工体を、該切削加工体が緻密焼結される温度で
緻密焼結して歯科補綴物を得る緻密焼結工程と、を含み、
前記予備焼結工程における処理温度が、1100℃以上1300℃以下であることを特
徴とするセラミック製歯科補綴物の製造方法。
Zirconium oxide 65.9 to 69.9% by weight, cerium oxide 10.1 to 11.1% by weight
19.5 to 23.5% by weight of aluminum oxide, 0.01 to 0.03% of titanium oxide, and
A method for producing a ceramic dental prosthesis comprising a ceramic composite containing 0.04 to 0.08% by weight of magnesium oxide as a raw material composition,
A green compact molding step of obtaining a green compact by molding the raw material blend mainly composed of tetragonal zirconium oxide particles and aluminum oxide particles by cold isostatic pressing (CIP);
A shaping process that obtains a shaped body by shaping the green compact obtained in the green compact forming step into a predetermined shape;
A pre-sintering step of pre-sintering the shaped body obtained in the shaping process step at a temperature lower than the temperature at which the shaped body is densely sintered;
A cutting process that obtains a cut body by cutting the pre-sintered body obtained in the pre-sintering process into substantially the same shape as a dental prosthesis that is a finished product;
A dense sintered step of obtaining a dental prosthesis by densely sintering the cut body obtained by the cutting step at a temperature at which the cut body is densely sintered,
The method for producing a ceramic dental prosthesis, wherein a treatment temperature in the preliminary sintering step is 1100 ° C or higher and 1300 ° C or lower.
前記予備焼結工程で得られた予備焼結体の曲げ強度が、35〜500MPaの範囲であ
ることを特徴とする請求項1に記載のセラミック製歯科補綴物の製造方法。
2. The method for producing a ceramic dental prosthesis according to claim 1, wherein the pre-sintered body obtained in the pre-sintering step has a bending strength in a range of 35 to 500 MPa.
JP2005090747A 2005-03-28 2005-03-28 Method for producing ceramic dental prosthesis Active JP4539397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005090747A JP4539397B2 (en) 2005-03-28 2005-03-28 Method for producing ceramic dental prosthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005090747A JP4539397B2 (en) 2005-03-28 2005-03-28 Method for producing ceramic dental prosthesis

Publications (2)

Publication Number Publication Date
JP2006271435A JP2006271435A (en) 2006-10-12
JP4539397B2 true JP4539397B2 (en) 2010-09-08

Family

ID=37206765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005090747A Active JP4539397B2 (en) 2005-03-28 2005-03-28 Method for producing ceramic dental prosthesis

Country Status (1)

Country Link
JP (1) JP4539397B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246131A (en) 2007-03-30 2008-10-16 Gc Corp Method for producing zirconia implant bridge
KR100868183B1 (en) 2007-06-02 2008-11-12 (주)덴타임 Method for producing the dental prosthesis with zirconia ceramic
ES2702779T3 (en) 2007-06-07 2019-03-05 Nobel Biocare Services Ag Procedure and sintered product to form a dental bridge
DE602007014343D1 (en) * 2007-06-07 2011-06-16 Nobel Biocare Services Ag Process for the preparation of a dental product
JP2009286643A (en) * 2008-05-27 2009-12-10 Panasonic Electric Works Co Ltd Method for manufacturing zirconium oxide-based sintered compact and zirconium oxide-based sintered compact prepared thereby
US20110065066A1 (en) 2008-06-26 2011-03-17 Panasonic Corporation Grinding apparatus and grinding method
JP5685126B2 (en) * 2011-03-31 2015-03-18 株式会社ジーシー Zirconia-based composite ceramic sintered body and method for producing the same
JP2015515897A (en) * 2012-05-11 2015-06-04 イフォクレール ヴィヴァデント アクチェンゲゼルシャフトIvoclar Vivadent AG Pre-sintered blank for dental purposes
KR101889128B1 (en) * 2014-12-24 2018-08-17 주식회사 바이오알파 Device for fabricating artificial osseous tissue and method of fabricating the same
WO2018155459A1 (en) * 2017-02-21 2018-08-30 株式会社 松風 Zirconia object to be cut for dental cutting work and method of manufacturing zirconia object to be cut, and transparency improving liquid for zirconia object to be cut for dental cutting work and method of manufacturing transparency improving liquid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11502733A (en) * 1995-03-28 1999-03-09 アーノルド ウォールウェンド Preparation method of tooth restoration prosthesis
JPH11228221A (en) * 1998-02-09 1999-08-24 Matsushita Electric Works Ltd Zirconia-based composite ceramic sintered compact for biological use
JP2003506191A (en) * 1999-08-16 2003-02-18 スリーエム エスペ アクチェンゲゼルシャフト Method for manufacturing a denture
WO2004021921A1 (en) * 2002-09-05 2004-03-18 Elephant Dental B.V. Strengthened ceramic restoration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11502733A (en) * 1995-03-28 1999-03-09 アーノルド ウォールウェンド Preparation method of tooth restoration prosthesis
JPH11228221A (en) * 1998-02-09 1999-08-24 Matsushita Electric Works Ltd Zirconia-based composite ceramic sintered compact for biological use
JP2003506191A (en) * 1999-08-16 2003-02-18 スリーエム エスペ アクチェンゲゼルシャフト Method for manufacturing a denture
WO2004021921A1 (en) * 2002-09-05 2004-03-18 Elephant Dental B.V. Strengthened ceramic restoration

Also Published As

Publication number Publication date
JP2006271435A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP4539397B2 (en) Method for producing ceramic dental prosthesis
US9545363B2 (en) Machinable zirconia comprising titania nanopowder
US9561090B2 (en) Method of producing a dental product
AU2002250946B2 (en) Method for producing dentures
JP3621046B2 (en) Method of manufacturing medical, dental care, dental technology and technical parts from ceramic
JP2012101070A (en) Method for manufacturing shaped body, and green compact
CN108495598B (en) Method for producing a blank, blank and dental restoration
EP1888275B1 (en) TITANIUM, TITANIUM ALLOY AND NiTi FOAMS WITH HIGH DUCTILITY
US11648706B2 (en) Selective sinter-based fabrication of fully dense complexing shaped parts
JP2018083959A (en) Method for producing powder metallurgy sintered compact by lamination molding method
CN104470871A (en) Ceo2-stabilized zro2 ceramics for dental applications
Yin et al. A critical review on sintering and mechanical processing of 3Y-TZP ceramics
JP2018532673A (en) Diamond composites produced by lithography
JP2010220779A (en) Calcined ceramic body for dental use
JP5943537B2 (en) Method for producing colored ceramic sintered body especially for dentistry applications
JPWO2012153645A1 (en) Fabrication method of high strength toughness ZrO2-Al2O3 solid solution ceramics
JP5805556B2 (en) Alumina ceramic joined body and method for producing the same
JP2011505931A (en) Method for manufacturing dental ceramic products
KR20140014614A (en) Dental block and method for manufacturing the same
WO2008114142A1 (en) Ceramic frameworks and methods of manufacture thereof
JP6337254B2 (en) Manufacturing method of mold for spark plasma sintering
Amat et al. Influence of Presintering Parameters on the Mechanical Properties of Presintered Dental Zirconia Block
TW201410874A (en) Inert high hardness material for tool lens production
US20200277235A1 (en) Method for Producing a Molded Product by Sintering
KR20160088170A (en) TiC-FeAl HARD MATERIALS AND FABRICATING METHOD FOR THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R150 Certificate of patent or registration of utility model

Ref document number: 4539397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250