JP4538984B2 - Coil winding method for a plurality of coil elements - Google Patents

Coil winding method for a plurality of coil elements Download PDF

Info

Publication number
JP4538984B2
JP4538984B2 JP2001151596A JP2001151596A JP4538984B2 JP 4538984 B2 JP4538984 B2 JP 4538984B2 JP 2001151596 A JP2001151596 A JP 2001151596A JP 2001151596 A JP2001151596 A JP 2001151596A JP 4538984 B2 JP4538984 B2 JP 4538984B2
Authority
JP
Japan
Prior art keywords
coil
bobbins
bobbin
winding
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001151596A
Other languages
Japanese (ja)
Other versions
JP2002343665A (en
Inventor
秀行 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001151596A priority Critical patent/JP4538984B2/en
Publication of JP2002343665A publication Critical patent/JP2002343665A/en
Application granted granted Critical
Publication of JP4538984B2 publication Critical patent/JP4538984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coil Winding Methods And Apparatuses (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、コイル素子のコイル巻装方法に関する。
【0002】
【従来の技術】
従来、この種のコイル素子としては、例えば、特表平11−501800号公報にて示すような二相式ステップモータに用いる二つのコイル素子がある。これら各コイル素子は、それぞれ、電気絶縁樹脂製ボビンにコイルをソレノイド状に巻装して構成されている。ここで、ボビンはその軸方向両端部において接続用のピン状ターミナルを備えているものがある。これに伴い、コイルの両端子は、ボビンの軸方向両端部からの各ターミナルの延出先端部に巻装されている。
【0003】
【発明が解決しようとする課題】
ところで、例えば、上述のような構成のボビンを二つ準備してこれら各ボビンに連続して巻線機によりコイルを巻装する場合、当該巻線機の回転軸に両ボビンを同軸的に支持してコイルの巻装を行うことが考えられる。
【0004】
しかし、上述のように当該巻線機の回転軸に両ボビンを同軸的に支持する場合、各ボビンを互いに隣接して同軸的に支持すると、両ボビンの各ターミナルは非常に接近して位置することになる。
【0005】
このような状態にて、各ボビンにコイルを巻装しようとすると、ボビンのターミナルへのコイルの端子の巻装は、巻線機のノズルをターミナルの延出先端部の周囲に沿い移動させて行われるため、ノズルが、両隣接ターミナルの各延出先端部間に入り難く、コイルの端子を当該両隣接ターミナルの各延出先端部の双方に巻装してしまい、コイルにおけるボビンのターミナル毎の巻装が困難になるという不具合が生ずる。
【0006】
そこで、本発明は、以上のようなことに対処するため、互いに隣接して同軸的に支持した複数のボビンの各々にコイルを巻装するにあたり、この巻装をコイル毎に確実に行えるようにした複数のコイル素子のコイル巻装方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題の解決にあたり、請求項1に記載の発明に係る複数のコイル素子のコイル巻装方法は、複数の電気絶縁樹脂製ボビン(10、30)をその各軸方向中空部にて回転軸(60)に相対回転不能に同軸的に隣接して支持し、当該複数のボビンの各々にそれぞれコイル(20、40)を巻装して各コイル素子(Ca、Cb)とする。
【0008】
当該コイル巻装方法において、複数のボビンは、それぞれ、ボビン部(10a、30a)と、このボビン部の軸方向両端に形成した両抜け止め部(10b、10c、30b、30c)とを備え、
両抜け止め部は、それぞれ、その外周から回転軸に直交して同一方向に延出するターミナル(11、12、31、32)を備え、
複数のボビンのうち各両隣接ボビンの対向ターミナル間にそれぞれ所定の間隔を付与するように、ボビン毎に両抜け止め部の一方にその軸方向へ少なくとも一つの突起(13、14、33、34)が突出形成されており、
コイルの巻装に際して、両隣接ボビンの一方側に形成された前記突起の先端面を、両隣接ボビンの他方側に形成された抜け止め部の軸方向端面に当接させ、
コイルの巻装は、前記突起の当接状態にてボビン毎に、両ターミナルの一方、ボビン部及び他方のターミナルにかけて行うことを特徴としている
【0009】
このように、回転軸に同軸的に支持する複数のボビンのうち各両隣接ボビンの対向ターミナル間にそれぞれ所定の間隔を付与するように、ボビン毎に両抜け止め部の一方にその軸方向へ少なくとも一つの突起を形成したので、コイル毎の巻装が隣接ボビンのターミナルに邪魔されることなく確実に行える。
【0010】
また、請求項2に記載の発明によれば、請求項1に記載の発明において、複数のボビンへの巻装は、当該複数のボビンに同時になされることを特徴とする。これにより、請求項1に記載の発明の作用効果を確保できる。
【0011】
また、請求項3に記載の発明によれば、請求項1に記載の発明において、複数のボビンへの巻装は、回転軸に支持したボビンの順序又は逆の順序にてなされることを特徴とする。これにより、請求項1に記載の発明の作用効果を確保できる。
【0012】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【0013】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づき説明する。図1及び図2は、乗用車用計器の回動内機に採用される二相式ステップモータの両コイル素子Ca、Cbに本発明が適用された例を示している。
【0014】
コイル素子Caは、ボビン10と、コイル20とを備えている。ボビン10は、電気絶縁樹脂により段付き筒状に形成されており、このボビン10は、小径の筒状ボビン部10aの両軸方向端に大径の両環状抜け止め部10b、10cを同軸的に形成して構成されている。
【0015】
ボビン10の一側抜け止め部10bは、ピン状のターミナル11を備えており、このターミナル11は、抜け止め部10bの図1(b)の図示下縁部にて、図1(a)にて示すごとく貫通支持されている。一方、他側抜け止め部10cは、ピン状のターミナル12を備えており、このターミナル12は、抜け止め部10cの図1(b)の図示下縁部に図1(a)にて示すごとく貫通支持されている。
【0016】
ここで、他側抜け止め部10cは、両突起13、14を備えており、これら各突起13、14は、他側抜け止め部10cの端面の図1(a)にて図示下縁から、図1(b)にて示すごとくボビン10の軸に平行に突出している。なお、両突起13、14は、他側抜け止め部10cの端面の下縁両端部から突出している。
【0017】
コイル20は、ボビン部10aに被覆銅線をソレノイド状に巻装してなるもので、このコイル20は両抜け止め部10a、10bにより抜け止めされている。また、コイル20は、その両接続端子21、22にて、両ターミナル11、12の各先端部11a、12aに巻装されている。
【0018】
一方、コイル素子Cbは、コイル素子Caと同様の構成を有するもので、このコイル素子Cbは、ボビン30と、コイル40とを備えている。ボビン30は、電気絶縁樹脂により段付き筒状に形成されており、このボビン30は、小径の筒状ボビン部30aの両軸方向端に大径の両環状抜け止め部30b、30cを同軸的に形成して構成されている。
【0019】
ボビン30の一側抜け止め部30bは、ピン状のターミナル31を備えており、このターミナル31は、抜け止め部30bの図2(b)の図示下縁部にて、図2(a)にて示すごとく貫通支持されている。一方、他側抜け止め部30cはピン状のターミナル32を備えており、このターミナル32は、抜け止め部30cの図2(b)の図示下縁部にて、図2(a)にて示すごとく貫通支持されている。
【0020】
また、他側抜け止め部30cは、両突起33、34を備えており、これら各突起33、34は、他側抜け止め部30cの端面の図2(a)にて図示下縁から図2(b)にて示すごとくボビン30の軸に平行に突出している。ここで、両突起33、34は、他側抜け止め部30cの端面の下縁両端部から突出している。
【0021】
本実施形態では、各突起33、34の他側抜け止め部30cの端面からの突出長さは、各突起13、14の他側抜け止め部10cの端面からの突出長さと同一であって、両ボビン10、30を同軸的に隣接したとき両ターミナル12、31の間にノズル72、73(後述ずる)のいずれかが入り込めるように設定されている。なお、ボビン30の軸方向中空部は、ボビン10の軸方向中空部と共に、断面正方形状に形成されている。
【0022】
コイル40は、ボビン部30aに被覆銅線をソレノイド状に巻装してなるもので、このコイル40は両抜け止め部30a、30bにより抜け止めされている。また、コイル40は、その両接続端部41、42にて、両ターミナル31、32の各先端部31a、32aに巻装されている。
【0023】
以上のように構成した両コイル素子Ca、Cbの巻線機Mによるコイル巻装方法について説明する。巻線機Mは、本体50と、回転軸60と、ノズル機構70とを備えている。本体50は、図3にて示すごとく、連結部50aに両側部50b、50cをコ字状に形成して構成されている。当該本体50は、その一側部50b内に、両被覆銅線供給源50d、50eを収容してなるもので、被覆銅線供給源50dは、一側部50b内にて回転可能に支持した回転体51にコイル用被覆銅線52を巻装して構成されている。また、被覆銅線供給源50eは、一側部50b内にて回転可能に支持した回転体53にコイル用被覆銅線54を巻装して構成されている。
【0024】
回転軸60は、本体50の連結部50aから両側部50b、50c間にこれらに並行に回転可能に延出しており、当該回転軸60は、その基端部にて、連結部50a内の駆動源(図示しない)により回転されるようになっている。但し、回転軸60は両ボビン10、30の各軸方向中空部に挿通されて両ボビン10、30を相対回転不能に支持し得るように、当該回転軸60の断面形状は、両ボビン10、30の各軸方向中空部の断面形状よりも幾分小さな正方形状となっていいる。
【0025】
ノズル機構70は、図3にて示すごとく、本体50の一側部50bの内壁に設けられており、このノズル機構70は、基板71と、両ノズル72、73とにより構成されている。基板71は、一側部50bの内壁に沿い移動可能に支持されている。また、両ノズル72、73は、基板71から他側部50cの内壁に向け回転軸60の軸に向けてこれに直角に延出している。但し、両ノズル72、73の各軸間隔は、両コイル素子Ca、Cbの各軸方向同一側ターミナルの軸間隔にほぼ等しい。また、被覆銅線供給源50dの被覆銅線52は、基板71及びノズル72を通り引っ張り出され、被覆銅線供給源50eの被覆銅線54は、基板71及びノズル73を通り引っ張り出されるようになっている。なお、基板71の一側部50aの内壁に沿う移動は一側部50a内の図示しない駆動源によりなされる。
【0026】
このように構成した巻線機Mを用いて、両コイル素子Ca、Cbのコイル巻装を以下のようにして行う。まず、ボビン10を巻線機Mの回転軸60に同軸的に挿通した後、ボビン30を当該回転軸60に同軸的に挿通する(図3乃至図5参照)。このとき、ボビン10は、その軸方向中空部にて、各突起13、14を図4及び図5の図示右方へ突出させるように回転軸60に挿通されるとともに、ボビン30は、その軸方向中空部にて、各突起33、34を図示右方へ突出させるように回転軸60に挿通される。これにより、両ボビン10、30は回転軸60により相対回転不能に支持される。このような状態においては、ボビン30はその両突起33、34の各先端面にてボビン10の一側抜け止め部10bの軸方向端面に当接している。
【0027】
このような状態において、各ノズル72、73を各ボビン10、30の左端側に位置させる。そして、ノズル72からの被覆銅線52の引き出し部をその先端部分にてターミナル31の先端部31aに固定(図6参照)するとともに、ノズル73からの被覆銅線54の引き出し部をその先端部分にてターミナル11の先端部11aに固定(図6参照)する。
【0028】
然る後、ノズル72を当該ターミナル31の先端部31aの軸周りに沿い移動させて、被覆銅線52の引き出し部をターミナル31の先端部31aに巻装すると共に、ノズル73を当該ターミナル11の先端部11aの軸周りに沿い移動させて、被覆銅線54の引き出し部をターミナル11の先端部11aに巻装する。
【0029】
ここで、上述のように、ボビン30はその両突起33、34の各先端面にてボビン10の一側抜け止め部10bの軸方向端面に当接しているから、ボビン10のターミナル11とボビン30のターミナル32との間の間隔(図4にて符号L参照)は、ノズル72、73のいずれかが入り込める程度に確保されている。従って、ノズル73によるターミナル11の先端部11aの軸周りに沿う移動は、ターミナル32の先端部32aにより邪魔されることなく円滑になされ得る。よって、コイル20の接続端子21としてのターミナル11の先端部11aに対する被覆銅線54の巻装は確実になされ得る。
【0030】
以上のような各巻装後、回転軸60を図6にて図示矢印R方向に回転させながら両ノズル72、73を図6にて図示両矢印A1、A2の方向に同一速度で移動させる。これに伴い、両ボビン10、30が共に回転軸60と同一速度で回転している状態において、両ノズル72、73は、各被覆銅線52、54を、それぞれ、両ボビン10、30の各ボビン部10a、30aに巻装しながら各矢印A1、A2の方向に移動する。
【0031】
このような各移動に伴い、各ノズル72、73が各ボビン部10a、30aの図6にて図示右端までの巻装を終了すると、両ボビン10、30に対する回転軸60の回転をそのまま維持した状態において両ノズル72、73を上述と同一の速度にて図6にて図示両矢印B1、B2の方向に移動させる。これに伴い、両ボビン10、30が共に回転軸60と同一速度で回転している状態において、両ノズル72、73は、各被覆銅線52、54を、それぞれ、両ボビン10、30の各ボビン部10a、30aに既に巻装済み部分を介し巻装しながら各矢印B1、B2の方向に移動する。以後、同様にして、各ボビン部10a、30aに対する各被覆銅線52、54の巻装を必要なだけ繰り返す。
【0032】
しかして、各ノズル72、73が各ボビン部10a、30aの右端までの巻装を最終的に終了すると、ノズル72を当該ターミナル32の先端部32aの軸周りに沿い図7にて図示矢印C2にて示すごとく移動させて、被覆銅線52の引き出し部をターミナル32の先端部32aに巻装すると共に、ノズル73を当該ターミナル12の先端部12aの軸周りに沿い図7にて図示矢印C1にて示すごとく移動させて、被覆銅線54の引き出し部をターミナル12の先端部12aに巻装する。
【0033】
ここで、上述のように、ボビン30はその両突起33、34の各先端面にてボビン10の一側抜け止め部10bの軸方向端面に当接しているから、ボビン10のターミナル11とボビン30のターミナル34との間の間隔(図4にて符号L参照)は、ノズル72、73のいずれかが入り込める程度に確保されている。従って、ノズル72によるターミナル32の先端部32aの軸周りに沿う移動は、ターミナル11の先端部11aにより邪魔されることなく円滑になされ得る。よって、コイル40の接続端子42としてのターミナル32の先端部32aに対する被覆銅線52の巻装は確実になされ得る。
【0034】
なお、ノズル72からの被覆銅線52の引き出し部をターミナル31の先端部31aに固定して切断するとともに、ノズル73からの被覆銅線54の引き出し部をターミナル11の先端部11aに固定して切断する。
【0035】
以上説明したように、ボビン10の他側抜け止め部10cに上述のように両突起13、14を形成し、かつボビン30の他側抜け止め部30cに上述のように両突起33、34を形成して、ボビン30の両突起33、34をその各先端にてボビン10の一側抜け止め部10bの端面に当接させるように両ボビン10、30を巻線機Mの回転軸60に同軸的に支持することで、両突起33、34により、両ターミナル32、11間に、ノズル72の侵入を可能にする間隔を与えるようにした。
【0036】
よって、コイル20の接続端子21としての被覆銅線54のターミナル11の先端部11aのみに対する巻装がターミナル32の先端部32aに邪魔されることなく確実に行えると共に、コイル40の接続端子42としての被覆銅線52のターミナル32の先端部32aのみに対する巻装がターミナル11の先端部11aに邪魔されることなく確実に行える。その結果、同一仕様の両コイル素子Ca、Cbにおいて、両ボビン10、30への各コイルの同時巻装が、コイルごとに容易にかつ確実に達成され得る。
【0037】
なお、本発明の実施にあたり、上記実施形態とは異なり、ボビン30及びボビン10の順で回転軸60に同軸的に支持する場合には、両突起13、14により、両ターミナル12、31間に、ノズル72或いは73の侵入を可能にする間隔を与えることよって、上記実施形態と実質的に同様の作用効果を達成できる。
【0038】
また、本発明の実施にあたり、コイル素子Ca、Cbは、ステップモータの両コイル素子に限ることなく、例えば、ソレノイド弁の開閉用アクチュエータの両コイル素子として適用してもよい。
【0039】
また、本発明の実施にあたり、二相式ステップモータに限ることなく、四相式或いは六相式のステップモータに本発明を適用してもよい。この場合には、四相式ステップモータにあっては四つのコイル素子を、二つずつ上記実施形態と同様に連続してコイル巻装すればよく、また、六相式ステップモータにあっては六つのコイル素子を、二つずつ上記実施形態と同様に連続してコイル巻装すればよい。また、巻線機Mの被覆銅線供給源及びノズルの数をそれぞれ四つ或いは六つに変更して、四つ或いは六つのコイル素子のコイル巻装を上記実施形態と実質的に同様に連続して行ってもよい。
【0040】
また、本発明の実施にあたり、回転軸60に両ボビン10、30を上記実施形態と同様に支持し、ボビン30にコイル40を巻装した後にボビン10に巻装するようにしてもよい。この場合には、上述のように両突起33、34により両ターミナル32、11の間に間隔Lを付与しているので、ターミナル32の先端部32aに対する被覆銅線のコイル40の他側端子42としての巻装及びターミナル11の先端部11aに対する被覆銅線のコイル20の他側端子21としての巻装が上記実施形態と同様になされ得る。その結果、上記実施形態とは異なり各ボビン30、10に、順次、連続的にコイル40、20を巻装するにあたっても、上記実施形態と同様の作用効果を達成できる。なお、この場合には、巻線機Mの被覆銅線供給源及びノズルは、上記実施形態とは異なり、それぞれ、一つにすればよい。
【0041】
また、本発明の実施にあたり、上記実施形態とは異なり、ボビン10を、その軸方向中空部にて、各突起13、14を図4及び図5の図示左方へ突出させるように回転軸60に挿通するとともに、ボビン30を、その軸方向中空部にて、各突起33、34を図4及び図5の図示右方へ突出させるように回転軸60に挿通すれば、ボビン30はその両突起33、34の各先端面にてボビン10の両突起13、14の各先端面にそれぞれ当接する。このため、ボビン10のターミナル12とボビン30のターミナル32との間の間隔は、ボビン10のターミナル11とボビン30のターミナル32との間の間隔Lの2倍となる。これにより、ノズル72、73のいずれかが入り込める間隔がより一層広く確保される。従って、各ターミナル12、32への巻装を行うにあたり、上記実施形にて述べた作用効果をより一層向上できる。
【0042】
また、本発明の実施にあたり、各ボビン10、30を巻線機Mの回転軸60に相対回転不能に支持するために、各ボビン10、30の軸方向中空部及び回転軸60の各断面形状を共に正方形状にした例について説明したが、これに限らず、各ボビン10、30を回転軸60に相対回転不能に支持できる断面形状であれば、各ボビン10、30の軸方向中空部及び回転軸60の各断面形状はどのような断面形状であってもよい。
【0043】
また、本発明の実施にあたり、乗用車用計器に限ることなく、バス、トラックや自動二輪車等の各種車両用計器その他各種の計器に本発明を適用して実施してもよい。
【図面の簡単な説明】
【図1】(a)は本発明に係る乗用車用計器の回動内機に採用されるステップモータの一コイル素子の部分破断側面図であり、(b)は当該コイル素子の平面図である。
【図2】(a)は上記ステップモータの他のコイル素子の部分破断側面図であり、(b)は当該他のコイル素子の平面図である。
【図3】両コイル素子を支持した巻線機の平面図である。
【図4】両コイル素子を巻線機の回転軸に同軸的に支持した状態を示す平面図である。
【図5】両コイル素子を巻線機の回転軸に同軸的に支持した状態を示す側面図である。
【図6】両コイル素子の各コイルを巻く過程を示す平面図である。
【図7】両コイル素子の各コイルの接続端子として各被覆銅線を各ターミナルに巻装する過程を示す平面図である。
【符号の説明】
10、30…ボビン、10a、30a…ボビン部、
10b、10c、30b、30c…抜け止め部、
11、12、31、32…ターミナル、
13、14、33、34…突起、20、40…ボビン、60…回転軸、
Ca、Cb…コイル素子。
[0001]
[Industrial application fields]
The present invention relates to a coil winding method for a coil element.
[0002]
[Prior art]
Conventionally, as this type of coil element, for example, there are two coil elements used for a two-phase step motor as disclosed in JP-T-11-501800. Each of these coil elements is configured by winding a coil around an electrically insulating resin bobbin in a solenoid shape. Here, some bobbins are provided with connecting pin-shaped terminals at both axial ends. Along with this, both terminals of the coil are wound around the extending tips of the terminals from both ends of the bobbin in the axial direction.
[0003]
[Problems to be solved by the invention]
By the way, for example, when two bobbins having the above-described configuration are prepared and coils are wound around the bobbins by a winding machine, both bobbins are coaxially supported on the rotating shaft of the winding machine. Thus, it is conceivable to wind the coil.
[0004]
However, when both bobbins are coaxially supported on the rotating shaft of the winding machine as described above, when the bobbins are coaxially supported adjacent to each other, the terminals of both bobbins are located very close to each other. It will be.
[0005]
In this state, when the coil is to be wound around each bobbin, the coil terminal is wound around the bobbin terminal by moving the nozzle of the winding machine along the periphery of the extending tip of the terminal. Therefore, the nozzle is difficult to enter between the extended tips of both adjacent terminals, and the coil terminals are wound around both the extended tips of the adjacent terminals, so that each bobbin terminal in the coil There arises a problem that it becomes difficult to wind.
[0006]
Therefore, in order to deal with the above-described problems, the present invention ensures that this winding can be performed for each coil when winding a coil around each of a plurality of bobbins supported coaxially adjacent to each other. An object of the present invention is to provide a coil winding method for a plurality of coil elements.
[0007]
[Means for Solving the Problems]
In solving the above-mentioned problem, the coil winding method for a plurality of coil elements according to the invention described in claim 1 is characterized in that a plurality of electrically insulating resin bobbins (10, 30) are rotated at their respective axial hollow portions ( 60) are coaxially adjacent to each other so that they cannot rotate relative to each other, and a coil (20, 40) is wound around each of the plurality of bobbins to form each coil element (Ca, Cb).
[0008]
In the coil winding method, each of the plurality of bobbins includes a bobbin portion (10a, 30a) and both retaining portions (10b, 10c, 30b, 30c) formed at both axial ends of the bobbin portion,
Both retaining portions are each provided with terminals (11, 12, 31, 32) extending from the outer periphery thereof in the same direction perpendicular to the rotation axis,
At least one protrusion (13, 14, 33, 34) in the axial direction is provided on one of the retaining portions for each bobbin so as to provide a predetermined distance between the opposing terminals of each adjacent bobbin among the plurality of bobbins. ) Is protrudingly formed,
When winding the coil, the tip end surface of the protrusion formed on one side of both adjacent bobbins is brought into contact with the axial end surface of the retaining portion formed on the other side of both adjacent bobbins,
The winding of the coil is characterized in that it is performed for each bobbin over one of the two terminals, the bobbin portion, and the other terminal with the protrusions in contact .
[0009]
In this way, in order to provide a predetermined interval between the opposing terminals of each adjacent bobbin among the plurality of bobbins that are coaxially supported on the rotation shaft, one bobbin is provided in the axial direction on one of the retaining portions for each bobbin. Since at least one protrusion is formed, winding of each coil can be reliably performed without being obstructed by the terminal of the adjacent bobbin.
[0010]
According to a second aspect of the present invention, in the first aspect of the invention, the plurality of bobbins are wound around the plurality of bobbins simultaneously. Thereby, the effect of the invention of claim 1 can be secured.
[0011]
According to the invention described in claim 3, in the invention described in claim 1, the winding of the plurality of bobbins is performed in the order of the bobbins supported on the rotating shaft or in the reverse order. And Thereby, the effect of the invention of claim 1 can be secured.
[0012]
In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1 and 2 show an example in which the present invention is applied to both coil elements Ca and Cb of a two-phase step motor employed in a rotating internal unit of a passenger car instrument.
[0014]
The coil element Ca includes a bobbin 10 and a coil 20. The bobbin 10 is formed in a stepped cylindrical shape by an electrically insulating resin, and this bobbin 10 is coaxially provided with both large-diameter annular retaining portions 10b and 10c at both axial ends of a small-diameter cylindrical bobbin portion 10a. It is formed and configured.
[0015]
The one-side retaining portion 10b of the bobbin 10 includes a pin-shaped terminal 11. This terminal 11 is shown in FIG. 1 (a) at the lower edge of the retaining portion 10b shown in FIG. 1 (b). As shown in FIG. On the other hand, the other-side retaining portion 10c includes a pin-shaped terminal 12, and this terminal 12 is shown in FIG. 1 (a) at the lower edge of the retaining portion 10c in FIG. 1 (b). It is supported through.
[0016]
Here, the other-side retaining portion 10c includes both protrusions 13 and 14, and each of the protrusions 13 and 14 is viewed from the lower edge illustrated in FIG. 1A of the end surface of the other-side retaining portion 10c. As shown in FIG. 1B, it protrudes parallel to the axis of the bobbin 10. Both the protrusions 13 and 14 protrude from both end portions of the lower edge of the end face of the other-side retaining portion 10c.
[0017]
The coil 20 is formed by winding a coated copper wire around a bobbin portion 10a in a solenoid shape, and the coil 20 is prevented from being detached by both retaining portions 10a and 10b. In addition, the coil 20 is wound around the tip portions 11 a and 12 a of both terminals 11 and 12 by both connection terminals 21 and 22.
[0018]
On the other hand, the coil element Cb has a configuration similar to that of the coil element Ca, and the coil element Cb includes a bobbin 30 and a coil 40. The bobbin 30 is formed in a stepped cylindrical shape by an electrically insulating resin, and this bobbin 30 is coaxial with large-diameter annular retaining portions 30b and 30c at both axial ends of a small-diameter cylindrical bobbin portion 30a. It is formed and configured.
[0019]
The one-side retaining portion 30b of the bobbin 30 includes a pin-shaped terminal 31. This terminal 31 is shown in FIG. 2 (a) at the lower edge portion of FIG. 2 (b) of the retaining portion 30b. As shown in FIG. On the other hand, the other-side retaining portion 30c is provided with a pin-shaped terminal 32. This terminal 32 is shown in FIG. 2 (a) at the lower edge portion of FIG. 2 (b) of the retaining portion 30c. It is supported through.
[0020]
Further, the other-side retaining portion 30c includes both protrusions 33 and 34. These protrusions 33 and 34 are shown in FIG. 2A from the lower edge shown in FIG. 2A of the end face of the other-side retaining portion 30c. As shown in (b), it protrudes parallel to the axis of the bobbin 30. Here, both the protrusions 33 and 34 protrude from both ends of the lower edge of the end face of the other-side retaining portion 30c.
[0021]
In the present embodiment, the protruding length from the end surface of the other side retaining portion 30c of each protrusion 33, 34 is the same as the protruding length from the end surface of the other retaining portion 10c of each protrusion 13, 14. When both the bobbins 10 and 30 are coaxially adjacent, either of the nozzles 72 and 73 (described later) is set between the terminals 12 and 31. In addition, the axial direction hollow part of the bobbin 30 is formed in the cross-sectional square shape with the axial direction hollow part of the bobbin 10.
[0022]
The coil 40 is formed by winding a coated copper wire around a bobbin portion 30a in a solenoid shape, and the coil 40 is prevented from being detached by both retaining portions 30a and 30b. In addition, the coil 40 is wound around the tip portions 31 a and 32 a of the terminals 31 and 32 at both connection end portions 41 and 42.
[0023]
A coil winding method using the winding machine M of the two coil elements Ca and Cb configured as described above will be described. The winding machine M includes a main body 50, a rotating shaft 60, and a nozzle mechanism 70. As shown in FIG. 3, the main body 50 is configured by forming both side portions 50b and 50c in a U-shape on the connecting portion 50a. The main body 50 is configured such that both of the coated copper wire supply sources 50d and 50e are accommodated in one side portion 50b, and the coated copper wire supply source 50d is rotatably supported in the one side portion 50b. The rotating body 51 is configured by winding a coil-coated copper wire 52. The coated copper wire supply source 50e is configured by winding a coil-coated copper wire 54 around a rotating body 53 that is rotatably supported in one side portion 50b.
[0024]
The rotating shaft 60 extends from the connecting portion 50a of the main body 50 so as to be rotatable in parallel between both side portions 50b and 50c. The rotating shaft 60 is driven at the base end thereof in the connecting portion 50a. It is rotated by a source (not shown). However, the cross-sectional shape of the rotating shaft 60 is such that both the bobbins 10 and 30 are inserted into the hollow portions in the axial direction of both the bobbins 10 and 30 so that the bobbins 10 and 30 can be supported relatively unrotatably. It is a square shape somewhat smaller than the cross-sectional shape of each of the 30 axial hollow portions.
[0025]
As shown in FIG. 3, the nozzle mechanism 70 is provided on the inner wall of one side portion 50 b of the main body 50, and the nozzle mechanism 70 includes a substrate 71 and both nozzles 72 and 73. The board | substrate 71 is supported so that a movement along the inner wall of the one side part 50b is possible. Both nozzles 72 and 73 extend from the substrate 71 toward the inner wall of the other side portion 50c toward the axis of the rotation shaft 60 at right angles thereto. However, the distance between the axes of the nozzles 72 and 73 is substantially equal to the distance between the axial terminals of the coil elements Ca and Cb in the same axial direction. Further, the coated copper wire 52 of the coated copper wire supply source 50d is pulled out through the substrate 71 and the nozzle 72, and the coated copper wire 54 of the coated copper wire supply source 50e is pulled out through the substrate 71 and the nozzle 73. It has become. The movement along the inner wall of the one side portion 50a of the substrate 71 is performed by a drive source (not shown) in the one side portion 50a.
[0026]
Using the winding machine M configured as described above, the coil winding of both the coil elements Ca and Cb is performed as follows. First, the bobbin 10 is coaxially inserted into the rotating shaft 60 of the winding machine M, and then the bobbin 30 is coaxially inserted into the rotating shaft 60 (see FIGS. 3 to 5). At this time, the bobbin 10 is inserted through the rotary shaft 60 so that the projections 13 and 14 protrude rightward in the drawings in FIGS. 4 and 5 at the hollow portion in the axial direction. The projections 33 and 34 are inserted through the rotary shaft 60 so as to protrude rightward in the drawing in the direction hollow portion. Thereby, both the bobbins 10 and 30 are supported by the rotating shaft 60 so that relative rotation is impossible. In such a state, the bobbin 30 is in contact with the axial end surface of the one-side retaining portion 10b of the bobbin 10 at the tip surfaces of the protrusions 33 and 34.
[0027]
In such a state, the nozzles 72 and 73 are positioned on the left end side of the bobbins 10 and 30. Then, the lead portion of the coated copper wire 52 from the nozzle 72 is fixed to the tip portion 31a of the terminal 31 at the tip portion (see FIG. 6), and the lead portion of the coated copper wire 54 from the nozzle 73 is fixed to the tip portion. To the tip 11a of the terminal 11 (see FIG. 6).
[0028]
Thereafter, the nozzle 72 is moved along the axis of the tip 31 a of the terminal 31 to wind the covered copper wire 52 around the tip 31 a of the terminal 31, and the nozzle 73 is connected to the terminal 11. The lead portion of the coated copper wire 54 is wound around the tip portion 11 a of the terminal 11 by moving along the axis of the tip portion 11 a.
[0029]
Here, as described above, since the bobbin 30 is in contact with the axial end surface of the one-side retaining portion 10b of the bobbin 10 at the tip surfaces of the projections 33 and 34, the terminal 11 of the bobbin 10 and the bobbin 10 The interval between the 30 terminals 32 (see symbol L in FIG. 4) is secured to the extent that either of the nozzles 72 and 73 can enter. Accordingly, the movement of the nozzle 73 along the axis of the distal end portion 11 a of the terminal 11 can be smoothly performed without being obstructed by the distal end portion 32 a of the terminal 32. Therefore, the coated copper wire 54 can be reliably wound around the tip portion 11 a of the terminal 11 as the connection terminal 21 of the coil 20.
[0030]
After each winding as described above, the nozzles 72 and 73 are moved at the same speed in the directions of the double arrows A1 and A2 shown in FIG. 6 while rotating the rotary shaft 60 in the direction of the arrow R shown in FIG. Accordingly, in a state where both the bobbins 10 and 30 are rotating at the same speed as the rotary shaft 60, both the nozzles 72 and 73 respectively connect the respective coated copper wires 52 and 54 to the respective bobbins 10 and 30. It moves in the directions of arrows A1 and A2 while being wound around the bobbin portions 10a and 30a.
[0031]
With each movement, when the nozzles 72 and 73 finish winding the bobbin portions 10a and 30a up to the right end in FIG. 6, the rotation of the rotary shaft 60 with respect to both the bobbins 10 and 30 is maintained as it is. In this state, the nozzles 72 and 73 are moved in the directions of the double arrows B1 and B2 shown in FIG. 6 at the same speed as described above. Accordingly, in a state where both the bobbins 10 and 30 are rotating at the same speed as the rotary shaft 60, both the nozzles 72 and 73 respectively connect the respective coated copper wires 52 and 54 to the respective bobbins 10 and 30. The bobbin portions 10a and 30a move in the directions of arrows B1 and B2 while being wound around the already wound portions. Thereafter, similarly, the winding of the coated copper wires 52 and 54 around the bobbin portions 10a and 30a is repeated as necessary.
[0032]
Thus, when the nozzles 72 and 73 finally complete the winding to the right end of each bobbin portion 10a and 30a, the nozzle 72 is moved around the axis of the tip end portion 32a of the terminal 32 and shown by the arrow C2 in FIG. The lead portion of the coated copper wire 52 is wound around the distal end portion 32a of the terminal 32, and the nozzle 73 is shown along the axis of the distal end portion 12a of the terminal 12 in FIG. The lead portion of the coated copper wire 54 is wound around the distal end portion 12 a of the terminal 12.
[0033]
Here, as described above, since the bobbin 30 is in contact with the axial end surface of the one-side retaining portion 10b of the bobbin 10 at the tip surfaces of the projections 33 and 34, the terminal 11 of the bobbin 10 and the bobbin 10 The space between the 30 terminals 34 (see symbol L in FIG. 4) is secured to the extent that either of the nozzles 72 and 73 can enter. Therefore, the movement of the nozzle 72 along the axis of the tip 32 a of the terminal 32 can be smoothly performed without being obstructed by the tip 11 a of the terminal 11. Therefore, the coated copper wire 52 can be reliably wound around the tip 32a of the terminal 32 as the connection terminal 42 of the coil 40.
[0034]
The lead-out portion of the coated copper wire 52 from the nozzle 72 is fixed to the tip portion 31 a of the terminal 31 and cut, and the lead-out portion of the coated copper wire 54 from the nozzle 73 is fixed to the tip portion 11 a of the terminal 11. Disconnect.
[0035]
As described above, both protrusions 13 and 14 are formed on the other side retaining portion 10c of the bobbin 10 as described above, and both protrusions 33 and 34 are formed on the other side retaining portion 30c of the bobbin 30 as described above. The bobbins 10 and 30 are formed on the rotary shaft 60 of the winding machine M so that the protrusions 33 and 34 of the bobbin 30 are brought into contact with the end surface of the one-side retaining portion 10b of the bobbin 10 at their respective tips. By supporting the same coaxially, the projections 33 and 34 provide a space between the terminals 32 and 11 to allow the nozzle 72 to enter.
[0036]
Therefore, it is possible to reliably wind the coated copper wire 54 as the connection terminal 21 of the coil 20 around only the distal end portion 11 a of the terminal 11 without being obstructed by the distal end portion 32 a of the terminal 32, and as the connection terminal 42 of the coil 40. The coated copper wire 52 can be reliably wound only on the tip 32 a of the terminal 32 without being obstructed by the tip 11 a of the terminal 11. As a result, simultaneous winding of each coil around both bobbins 10 and 30 can be easily and reliably achieved for each coil in both coil elements Ca and Cb having the same specifications.
[0037]
In carrying out the present invention, unlike the above-described embodiment, when the bobbin 30 and the bobbin 10 are supported coaxially on the rotating shaft 60 in this order, the two protrusions 13 and 14 cause the two terminals 12 and 31 to be connected. By providing an interval that allows the nozzle 72 or 73 to enter, substantially the same effect as the above embodiment can be achieved.
[0038]
In implementing the present invention, the coil elements Ca and Cb are not limited to both coil elements of the step motor, and may be applied as, for example, both coil elements of an actuator for opening and closing a solenoid valve.
[0039]
In implementing the present invention, the present invention may be applied to a four-phase or six-phase step motor without being limited to the two-phase step motor. In this case, in the case of a four-phase step motor, four coil elements may be wound in succession in the same manner as in the above embodiment, and in a six-phase step motor, Six coil elements may be coiled continuously two by two as in the above embodiment. Further, the number of the coated copper wire supply source and the nozzle of the winding machine M is changed to four or six, respectively, and the coil winding of the four or six coil elements is continued in substantially the same manner as in the above embodiment. You may do it.
[0040]
In carrying out the present invention, both bobbins 10 and 30 may be supported on the rotary shaft 60 in the same manner as in the above embodiment, and the coil 40 may be wound around the bobbin 30 and then wound around the bobbin 10. In this case, since the distance L is provided between both the terminals 32 and 11 by both the protrusions 33 and 34 as described above, the other terminal 42 of the coil 40 of the coated copper wire with respect to the tip 32a of the terminal 32. The winding as the other terminal 21 of the coil 20 of the coated copper wire with respect to the front end portion 11a of the terminal 11 can be performed in the same manner as in the above embodiment. As a result, unlike the above-described embodiment, the same effects as those of the above-described embodiment can be achieved even when the coils 40 and 20 are sequentially and continuously wound around the bobbins 30 and 10. In this case, the coated copper wire supply source and the nozzle of the winding machine M may be one each unlike the above embodiment.
[0041]
Further, in carrying out the present invention, unlike the above-described embodiment, the rotating shaft 60 is configured so that the bobbin 10 protrudes to the left in the drawings of FIGS. 4 and 5 in the axial hollow portion of the bobbin 10. If the bobbin 30 is inserted into the rotary shaft 60 so that the projections 33 and 34 protrude in the axially hollow portion of the bobbin 30 to the right in FIG. 4 and FIG. The tip surfaces of the projections 33 and 34 are in contact with the tip surfaces of both the projections 13 and 14 of the bobbin 10. Therefore, the distance between the terminal 12 of the bobbin 10 and the terminal 32 of the bobbin 30 is twice the distance L between the terminal 11 of the bobbin 10 and the terminal 32 of the bobbin 30. Thereby, the space | interval which either nozzle 72 and 73 can enter is ensured still more widely. Therefore, when winding around each terminal 12 and 32, the effect described in the above embodiment can be further improved.
[0042]
In carrying out the present invention, in order to support the bobbins 10 and 30 on the rotary shaft 60 of the winding machine M so as not to rotate relative to each other, the axial hollow portions of the bobbins 10 and 30 and the cross-sectional shapes of the rotary shaft 60 are used. However, the present invention is not limited to this example, and the axial hollow portions of the bobbins 10 and 30 and the bobbins 10 and 30 are not limited thereto. Each cross-sectional shape of the rotating shaft 60 may be any cross-sectional shape.
[0043]
In carrying out the present invention, the present invention may be applied to various types of measuring instruments such as buses, trucks, and motorcycles and other various measuring instruments, without being limited to passenger cars.
[Brief description of the drawings]
FIG. 1A is a partially cutaway side view of one coil element of a step motor employed in a turning inner unit of a passenger car instrument according to the present invention, and FIG. 1B is a plan view of the coil element; .
2A is a partially cutaway side view of another coil element of the step motor, and FIG. 2B is a plan view of the other coil element;
FIG. 3 is a plan view of a winding machine that supports both coil elements;
FIG. 4 is a plan view showing a state in which both coil elements are coaxially supported on the rotating shaft of the winding machine.
FIG. 5 is a side view showing a state in which both coil elements are coaxially supported on the rotating shaft of the winding machine.
FIG. 6 is a plan view showing a process of winding each coil of both coil elements.
FIG. 7 is a plan view showing a process of winding each coated copper wire around each terminal as a connection terminal for each coil of both coil elements.
[Explanation of symbols]
10, 30 ... bobbin, 10a, 30a ... bobbin part,
10b, 10c, 30b, 30c ... retaining part,
11, 12, 31, 32 ... terminal,
13, 14, 33, 34 ... projection, 20, 40 ... bobbin, 60 ... rotating shaft,
Ca, Cb: coil elements.

Claims (3)

複数の電気絶縁樹脂製ボビン(10、30)をその各軸方向中空部にて回転軸(60)に相対回転不能に同軸的に隣接して支持し、当該複数のボビンの各々にそれぞれコイル(20、40)を巻装して各コイル素子(Ca、Cb)とするコイル巻装方法であって、
前記複数のボビンは、それぞれ、ボビン部(10a、30a)と、このボビン部の軸方向両端に形成した両抜け止め部(10b、10c、30b、30c)とを備え、
前記両抜け止め部は、それぞれ、その外周から前記回転軸に直交して同一方向に延出するターミナル(11、12、31、32)を備え、
前記複数のボビンのうち各両隣接ボビンの対向ターミナル間にそれぞれ所定の間隔を付与するように、前記ボビン毎に前記両抜け止め部の一方にその軸方向へ少なくとも一つの突起(13、14、33、34)が突出形成されており、
前記コイルの巻装に際して、前記両隣接ボビンの一方側に形成された前記突起の先端面を、前記両隣接ボビンの他方側に形成された前記抜け止め部の軸方向端面に当接させ、
前記コイルの巻装は、前記突起の当接状態にて前記ボビン毎に、両ターミナルの一方、ボビン部及び他方のターミナルにかけて行うことを特徴とする複数のコイル素子のコイル巻装方法。
A plurality of electrically insulating resin bobbins (10, 30) are supported coaxially adjacent to the rotating shaft (60) so as not to rotate relative to each other in the axial hollow portions, and a coil ( 20 and 40) is a coil winding method in which each coil element (Ca, Cb) is wound,
Each of the plurality of bobbins includes a bobbin portion (10a, 30a) and both retaining portions (10b, 10c, 30b, 30c) formed at both axial ends of the bobbin portion,
Each of the retaining portions includes terminals (11, 12, 31, 32) extending from the outer periphery thereof in the same direction perpendicular to the rotation axis,
At least one protrusion (13, 14,...) In the axial direction is provided on one of the retaining portions for each bobbin so as to provide a predetermined interval between the opposing terminals of both adjacent bobbins among the plurality of bobbins. 33, 34) are projectingly formed,
When winding the coil, the tip end surface of the protrusion formed on one side of the two adjacent bobbins is brought into contact with the axial end surface of the retaining portion formed on the other side of the two adjacent bobbins,
The coil winding method for a plurality of coil elements, wherein the coil is wound over one of the two terminals, the bobbin portion, and the other terminal for each bobbin in a contact state of the protrusion .
前記複数のボビンへの巻装は、当該複数のボビンに同時になされることを特徴とする請求項1に記載の複数のコイル素子のコイル巻装方法。The method of winding a plurality of coil elements according to claim 1, wherein the winding of the plurality of bobbins is performed simultaneously on the plurality of bobbins. 前記複数のボビンへの巻装は、前記回転軸に支持したボビンの順序又は逆の順序にてなされることを特徴とする請求項1に記載の複数のコイル素子のコイル巻装方法。The method of winding a plurality of coil elements according to claim 1, wherein the winding of the plurality of bobbins is performed in the order of the bobbins supported by the rotating shaft or in the reverse order.
JP2001151596A 2001-05-21 2001-05-21 Coil winding method for a plurality of coil elements Expired - Fee Related JP4538984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001151596A JP4538984B2 (en) 2001-05-21 2001-05-21 Coil winding method for a plurality of coil elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001151596A JP4538984B2 (en) 2001-05-21 2001-05-21 Coil winding method for a plurality of coil elements

Publications (2)

Publication Number Publication Date
JP2002343665A JP2002343665A (en) 2002-11-29
JP4538984B2 true JP4538984B2 (en) 2010-09-08

Family

ID=18996408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001151596A Expired - Fee Related JP4538984B2 (en) 2001-05-21 2001-05-21 Coil winding method for a plurality of coil elements

Country Status (1)

Country Link
JP (1) JP4538984B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638799B (en) * 2013-11-15 2018-01-05 日本电产三协株式会社 Motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148811U (en) * 1981-03-12 1982-09-18
JPH03138918A (en) * 1989-10-25 1991-06-13 Tokin Corp Method of winding coil
JPH0562019U (en) * 1992-01-27 1993-08-13 株式会社トーキン Bobbin with pin terminal
JPH0582014U (en) * 1992-04-03 1993-11-05 コパル電子株式会社 Multiple bobbins
JPH0766052A (en) * 1993-08-27 1995-03-10 Tamura Seisakusho Co Ltd Manufacture of high-voltage coil and its bobbin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148811U (en) * 1981-03-12 1982-09-18
JPH03138918A (en) * 1989-10-25 1991-06-13 Tokin Corp Method of winding coil
JPH0562019U (en) * 1992-01-27 1993-08-13 株式会社トーキン Bobbin with pin terminal
JPH0582014U (en) * 1992-04-03 1993-11-05 コパル電子株式会社 Multiple bobbins
JPH0766052A (en) * 1993-08-27 1995-03-10 Tamura Seisakusho Co Ltd Manufacture of high-voltage coil and its bobbin

Also Published As

Publication number Publication date
JP2002343665A (en) 2002-11-29

Similar Documents

Publication Publication Date Title
JP3196738B2 (en) Stator manufacturing apparatus and stator manufacturing method
US20070182271A1 (en) Manufacturing method of stator, and stator
JP2002010585A (en) Apparatus to form winding head of stator of rotary electric machine in the predetermined shape
JP2006211810A (en) Segment connection type rotary electric machine
EP1966808A1 (en) Winding method and coil unit
KR100400152B1 (en) A wire-winding machine and a wire-winding method for making windings of a rotary electromechanical device
JP4538984B2 (en) Coil winding method for a plurality of coil elements
US20050115628A1 (en) Coil-winding method and coil unit formed by the method
JP3823555B2 (en) Multi-phase wave winding of rotating electrical machine
JPH07220928A (en) Coil and its manufacture
JP3169314B2 (en) Multilayer coil and its winding method
JP3928400B2 (en) Coil manufacturing equipment for rotating electrical machines
JP2007157946A (en) Wire winding apparatus, winding method and method of manufacturing coil
JPH04317534A (en) Brushless motor
JP4013449B2 (en) Step motor
JPH11187598A (en) Armature winding for motor
JP3668824B2 (en) Armature and small motor
JP3318625B2 (en) Method and apparatus for winding a coil for a rotary transformer
JPH0624965Y2 (en) Terminal mounting structure
US20230123575A1 (en) Stator
JP3577724B2 (en) Winding method of wound type coil
JP7272385B2 (en) stator
CN113921266B (en) Double-rotating-shaft winding device
JP3448574B2 (en) Wiring substrate, method for manufacturing wiring body, wiring body, and electrical junction box
CN101770863A (en) Multi-connection type spool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R151 Written notification of patent or utility model registration

Ref document number: 4538984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees