JP3823555B2 - Multi-phase wave winding of rotating electrical machine - Google Patents

Multi-phase wave winding of rotating electrical machine Download PDF

Info

Publication number
JP3823555B2
JP3823555B2 JP23758598A JP23758598A JP3823555B2 JP 3823555 B2 JP3823555 B2 JP 3823555B2 JP 23758598 A JP23758598 A JP 23758598A JP 23758598 A JP23758598 A JP 23758598A JP 3823555 B2 JP3823555 B2 JP 3823555B2
Authority
JP
Japan
Prior art keywords
coil
conductor portion
conductor
slot
radial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23758598A
Other languages
Japanese (ja)
Other versions
JP2000069700A (en
Inventor
敏一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP23758598A priority Critical patent/JP3823555B2/en
Publication of JP2000069700A publication Critical patent/JP2000069700A/en
Application granted granted Critical
Publication of JP3823555B2 publication Critical patent/JP3823555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)
  • Synchronous Machinery (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回転電機の多相波巻き巻線に関する。
【0002】
【従来の技術】
モータ・発電機等の回転電機の固定子巻線や回転子巻線の巻装方法として、1磁極に所定巻数の導体を巻装し、巻装終了後、次の磁極に移る集中巻きと、導体を波状に巻装していく波巻きとが知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、集中巻きの場合、巻装を磁極毎に行っていくため製作に時間がかかる。また、波巻きの場合、回転電機に広く使用されている3相コイルを巻装する場合、コイルエンド部に重なりが生じるため、コイルエンド部のスペースが大きくなって回転電機の体格が増大してしまい、また、コイルエンド部の導体長の合計における抵抗電力損失が増大するという問題があった。
【0004】
本発明は、上記問題点に鑑みなされたものであり、コイルエンド部のスペースや抵抗電力損失の低減が可能な回転電機の多相波巻き巻線を提供することをその目的としている。
【0005】
【課題を解決するための手段】
本発明は、コアの各スロットに交互に挿通される往き導体部及び還り導体部からなるスロット導体部と、前記スロット導体部と一体に形成されて前記往き導体部及び還り導体部の同一側端部を接続してコイルエンドを構成する渡り導体部とからなる各相のコイル導体を波巻きしてなり、前記渡り導体部は、前記往き導体部の一端から周方向一方側へ延在するとともに軸方向外側へ延在する第1の重なり部と、前記還り導体部の一端から周方向他方側へ延在するとともに軸方向外側へ延在する第2の重なり部と、前記両重なり部よりも更に軸方向へ突出する先端部とを有し、前記両重なり部は、周方向に近接する他の渡り導体部と径方向に重なる回転電機の多相波巻き巻線において、前記先端部が、前記第1の重なり部の延在方向から前記第2の重なり部の延在方向へ直接向きを変え、前記渡り導体部の先端部の一端と他端とは、径方向へ前記渡り導体部の略径方向厚さ以上変位していることを特徴とする回転電機の多相波巻き巻線である。
本発明の回転電機の多相波巻き巻線において、渡り導体部の先端部の一端と他端とは径方向へ前記渡り導体部の略径方向厚さ以上変位しているので、プレス成形などで作製した各相のコイル導体をスロットに収容するだけで巻装をほとんど完了することができ、巻線機を用いてもしくは手作業で行っていた従来の複雑な巻装工程に対し巻装が格段に簡素となる。
【0006】
また、従来のコイル導体の渡り導体部を湾曲成形するのに比較して各渡り導体部の三次元形状をほとんど等しくすることができ、かつ、同一形状に塑性変形された各渡り導体部を周方向に順次ずらして配置することによりコイルエンドを作成することができるので、コイルエンドを従来より格段に小型化(特にその径方向へ縮小)することができ、かつ、渡り導体部の無駄な配線延長による抵抗電力損失も生じず、コイルエンドにおける各渡り導体部間の間隙も一定となるので渡り導体部の一部が冷却しにくいという不具合も生じない。
【0007】
請求項2記載の構成によれば請求項1記載の回転電機の多相波巻き巻線において更に、渡り導体部の先端部は、径方向へ渡り導体部の略径方向厚さ以上の段差を有するので、段差以外の部位は径方向に塑性あるいは弾性変形する必要がなく、コイル導体の製造、組み付けが容易となる。
請求項3記載の構成によれば請求項1又は2記載の回転電機の多相波巻き巻線において更に、コイル導体は、コアの径方向が厚さ方向に一致する姿勢を保持しつつ線状導体薄板を塑性変形して形成されているので、段差形成が容易であり、コイル導体の製造が容易となる。
【0008】
請求項4記載の構成によれば請求項1乃至3のいずれか記載の回転電機の多相波巻き巻線において更に、コイル導体はコアの径方向に薄く周方向に広い略角形形状を有し、少なくともコイル導体を挿入する時点でスロットの開口幅より狭い幅を有するので、あらかじめ成形されたコイル導体のスロット導体部を径方向へ押し入れるだけで巻線作業をほとんど完了することができる。なお、スロット導体部をスロットへ挿入した後、スロットの開口を狭搾してもよい。
【0009】
【発明を実施するための態様】
本発明の好適な態様を以下の実施例により説明する。なお、本発明の三相ステータコイルは、ステータコイルとしてだけではなく、ロータコイルとしても採用できることはもちろんである。
【0010】
【実施例1】
本発明の波巻き巻線を固定子巻線(ステータコイル)に適用した三相モータの実施例を説明する。図1はこのモータの固定子の平面図を示し、図2は正面図を示し、図3はコイル2の一部を示し、図5はコイル(三相ステータコイル)2の全体展開図を示す。
【0011】
1は薄板状の電極鋼板を積層した固定子コアで、内径側に開口する多数のスロットを有する。各スロット内には、星型接続された三相二層波巻き型の固定子コイル(以下、単にコイルともよぶ)2が巻装されており、スロット入り口部には、コイルのスロットからの飛出しを防止する板状のウエッジ4が嵌着されている。また、スロットの内周部にはコイル2とコア1とを絶縁するインシュレータ3が挿入されている。
【0012】
コイル2は、スロット内に挿入される直線状のスロット導体部21と、スロット導体部21と一体に形成される渡り導体部22とを有し、渡り導体部22の両端は、2スロット挟んだ両側のスロットに挿入される一対のスロット導体部21の同一端部に個別に接続されている。コイル2は、図1に示すように、三つの相コイル(コイル導体)2a、2b、2cからなり、スロット導体部21は、図3に示すように、各相コイル2a、2b、2cの始端からみて離れる往き方向へ延在する往き導体部21aと、各相コイル2a、2b、2cの始端からみて近づく還り方向へ延在する還り導体部21bとからなる。したがって、スロット両側のコイルエンドは、正確にはスロット導体部21の両側の端部と渡り導体部22とで構成され、各渡り導体部22は、図1に示すように、スロット導体部21に対して仮想円筒面上を周方向かつ軸方向へ延設されており、渡り導体部22の軸方向反コア側へ突出する中央部で径方向に渡り導体部22の厚さだけ径方向へ段差223を各一個づつ有する。
【0013】
以下、図3を参照してコイル2について更に詳しく説明する。
図3(a)は、成形済みで円筒状に湾曲させる前のコイル2のスロット挿入前の状態を示す部分平面図であり、図3(b)は、図3(a)に示す成形済みのコイル2の相コイル(コイル導体)21aをスロット導体部21の延設方向(x方向)にみた状態を示す正面図であり、図3(c)は、成形済みのコイル2をスロット導体部21の延設方向(x方向)にみた状態を示す正面図である。
【0014】
渡り導体部22は、円筒状に湾曲させる前において、同一コイル導体21aの隣接するスロット導体部21の往き導体部21aの一端とスロット導体部21の還り導体部21bの一端とを接続するために、スロット導体部21と同一平面上をx方向に対して斜めに延設されている。
渡り導体部22は、周方向に近接する他の渡り導体部22と径方向に重なる重なり部221と、重なり部221よりも更に軸方向へ突出する先端部222とを有し、先端部222の中央部に位置して径方向へ渡り導体部の略径方向厚さ以上の段差223を有している。
【0015】
このようにすれば、渡り導体部22の厚さの略2倍の厚さにコイルエンドの厚さを圧縮することができ、しかも、コイルエンドの軸方向突出寸法も短縮することができる。更に、コイル2を成形後、スロットに挿入することができ、コイル組み付け工程を簡素化することができる。
コイル2は、1スロットピッチずつ離れて平行に配列された6本のコイル導体23〜28を有し、コイル導体23、27が相コイル2aを構成し、コイル導体24、28が相コイル2bを構成し、コイル導体25、26が相コイル2cを構成している。各コイル導体23〜28は、固定子コア1の径方向に薄く周方向に広い略角形断面形状を有し、往き導体部21a及び還り導体部21bからなるスロット導体部21と、往き導体部21a及び還り導体部21bを接続する渡り導体部22とからなり、つづら折り状に屈曲されている。
【0016】
更に、6本のコイル導体23〜28の各始端部のうち、2、4、6番目の始端は互いに短絡されて中性点とされ、残る1、3、5番目の始端は、三相星型接続された各相コイル2a、2b、2cの端子をなす。
ただし、図5において段差223は図1に示すそれと異なる方向へ設けられている。
【0017】
(コイル2の成形)
以下、コイル2の成形組み付けについて以下に説明する。
まず、6本のコイル導体23〜28を1スロットピッチずつ離れて平行に配置する。スロット導体部21及び渡り導体部22はそれぞれ直線帯状に形成されており、渡り導体部22はスロット導体部21に対して適当な角度(ここでは約60度)で斜設されている。
【0018】
次に、図5に示すように、コイル導体23〜28の始端23〜28から数えて最初の6個の渡り導体部22を、最初のスロット導体部21が下となるように段差223を設け、これによりコイル導体23の二番目のスロット導体部21はコイル導体27の最初のスロット導体部21の上に重なり、以下同様に、コイル導体24の二番目のスロット導体部21はコイル導体28の最初のスロット導体部21の上に重なり、コイル導体26の二番目のスロット導体部21はコイル導体25の最初のスロット導体部21の上に重なる。
【0019】
以下、順次段差223を設け、6本のコイル導体23〜28を各スロットに2層に収容する。これにより各コイル導体23〜28は一周することになり、スロット内に2層に2ターン分のコイルが形成される。
次に、いままでと反対方向へ段差223を設けることにより、その後のスロット導体部21はスロット内で3、4層目に円滑に配置されることができ、6本のコイル導体23〜28を各スロットに4層に収容する。これにより、各コイル導体23〜28は次の一周を行うことになり、スロット内に4層に4ターン分のコイルが形成される。以下、必要なターン数が上記と同じ手順で作製される。
【0020】
次に、所定ターンを作製した後、図5に示すように、コイル導体23〜28の最終渡り導体部は、いままでの渡り導体部22に対して約半分の長さとされ、かつ、コイル導体27、25、28の最終渡り導体部22はコイル導体23、26、24の最終渡り導体部22と線対称方向に斜設される。その結果、図5に示すように、コイル導体23、27の最終渡り導体部22の先端部は重なり、コイル導体24、28の最終渡り導体部22の先端部は重なり、コイル導体25、26の最終渡り導体部22の先端部は重なり、これら重なり部分を溶接することにより、三相ステータコイルが形成されることになる。
【0021】
次に、上述のように作製されたコイル2を固定子コア1の各スロットに挿入される。なお、コイル導体202、204、206の始端を短絡して中性点とする。
(コアへの挿入)
次に、上述のようにして作製された三相ステータコイル2のステータコア1への挿入について図6、図7を参照して以下に説明する。
【0022】
ステータコア1は、スロット10の数に等しいだけそれぞれ同一形状に分割されたコア片11を図7に示すように組み合わせてなる。組み立てられた三相ステータコイル2は、図示しないコイル保持装置により保持されて図6に示す状態で固定されている。
三相ステータコイル2の径方向外側に位置してコア片保持装置が配置される。このコア片保持装置は、コア片11の数だけコア片挟持具を有し、各コア片挟持具は、三相ステータコイル2の径方向外側に周方向一定ピッチで配置され、各コア片11の両端面を軸方向に個別に挟持する。次に、各コア片挟持具を縮径方向へ一斉に等速移動させ、これにより各コア片11のティース12が各スロット導体部21の間に挿入されていく(図6参照)。その後、更に、各コア片11を縮径方向へ移動することにより最終的に図7に示すように、各コア片11は一個のステータコア1となる。最後に、外周面に露出して軸方向に延在する接合縁11cを軸方向に溶接してステータコア1を完成すると同時に三相ステータコイル2の巻装作業も終了する。
【0023】
この分割コア式のステータコア1は、上述した渡り導体部22の軸方向先端部に段差をもつ三相ステータコイル2と組み合わせた場合に、その巻装作業を簡素化できる点で特に実用性に優れている。更に、この実施例では、コア片11の外周部11aが周方向一方側に長く延在するので、隣接するコア片11同士の接触部11bの面積を大きくすることができ、その結果として、このコア片11同士の接触部11bにおける磁気抵抗を低減してモータ出力の大幅な向上を実現できるという優れた利点が生じる。
【0024】
なお、コア片11の外周部11aを図6、図7の実施例に示すよりも更に長く延長できることはもちろんであり、また、各コア片11の縮径に際して単純に求心方向へ動作させるだけでなく、いわゆる渦巻き状の動きで縮径させてもよいことはもちろんである。
【0025】
【実施例2】
他の実施例を図4を参照して説明する。ただし、理解を容易とするために主要機能が共通の構成要素には同一符号を付す。図4は、成形済みで円筒状に湾曲させる前のコイル2のスロット挿入前の状態を示す部分平面図である。
この変形例は、図3(a)に示すコイル2において、重なり部221よりも更に軸方向へ突出する先端部222が、4つの屈折部224この4つの屈折部224の順次屈折により渡り導体部22の厚さだけ、渡り導体部22を径方向(ここでは紙面直角方向)へ段差を稼いでいる。このようにすればこの部分の段差加工が容易となる。
【0026】
なお、先端部222の両端が径方向へその厚さ分だけ変位していればよいので、その間において連続的に変位させてもよい。
【0027】
【変形態様】
上述した実施例では、断面長方形の角形導体を用いたが、丸線を用いてもよい。また、導体を複数本周方向に並べて1本のコイル導体としてもよい。
また、渡り導体部22の折り曲げ方向は上記に限定されるものではなく、コイルエンド部の必要スペース増大を招くものの任意である。
【0028】
更に、コイル導体一本づつに段差223を設けておいて6本を編んでもよい。
【図面の簡単な説明】
【図1】 本発明の波巻き巻線を固定子巻線に適用した三相モータの実施例における固定子の平面図である。
【図2】 図1に示す固定子の正面図である。
【図3】 図3(a)は、成形済みで円筒状に湾曲させる前のコイル2のスロット挿入前の状態を示す部分平面図であり、図3(b)は、図3(a)に示す成形済みのコイル2の相コイル(コイル導体)21aをスロット導体部21の延設方向(x方向)にみた状態を示す正面図であり、図3(c)は、成形済みのコイル2をスロット導体部21の延設方向(x方向)にみた状態を示す正面図である。
【図4】 実施例2における成形済みで円筒状に湾曲させる前のコイル2のスロット挿入前の状態を示す部分平面図である。
【図5】 実施例1、2のコイル2の展開図である。
【図6】 分割式のステータコアへのコイル2の挿入動作を示す模式部分正面図(縮径状態)である。
【図7】 分割式のステータコアへのコイル2の挿入動作を示す模式部分正面図(縮径完了状態)である。
【符号の説明】
1は固定子コア、2はコイル、21はスロット導体部、22は渡り導体部、221は渡り導体部22の重なり部、222は渡り導体部22の先端部、223は渡り導体部22の段差
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multiphase wave winding of a rotating electrical machine.
[0002]
[Prior art]
As a winding method of a stator winding or a rotor winding of a rotating electrical machine such as a motor / generator, a conductor having a predetermined number of turns is wound around one magnetic pole, and after winding, concentrated winding that moves to the next magnetic pole, A wave winding in which a conductor is wound in a wave shape is known.
[0003]
[Problems to be solved by the invention]
However, in the case of concentrated winding, since winding is performed for each magnetic pole, production takes time. In addition, in the case of wave winding, when a three-phase coil widely used in a rotating electrical machine is wound, the coil end part is overlapped, so that the space of the coil end part becomes large and the physique of the rotating electrical machine increases. In addition, there is a problem that the resistance power loss in the total conductor length of the coil end portion increases.
[0004]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a multi-phase wave winding of a rotating electrical machine capable of reducing the space of a coil end portion and resistance power loss.
[0005]
[Means for Solving the Problems]
The present invention relates to a slot conductor portion composed of a forward conductor portion and a return conductor portion alternately inserted into each slot of the core, and the same side end of the forward conductor portion and the return conductor portion formed integrally with the slot conductor portion. A coil conductor of each phase composed of a connecting conductor part that constitutes a coil end by connecting the parts, and the connecting conductor part extends from one end of the forward conductor part to one side in the circumferential direction A first overlapping portion extending outward in the axial direction, a second overlapping portion extending from one end of the return conductor portion to the other circumferential side and extending outward in the axial direction, and both the overlapping portions Furthermore, in the multiphase wave winding of the rotating electrical machine that overlaps in the radial direction with the other crossing conductors that are close to each other in the circumferential direction, the tip part has a tip part that protrudes in the axial direction. The second direction from the extending direction of the first overlapping portion. The direction is changed directly in the extending direction of the overlapping portion, and one end and the other end of the leading end portion of the crossing conductor portion are displaced in the radial direction by a thickness greater than or equal to a substantially radial thickness of the crossing conductor portion. This is a multiphase wave winding of a rotating electrical machine.
In the multi-phase wave winding of the rotating electrical machine of the present invention, the one end and the other end of the front end portion of the transition conductor portion are displaced in the radial direction by a thickness greater than or equal to the thickness of the transition conductor portion. Winding can be almost completed simply by accommodating the coil conductors of each phase produced in the above in the slot, and the winding can be performed in comparison with the conventional complicated winding process that has been performed manually using a winding machine. It will be much simpler.
[0006]
In addition, the three-dimensional shape of each of the transition conductor portions can be made almost equal to that of the conventional case where the transition conductor portion of the coil conductor is curved, and each of the transition conductor portions plastically deformed to the same shape is surrounded by Since the coil ends can be created by sequentially shifting in the direction, the coil ends can be remarkably miniaturized (especially reduced in the radial direction) compared to the prior art, and wasteful wiring of the transition conductor portion Resistance power loss due to extension does not occur, and the gap between the respective transition conductor portions at the coil end is constant, so that there is no problem that it is difficult to cool part of the transition conductor portion.
[0007]
According to the second aspect of the present invention, in the multiphase wave winding of the rotating electric machine according to the first aspect, the leading end portion of the crossover conductor portion has a step larger than the radial thickness of the crossover conductor portion in the radial direction. Therefore, the portions other than the step need not be plastically or elastically deformed in the radial direction, and the coil conductor can be easily manufactured and assembled.
According to the configuration of claim 3, in the multiphase wave winding of the rotating electrical machine according to claim 1 or 2, the coil conductor is linear while maintaining a posture in which the radial direction of the core coincides with the thickness direction. Since the conductor thin plate is formed by plastic deformation, it is easy to form a step, and the coil conductor can be easily manufactured.
[0008]
According to the fourth aspect of the present invention, in the multiphase wave winding of the rotating electric machine according to any one of the first to third aspects, the coil conductor has a substantially square shape that is thin in the radial direction of the core and wide in the circumferential direction. Since the coil conductor has a width that is narrower than the opening width of the slot at least when the coil conductor is inserted, the winding operation can be almost completed by simply pushing the slot conductor portion of the coil conductor formed in advance in the radial direction. In addition, after inserting a slot conductor part into a slot, you may squeeze the opening of a slot.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of the invention are illustrated by the following examples. Of course, the three-phase stator coil of the present invention can be used not only as a stator coil but also as a rotor coil.
[0010]
[Example 1]
An embodiment of a three-phase motor in which the wave winding of the present invention is applied to a stator winding (stator coil) will be described. 1 shows a plan view of the stator of the motor, FIG. 2 shows a front view, FIG. 3 shows a part of the coil 2, and FIG. 5 shows an overall development view of the coil (three-phase stator coil) 2. .
[0011]
Reference numeral 1 denotes a stator core in which thin plate steel plates are laminated, and has a large number of slots opened on the inner diameter side. In each slot, a star-connected three-phase two-layer wave-type stator coil (hereinafter also simply referred to as a coil) 2 is wound. A plate-like wedge 4 for preventing the protrusion is fitted. An insulator 3 that insulates the coil 2 from the core 1 is inserted in the inner periphery of the slot.
[0012]
The coil 2 has a linear slot conductor portion 21 inserted into a slot and a transition conductor portion 22 formed integrally with the slot conductor portion 21, and both ends of the transition conductor portion 22 are sandwiched by two slots. They are individually connected to the same end of the pair of slot conductors 21 inserted into the slots on both sides. As shown in FIG. 1, the coil 2 is composed of three phase coils (coil conductors) 2a, 2b, and 2c, and the slot conductor portion 21 is the starting end of each phase coil 2a, 2b, and 2c, as shown in FIG. It consists of a forward conductor portion 21a extending in the forward direction as viewed from the side and a return conductor portion 21b extending in the return direction approaching from the start ends of the phase coils 2a, 2b, 2c. Therefore, the coil ends on both sides of the slot are precisely constituted by the end portions on both sides of the slot conductor portion 21 and the transition conductor portion 22, and each of the transition conductor portions 22 is connected to the slot conductor portion 21 as shown in FIG. On the other hand, it extends in the circumferential direction and the axial direction on the virtual cylindrical surface, and is a step in the radial direction by the thickness of the crossing conductor part 22 in the radial direction at the center part protruding to the axially opposite core side of the crossing conductor part 22. One 223 each.
[0013]
Hereinafter, the coil 2 will be described in more detail with reference to FIG.
FIG. 3A is a partial plan view showing a state before the slot insertion of the coil 2 that has been molded and is not curved into a cylindrical shape, and FIG. 3B is a diagram showing the molded state shown in FIG. FIG. 3C is a front view showing a state in which the phase coil (coil conductor) 21a of the coil 2 is viewed in the extending direction (x direction) of the slot conductor portion 21, and FIG. 3C shows the molded coil 2 in the slot conductor portion 21. It is a front view which shows the state seen in the extending direction (x direction).
[0014]
Before the transition conductor portion 22 is bent into a cylindrical shape, one end of the forward conductor portion 21a of the adjacent slot conductor portion 21 of the same coil conductor 21a and one end of the return conductor portion 21b of the slot conductor portion 21 are connected. The slot conductor portion 21 extends obliquely with respect to the x direction on the same plane.
The transition conductor portion 22 includes an overlapping portion 221 that overlaps with another transition conductor portion 22 that is adjacent in the circumferential direction in the radial direction, and a distal end portion 222 that protrudes further in the axial direction than the overlapping portion 221. It has a step 223 that is located in the central portion and extends in the radial direction and has a thickness equal to or greater than the thickness of the conductor portion.
[0015]
In this way, the thickness of the coil end can be compressed to approximately twice the thickness of the transition conductor portion 22, and the axial protruding dimension of the coil end can also be shortened. Furthermore, after the coil 2 is molded, it can be inserted into the slot, and the coil assembly process can be simplified.
The coil 2 includes six coil conductors 23 to 28 that are arranged in parallel at a distance of one slot pitch. The coil conductors 23 and 27 constitute the phase coil 2a, and the coil conductors 24 and 28 constitute the phase coil 2b. The coil conductors 25 and 26 constitute the phase coil 2c. Each of the coil conductors 23 to 28 has a substantially rectangular cross-sectional shape that is thin in the radial direction of the stator core 1 and wide in the circumferential direction, and includes a slot conductor portion 21 including an outward conductor portion 21a and a return conductor portion 21b, and an outward conductor portion 21a. And the transition conductor portion 22 connecting the return conductor portion 21b, and is bent in a zigzag manner.
[0016]
Furthermore, among the starting ends of the six coil conductors 23 to 28, the second, fourth, and sixth starting ends are short-circuited with each other to become a neutral point, and the remaining first, third, and fifth starting ends are three-phase stars. Terminals of the phase-connected coils 2a, 2b and 2c are formed.
However, in FIG. 5, the step 223 is provided in a direction different from that shown in FIG.
[0017]
(Molding of coil 2)
Hereinafter, the molding and assembling of the coil 2 will be described.
First, the six coil conductors 23 to 28 are arranged in parallel by being separated by one slot pitch. The slot conductor portion 21 and the transition conductor portion 22 are each formed in a straight strip shape, and the transition conductor portion 22 is obliquely provided with respect to the slot conductor portion 21 at an appropriate angle (here, about 60 degrees).
[0018]
Next, as shown in FIG. 5, the first six transition conductor portions 22 counted from the starting ends 23 to 28 of the coil conductors 23 to 28 are provided, and the step 223 is provided so that the first slot conductor portion 21 is located below. As a result, the second slot conductor portion 21 of the coil conductor 23 overlaps the first slot conductor portion 21 of the coil conductor 27, and similarly, the second slot conductor portion 21 of the coil conductor 24 corresponds to the coil conductor 28. The first slot conductor portion 21 overlaps the first slot conductor portion 21, and the second slot conductor portion 21 of the coil conductor 26 overlaps the first slot conductor portion 21 of the coil conductor 25.
[0019]
Hereinafter, the step 223 is sequentially provided, and the six coil conductors 23 to 28 are accommodated in two layers in each slot. As a result, each of the coil conductors 23 to 28 goes around, and a coil for two turns is formed in two layers in the slot.
Next, by providing a step 223 in the opposite direction to the conventional one, the subsequent slot conductor portion 21 can be smoothly arranged in the third and fourth layers in the slot, and the six coil conductors 23 to 28 are arranged. Each slot accommodates 4 layers. As a result, each of the coil conductors 23 to 28 performs the next round, and four turns of coils are formed in four layers in the slot. Thereafter, the necessary number of turns is produced by the same procedure as described above.
[0020]
Next, after making a predetermined turn, as shown in FIG. 5, the final transition conductor portion of the coil conductors 23 to 28 is about half the length of the current transition conductor portion 22, and the coil conductor The final crossover conductor portions 27 of 27, 25, and 28 are obliquely arranged in a line symmetrical direction with the final crossover conductor portions 22 of the coil conductors 23, 26, and 24. As a result, as shown in FIG. 5, the end portions of the last transition conductor portions 22 of the coil conductors 23 and 27 overlap, the end portions of the last transition conductor portions 22 of the coil conductors 24 and 28 overlap, and the coil conductors 25 and 26 The leading end portion of the final crossover conductor portion 22 overlaps, and a three-phase stator coil is formed by welding these overlapping portions.
[0021]
Next, the coil 2 manufactured as described above is inserted into each slot of the stator core 1. The starting ends of the coil conductors 202, 204, and 206 are short-circuited to be a neutral point.
(Insertion into the core)
Next, the insertion of the three-phase stator coil 2 manufactured as described above into the stator core 1 will be described below with reference to FIGS.
[0022]
The stator core 1 is formed by combining core pieces 11 that are divided into the same shape by the number of slots 10 as shown in FIG. The assembled three-phase stator coil 2 is held by a coil holding device (not shown) and fixed in the state shown in FIG.
A core piece holding device is disposed outside the three-phase stator coil 2 in the radial direction. This core piece holding device has as many core piece clamps as the number of core pieces 11, and each core piece clamp is arranged at a constant circumferential pitch outside the three-phase stator coil 2 in the radial direction. The both end faces of each are individually clamped in the axial direction. Next, each core piece clamping tool is moved simultaneously at a constant speed in the diameter reducing direction, whereby the teeth 12 of each core piece 11 are inserted between the slot conductor portions 21 (see FIG. 6). After that, by further moving each core piece 11 in the diameter reducing direction, each core piece 11 finally becomes one stator core 1 as shown in FIG. Finally, the joint edge 11c exposed to the outer peripheral surface and extending in the axial direction is welded in the axial direction to complete the stator core 1, and at the same time, the winding operation of the three-phase stator coil 2 is completed.
[0023]
This split core type stator core 1 is excellent in practicality in that the winding work can be simplified when combined with the above-described three-phase stator coil 2 having a step at the tip end in the axial direction of the transition conductor portion 22. ing. Furthermore, in this embodiment, since the outer peripheral portion 11a of the core piece 11 extends long in one side in the circumferential direction, the area of the contact portion 11b between the adjacent core pieces 11 can be increased. There is an excellent advantage that the magnetic resistance at the contact portion 11b between the core pieces 11 can be reduced to realize a great improvement in motor output.
[0024]
Of course, the outer peripheral portion 11a of the core piece 11 can be extended longer than shown in the embodiments of FIGS. 6 and 7, and when the diameter of each core piece 11 is reduced, it is simply moved in the centripetal direction. Of course, the diameter may be reduced by a so-called spiral motion.
[0025]
[Example 2]
Another embodiment will be described with reference to FIG. However, in order to facilitate understanding, components having common main functions are denoted by the same reference numerals. FIG. 4 is a partial plan view showing a state of the coil 2 before being inserted into the slot before being bent into a cylindrical shape.
In this modification, in the coil 2 shown in FIG. 3A, the tip end portion 222 that protrudes further in the axial direction than the overlapping portion 221 has four refracting portions 224. The crossing conductor portion 22 is stepped in the radial direction (here, the direction perpendicular to the paper surface) by the thickness of 22. In this way, the step processing of this portion becomes easy.
[0026]
In addition, since both ends of the front-end | tip part 222 should just be displaced by the thickness by radial direction, you may displace continuously in the meantime.
[0027]
[Modification]
In the above-described embodiment, a rectangular conductor having a rectangular cross section is used, but a round wire may be used. Alternatively, a plurality of conductors may be arranged in the circumferential direction to form one coil conductor.
Moreover, the bending direction of the crossing conductor part 22 is not limited to the above, but is arbitrary although it increases the necessary space of the coil end part.
[0028]
Further, six steps may be knitted by providing a step 223 for each coil conductor.
[Brief description of the drawings]
FIG. 1 is a plan view of a stator in an embodiment of a three-phase motor in which a wave winding of the present invention is applied to a stator winding.
FIG. 2 is a front view of the stator shown in FIG.
FIG. 3 (a) is a partial plan view showing a state before the slot insertion of the coil 2 which has been molded and before being bent into a cylindrical shape, and FIG. 3 (b) is a plan view of FIG. 3 (a). FIG. 3C is a front view showing a state in which the phase coil (coil conductor) 21a of the formed coil 2 shown is viewed in the extending direction (x direction) of the slot conductor portion 21, and FIG. FIG. 4 is a front view showing a state of the slot conductor portion 21 as viewed in the extending direction (x direction).
FIG. 4 is a partial plan view showing a state of the coil 2 before being inserted into a slot before being bent into a cylindrical shape in Example 2.
FIG. 5 is a development view of the coil 2 according to the first and second embodiments.
FIG. 6 is a schematic partial front view (diameter-reduced state) showing the operation of inserting the coil 2 into the split stator core.
FIG. 7 is a schematic partial front view (diameter reduction completed state) showing an operation of inserting a coil 2 into a split stator core.
[Explanation of symbols]
1 is a stator core, 2 is a coil, 21 is a slot conductor part, 22 is a transition conductor part, 221 is an overlapping part of the transition conductor part 22, 222 is a tip part of the transition conductor part 22, 223 is a step of the transition conductor part 22

Claims (4)

コアの各スロットに交互に挿通される往き導体部及び還り導体部からなるスロット導体部と、前記スロット導体部と一体に形成されて前記往き導体部及び還り導体部の同一側端部を接続してコイルエンドを構成する渡り導体部とからなる各相のコイル導体を波巻きしてなり、前記渡り導体部は、前記往き導体部の一端から周方向一方側へ延在するとともに軸方向外側へ延在する第1の重なり部と、前記還り導体部の一端から周方向他方側へ延在するとともに軸方向外側へ延在する第2の重なり部と、前記重なり部よりも更に軸方向へ突出する先端部とを有し、前記両重なり部は、周方向に近接する他の渡り導体部と径方向に重なる回転電機の多相波巻き巻線において、
前記先端部は、前記第1の重なり部の延在方向から前記第2の重なり部の延在方向へ直接向きを変え、
前記渡り導体部の先端部の一端と他端とは、径方向へ前記渡り導体部の略径方向厚さ以上変位していることを特徴とする回転電機の多相波巻き巻線。
A slot conductor portion composed of a forward conductor portion and a return conductor portion that are alternately inserted into each slot of the core and an end portion on the same side of the forward conductor portion and the return conductor portion that are formed integrally with the slot conductor portion. Coil conductors of each phase consisting of a transition conductor portion constituting a coil end, and the transition conductor portion extends from one end of the forward conductor portion to one side in the circumferential direction and outward in the axial direction. A first overlapping portion that extends, a second overlapping portion that extends from one end of the return conductor portion to the other circumferential side and extends outward in the axial direction, and more axially than the two overlapping portions. possess a distal end which projects, said both overlapping portions, in the multi-phase wave wound coils of a rotary electric machine overlapping the other bridging conductor portion and the radial direction toward the circumferential direction,
The tip portion directly changes direction from the extending direction of the first overlapping portion to the extending direction of the second overlapping portion,
One end and the other end of the front-end | tip part of the said crossing conductor part are displaced more than the substantially radial direction thickness of the said crossing conductor part to radial direction, The multiphase wave winding of the rotary electric machine characterized by the above-mentioned.
請求項1記載の回転電機の多相波巻き巻線において、
前記渡り導体部の先端部は、径方向へ前記渡り導体部の略径方向厚さ以上の段差を有することを特徴とする回転電機の多相波巻き巻線。
In the multi-phase wave winding of the rotating electrical machine according to claim 1,
The multiphase wave winding of a rotating electrical machine, wherein a tip end portion of the transition conductor portion has a step in a radial direction that is equal to or greater than a thickness of the transition conductor portion in a substantially radial direction.
請求項1又は2記載の回転電機の多相波巻き巻線において、
前記コイル導体は、コアの径方向が厚さ方向に一致する姿勢を保持しつつ線状導体薄板を塑性変形して形成されていることを特徴とする回転電機の多相波巻き巻線。
In the multiphase wave winding of the rotating electrical machine according to claim 1 or 2,
The multi-phase wave winding of a rotating electrical machine, wherein the coil conductor is formed by plastic deformation of a linear conductor thin plate while maintaining a posture in which a radial direction of a core coincides with a thickness direction.
請求項1乃至3のいずれか記載の回転電機の多相波巻き巻線において、
前記コイル導体は、前記コアの径方向に薄く、周方向に広い略角形断面形状を有し、かつ、前記スロットの開口幅より狭い幅を有することを特徴とする回転電機の多相波巻き巻線。
In the multi-phase wave winding of the rotating electrical machine according to any one of claims 1 to 3,
The coil conductor has a substantially square cross-sectional shape that is thin in the radial direction of the core and wide in the circumferential direction, and has a width that is narrower than the opening width of the slot. line.
JP23758598A 1998-08-24 1998-08-24 Multi-phase wave winding of rotating electrical machine Expired - Fee Related JP3823555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23758598A JP3823555B2 (en) 1998-08-24 1998-08-24 Multi-phase wave winding of rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23758598A JP3823555B2 (en) 1998-08-24 1998-08-24 Multi-phase wave winding of rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2000069700A JP2000069700A (en) 2000-03-03
JP3823555B2 true JP3823555B2 (en) 2006-09-20

Family

ID=17017509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23758598A Expired - Fee Related JP3823555B2 (en) 1998-08-24 1998-08-24 Multi-phase wave winding of rotating electrical machine

Country Status (1)

Country Link
JP (1) JP3823555B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2009768A2 (en) 2007-06-29 2008-12-31 Hitachi Ltd. Rotation electric machine having a wave winding coil with cranked crossover conductor, distributed winding stator, and method and apparatus for forming same
CN102282745A (en) * 2009-09-30 2011-12-14 丰田自动车株式会社 Stator and method of manufacturing same
US9712010B2 (en) 2010-10-14 2017-07-18 Toyota Jidosha Kabushiki Kaisha Motor having a cage wave stator winding

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3476416B2 (en) * 1999-12-24 2003-12-10 三菱電機株式会社 AC generator
JP4688003B2 (en) * 2007-03-05 2011-05-25 株式会社デンソー Rotating electric machine stator and rotating electric machine using the same
JP5352979B2 (en) * 2007-09-20 2013-11-27 株式会社デンソー Stator for rotating electric machine and method for manufacturing the same
JP4479788B2 (en) 2007-12-20 2010-06-09 株式会社デンソー Coil forming method and coil forming die
JP2010119241A (en) 2008-11-13 2010-05-27 Toyota Motor Corp Stator and coil
JP2010166802A (en) * 2008-12-15 2010-07-29 Denso Corp Stator for rotating electrical machine
JP5471389B2 (en) * 2008-12-15 2014-04-16 株式会社デンソー Rotating electric machine stator
JP5195403B2 (en) * 2008-12-25 2013-05-08 トヨタ自動車株式会社 Stator and coil cage
WO2011039866A1 (en) 2009-09-30 2011-04-07 トヨタ自動車株式会社 Method of and device for forming flat conductor for use in cage-like distributed winding coil
JP5741955B2 (en) * 2012-02-20 2015-07-01 株式会社デンソー Coil wire and coil wire bundle using the same
JP5828919B2 (en) * 2014-01-15 2015-12-09 三菱電機株式会社 Manufacturing method of rotating electrical machine for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2009768A2 (en) 2007-06-29 2008-12-31 Hitachi Ltd. Rotation electric machine having a wave winding coil with cranked crossover conductor, distributed winding stator, and method and apparatus for forming same
CN102282745A (en) * 2009-09-30 2011-12-14 丰田自动车株式会社 Stator and method of manufacturing same
CN102282745B (en) * 2009-09-30 2013-12-04 丰田自动车株式会社 Stator and method of manufacturing same
US9712010B2 (en) 2010-10-14 2017-07-18 Toyota Jidosha Kabushiki Kaisha Motor having a cage wave stator winding

Also Published As

Publication number Publication date
JP2000069700A (en) 2000-03-03

Similar Documents

Publication Publication Date Title
JP3952346B2 (en) Rotating electric machine and manufacturing method thereof
JP4546112B2 (en) Rotating electric machine
JP3740421B2 (en) Connection method between rotating electric machine and stator lead
JP5704394B2 (en) Rotating electric machine stator
JP3823555B2 (en) Multi-phase wave winding of rotating electrical machine
JP3752431B2 (en) Rotating electric machine and manufacturing method thereof
US8082653B2 (en) Method of producing coil made up of rectangular wave-shaped windings
JP3586186B2 (en) Rotating machine stator
JP2003333783A (en) Electric rotating machine
JP2008253063A (en) Stator for motor and manufacturing method therefor
JP3903609B2 (en) Wave winding coil of rotating electric machine and method for manufacturing the same
JP3310971B2 (en) AC generator manufacturing method
JPH10501957A (en) Multi-phase electrical machine with bonded conductor lanes
JP2010142019A (en) Polyphase wave winding of rotary electric machine and method of manufacturing the same
JP3823556B2 (en) Wave winding coil of rotating electric machine and method for manufacturing the same
JP2005051999A (en) Stator of rotary electric machine
JP2006191733A (en) Winding connecting structure of rotating electric machine
JP5909790B2 (en) Rotating electric machine, rotating electric stator and vehicle
JP3977138B2 (en) Rotating electric machine
WO2014157621A1 (en) Stator structure
CN118318373A (en) Shaped conductor for a winding of an active part of a rotating electrical machine, active part of a rotating electrical machine and associated production method
JP5009181B2 (en) Short-circuit member, commutator, armature, and method for manufacturing short-circuit member
JP2000184632A (en) Electric rotating machine and its manufacture
JP2007166751A (en) Method for manufacturing stator of rotary electric machine
JP2010154619A (en) Manufacturing method of armature and armature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees