JP4536944B2 - V-belt press vulcanizing apparatus and vulcanizing method thereof - Google Patents

V-belt press vulcanizing apparatus and vulcanizing method thereof Download PDF

Info

Publication number
JP4536944B2
JP4536944B2 JP2001054547A JP2001054547A JP4536944B2 JP 4536944 B2 JP4536944 B2 JP 4536944B2 JP 2001054547 A JP2001054547 A JP 2001054547A JP 2001054547 A JP2001054547 A JP 2001054547A JP 4536944 B2 JP4536944 B2 JP 4536944B2
Authority
JP
Japan
Prior art keywords
belt
cooling
temperature
vulcanization
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001054547A
Other languages
Japanese (ja)
Other versions
JP2002254438A (en
Inventor
稔 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2001054547A priority Critical patent/JP4536944B2/en
Publication of JP2002254438A publication Critical patent/JP2002254438A/en
Application granted granted Critical
Publication of JP4536944B2 publication Critical patent/JP4536944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、横断面が台形状で且つカバー帆布で被覆されたいわゆるVベルトの未加硫品を、一対のVプーリ車間に複数本を懸架して、その円周部分を金型で狭圧加硫し複数回位置をずらせて繰り返し全周を加硫して、続いて張架して冷却処理を行うプレス加硫装置及びそのプレス加硫方法に関する。詳しくはこの冷却処理工程で、全周加硫直後に加硫順番により残留温度差が階段状に分布する冷却ベルトの冷却延べ時間を短縮し生産性並びに冷却水滴の飛散を解消して作業環境と保全性等の向上を行うものである。
【0002】
【従来の技術】
従来のVベルトのプレス加硫装置に係わるものとして、特公昭45−34694号公報に記載され提案されている。これによれば、ポリエステル心線を用いたVベルトを焼きなまして、ベルトの伸びや収縮を制御することにあった。
【0003】
このベルト処理装置は、ベルト製造後で焼きなまし工程を単独で専用工程として、ベルト処理するものである。一方では本例の如くプレス加硫時に冷却処理工程を抱き合わせて一体工程で構成して、同様に処理する実施形態も用いられた。先のベルト処理装置はベルトを加熱して、そのベルトを長手方向に引き伸ばして引き続いて冷却して、引き伸ばした状態を保持するものである。この冷却では、複数本のVベルトを一対のVプーリ車間に張架して、一定速度で走行するベルト上に冷却水管の細孔等から水をシャワリングして所定温度に冷却をするものであった(図9参照)。これによって、取り外し後の寸法安定性に優れたVベルトを製造するものである。
【0004】
【発明が解決しようとする課題】
しかしながら、以上のような従来のVベルトのプレス加硫装置では、加硫完了直後のベルト温度は全周方向で階段状の温度分布を持っていて、加硫直後の部分が最も高く、最初に加硫を済ませた部分が最も低くなる。つまり冷却開始時のベルトの温度はベルト全周にわたって、加硫の順番毎にその後の放冷時間が異なりその残存温度を異にしているのである。ところがその冷却に当たっては、従来から、高温部も比較的低温部も同等に冷却するので、とりわけ高温部の冷却が不足し、冷却延べ時間を要している。この事からベルトを製造するサイクル時間が長く、生産性を阻害し、また冷却水をシャワリングすることから水滴の飛散による作業環境不良や周辺機器の保全性をも阻害している。
【0005】
本発明の目的は、以上の諸問題を改良して加硫後のベルト冷却処理時間を短縮し生産性の向上を図り、同時に冷却手段を改質して水滴の発生を抑えて作業環境改善や設備発錆防止を行い保全費も低減できるVベルトのプレス加硫装置及びそのプレス加硫方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記問題を解決する請求項1記載のVベルトのプレス加硫装置は、張力付与手段と走行手段を備え冷却ゾーンと加硫ゾーン間を移動手段によって往複動する一対のVプーリ車と、前記一対のVプーリ車間に懸架した複数本のベルトの上下各列を熱い金型で挟圧する熱盤を備えたプレス加硫部と、ブース手段を備えたベルト冷却部と、更に冷却走行するベルトの温度を常時検出し、ベルト走行速度を調整する調整手段と、からなることを特徴とするものである。
これにより、冷却空間が周囲から隔離出来るので、冷風が効果的に活用出来る。同時に水滴の飛散を阻止出来るし、局部的に排気系も容易に設置できる。
【0007】
請求項1記載の発明では、更にベルトの温度分布をリアルに検出して、冷却部を通過するベルトの走行速度が調整出来る。つまりベルトの温度基準で、ベルトの高温部位を局所的に且つ集中的に冷却調整出来るので、加硫順番によりベルトの周上で温度が階段状に異なる加硫後のベルトを、冷却を差別調整して、冷却源の性能容量を制御する事もなく、簡単に精度良く早く、均一温度まで冷却が出来る。
【0008】
請求項2記載のVベルトのプレス加硫成形装置は請求項1において、前記ブース手段を備えたベルト冷却部が、少なくとも霧水噴霧と冷風導入を具備したものである。
これにより、高温部に触れた霧水は瞬時に気化蒸発して、水の飛散が無い。同時に上方噴霧も飛散無く容易にできるから、ベルトの裏からも好適に冷却できる。従って、過剰な冷却水も阻止できてランニングロスも少ない。
【0009】
請求項3記載のVベルトプレス加硫成形装置は、複数本の未加硫のVベルトを一対のVプーリ車間に懸架し、その上下各列のVベルトを熱い金型で挟んでプレス加硫し順に複数回位置をずらせて全周を加硫し、続いて一対のVプーリ車間に張架してVプーリ車間を走行させながら冷却ブースを用いベルトの表裏から同時に冷却するとともに、前記一対のVプーリ車間に張架し、冷却走行するベルトの温度を常時検出してベルト走行速度を調整するようにしたことを特徴とするものである。
これにより、冷却接触面積がベルト上面に加え、台形状の底面側も冷却出来ることになり、冷却能力が賄える。
【0010】
更に、請求項3記載のVベルトプレス加硫成形方法は、前記一対のVプーリ車間に張架し、冷却走行するベルトの温度を常時検出してベルト走行速度を調整する様にしたものである。これにより、請求項1の装置と共にベルトの冷却工程を、ベルトの温度に基づいて冷却出来る。つまりベルトの高温部位を局所的に且つ集中的に冷却調整出来るので、冷却時間も短くして、各サイズに最適に対応できて、精度良く、均一温度まで冷却が出来る。
【0011】
【発明の実施の形態】
本発明のVベルトのプレス加硫装置及びそのプレス加硫方法の実施形態について、図1〜図9を参照して説明する。先ず、図1は、Vベルトのプレス加硫装置1の全体正面図を示しており、図2はその側面図で、図3はその上面図である。
【0012】
このVベルトのプレス加硫装置1は図1で明らかなように、帆布でカバー被覆し成形した未加硫のVベルト2の複数本を、一対のVプーリ車5a、5b間に懸架し、そのVプーリ車5間に配設して金型を装着した上熱盤41、中熱盤42,下熱盤43を有したプレス加硫部8で、そのVベルト2の上列V1と下列V2の二箇所を同時に挟圧して加硫し、その部位の加硫が終わると加硫終了幅をずらせて順に挟圧位置を変えて加硫を繰り返し、1周して全周の加硫を行う(図9参照)。
【0013】
前述の全周の加硫が終わったところで、続いて一対のVプーリ車5間にVベルト2を懸架した状態で、冷却ゾーンZ1に横移動(図1のプレス前方へ)して、Vプーリ車5間を所定の軸間距離に張架し、駆動プーリー5aを回転させてこのVプーリ車5間でVベルト2を走行させて、40℃まで冷却処理を行って、ポリエステル心線で寸法安定性に優れたVベルトを製造するものである。
【0014】
また、このVベルトのプレス加硫成形装置1は、一対のVプーリ車5a、5bと、プレス加硫部8と、冷却部9とを備えてなるものである。
【0015】
先ず、一対のVプーリ車5は、駆動プーリー車5aと従動プーリー車5bで一対をなして、張力付与手段と、走行手段と、移動手段とを具備した構成である。
【0016】
このVプーリ車5a、5bの軸芯は平行で水平に調整してある。この両Vプーリー車5の外周には、Vベルト2の断面寸法に合致する複数本の台形溝が刻んであり、Vベルト2を懸架時はこの対面する溝に案内されて互いに平行に整列して位置決めができる。また後述のプレス加硫部8で加硫用の中熱盤42の上面及び下面にはVベルトの断面形状である台形溝が走行芯に合わせて加工してあり、一対のVプーリ車5の複数の台形溝と合致するように位置合わせがしてある。ベルト断面サイズの異なるベルトを加硫する際は、これらのVプーリー車5と上中下熱盤41,42,43を1式段取り替えを行う。
【0017】
次に、Vプーリ車5a、5bの張力付与手段は、図1に示す一体フレーム20上で互いに左右方向に移動する作動で構成されており、この対面する両プーリ車5の軸間距離を大きくする動作で行う。左右方向に作動芯を合わせてリニア-レール23が配設して有り、長手移動テーブル21がリニアーボール軸受22を介して案内される。この駆動は一体フレーム20に支持した2本のボールスクリュウ軸受24(図3参照)をモーター26で伝動チェーン25を用いて回転駆動(図2参照)し、そのボールスクリュウに噛み合う移動ナットに締結した長手移動テーブル21を押し引きして行うものである。
【0018】
Vプーリ車5の各車軸はビーム体34に連結し両端を軸受支持されてベルト伸張力に耐えられる様にしてある。但しこの手前側の軸受はVベルト2の装填取り出し側であり、連結腕体36を押し引きと首振りさせて開放出来る。
【0019】
続いて、Vプーリ車5a、5bの走行手段は、駆動プーリー車5aが回転して両プーリー車5間に懸架又張架したVベルトが走行するもので、駆動プーリー車5aには駆動モーター51が装着してあり回転駆動出来る(図2参照)。
【0020】
更に、Vプーリ車5a、5bの移動手段は、図3の上面図で示す様に前述の長手方向に懸架された状態で、加硫ゾーンZ2(加硫時の位置)と冷却ゾーンZ1(冷却時の位置並びにベルト脱着位置)との間を前後移動するものである。
【0021】
この前後移動については、前後摺動レール31に装着した前後移動台32を摺動用シリンダー37を伸縮させて押し引きして行う。前進端では冷却ゾーンZ1の位置決めとVベルト2の掛け外しが出来る。後進端では中熱盤42をベルト2の上列V1と下列V2で挟む様にプレス加硫部8に移動して、中熱盤42の台形溝にVベルト2を位置決めして、プレス加硫が可能にしてある。
【0022】
一対のVプーリ車5の各プーリー5a、5bはそれぞれプレス加硫部8を中央において、図1の左右にそれぞれ位置し対照的な機構で構成してあり、摺動台32上に支柱33で支持したビーム体34から両端軸を水平に回転支持している。一対のVプーリ車5へのベルト2の掛け外しの際は、前述の様に手前側の支持は連結腕体36の支持を開放してVベルト2の脱着が行える。横移動台32は長手移動テーブル21上に締結した摺動レール31に装着してある。
【0023】
次にプレス加硫部8は、図1で正面図を示す様に、一対のVプーリ車5間の中央に配設してある。このプーリー車5間に懸架したベルトの上列V1と下列V2を同時にプレスして加圧加熱し加硫を行う。これは上下列の間に固定した中熱盤42とこの上方に位置した上熱盤41との間でベルトの上列V1をシリンダー45の伸張でプレスすると同様に、中熱盤42とこの下方に位置した下熱盤43との間でベルトの下列V2をシリンダー46の伸張でプレスして行うものである。
【0024】
未加硫のVベルト2の一部分の加硫が終わると、ほぼ熱盤幅に相当する位置ずらしを、Vプーリ車5間で回転駆動させて行い、これを順に繰り返して全周にわたって加硫する(図9参照)。この加硫毎の繋ぎ目に当たる加硫の境目は過加硫にならぬようにしてある。
【0025】
更にベルト冷却部9については、加硫終了に伴い、Vベルト2が一対のVプーリ車5間に懸架されて冷却ゾーンZ1に横移動(図3参照)して、所定の軸間距離に張架し回転モーター51で駆動プーリー車5aを回転駆動して、加硫の終わったVベルト2を走行させる。この走行ベルト2の冷却処理に、以下のブース手段15(図6,7参照)を備えるものである。
【0026】
以下本発明に係わる装置内容について詳述する。ブース手段15を備えたベルト冷却部9について図4、6、7を用いて説明する。図4はベルト冷却部の配置模式図とベルト走行速度の調整手段の構成図であり、図6はベルト冷却部のブース手段の側面断面図でベルト表裏に噴霧する2流体ノズル配置を示しており、図7は同じくブース手段の正面断面図で霧水噴射と冷風導入の構成を示している。
【0027】
ベルト冷却部9は、図4のように一対のVプーリ車5間で走行するベルト2の上列V1と下列V2を上下から挟むように(図6,7参照)ブース手段15を配設して構成され、その内部空間がベルト冷却部9である。この時、走行するベルト2は、一対のVプーリ車5と共に図3の冷却ゾーンZ1に移動している。
【0028】
次に走行するベルト2の上下列に設けたブース手段15は、図6、7にその側面及び正面断面にて示す構成としてあり、内部は冷却手段14を収納した箱形形状でベルト冷却部9を形成しており、その中央のスリット状の開口部を貫通してVベルト2の上列V1を走行させる。更にVベルト2の下列V2にも同様に設けてある。上下列の各冷却手段14の配置は、プレス加硫を上下列で同時に行った部位どうしを対応させ、同じタイミングで冷却出来る位置関係に合致させる様に位置決めしてある。
【0029】
続いて、冷却手段14は、霧状のモイスチャーミストの噴霧とブース内に導入した冷風64が用いてある。霧状のモイスチャーミストは、二流体噴霧ノズル60に加圧空気と加圧冷却水を供給して生成する。同時にブース内に導入した冷風は、空気熱交換機(図示しない)で冷却した冷気を用いている。
【0030】
更に図6,7に示すように上列v1には霧状のモイスチャーミストを走行ベルト2の裏面側へも効果的に噴射させてある。下列v2も同様にしてある。次に図4、5を用いて、一対のベルト走行速度の調整手段について説明する。図4は、ベルト冷却部の配置模式図とベルト走行速度の調整手段の構成図である。図5は、調整手段の調整フロー図である。
【0031】
先に、説明したように加硫が完了すると、冷却処理が始まる。一対のVプーリ車5に懸架したVベルト2を加硫ゾーンz2から冷却ゾーンz1に移動する。同時に一対のVプーリ車5間で、所定の軸間距離に伸張設定して、回転走行を始める。
【0032】
前述のブース手段15を備えたベルト冷却部9が、冷却手段14を収容して、図4に示す様にVベルト2を一対のVプーリ車5間で冷却させながら走行するようにしてある。次に、更にこの走行するVベルト2の表面温度を検出して、以下のようにベルト走行速度を自在に調整して冷却を行うものである。
【0033】
調整手段17は図4に示すが、走行ベルト2の温度を検出する温度検出手段18と、駆動プーリ車5aを回転駆動する回転制御手段19で構成してある。温度検出手段18は温度センサー63と、温度コントローラー65から構成され、回転制御手段19はモータ51を回転制御するドライバーと後述する制御プログラムで構成してある。
【0034】
温度センサー63は、非接触タイプの放射温度計を用いて、上下何れかの冷却ブース手段15の入口と出口近傍に設置してベルト2の温度を検出し、どちらか高い温度を基に冷却走行調節を行うものである。温度計は必ずしも非接触タイプに限らず、接触タイプを接離自在の機構と組み合わせることもできる。冷却ブース手段15は上下列に分割設置されるが、上下列の何れかで温度検出して走行調節するものである。
【0035】
以上のように、Vベルト2の表面温度を検出して、その温度差に応じ、冷却ブース手段15内を通過するベルト走行速度を、予め求めた速度に調整する速度制御を行うもので好適に冷却が出来る。
【0036】
次に、Vベルトのプレス加硫成形装置1の作動について説明する。なお、装置1は、冷却ゾーンz1(図3参照)でもある図2の左方側で一対のVプーリー車5を備えて、前回のサイクルが終了してVベルトを取り外した、非作動の状態を原位置とし、プレス各熱盤は所定温度を条件を充たしている。
(1)先ず、未加硫ベルト2の長さに合わせて、一対のVプーリ車5である駆動プーリー車5aと従動プーリー車5bを所定位置に移動させる。
(2)複数本の未加硫ベルト2を、駆動プーリー5aと従動プーリー5bの各対向する台形溝に嵌め込み挿入して懸架する。
(3)各プーリ車5を移動して適当な張りを持たせる。そして一対のVプーリー車5を横移動して、加硫機の上中下の熱盤間に未加硫ベルト2を位置決めしてプレスし、加硫に入る。
(4)所定の加硫時間後、プレスを開放して、続く未加硫ベルト2部分に位置をずらせて同様に加硫を行い、これを繰り返して全周を加硫させる。
【0037】
(5)全周の加硫が終了すると、一対のVプーリ車5間に懸架された状態で冷却ゾーンz1へ横移動をして図2の左方側に位置決めする。
(6)冷却ブース手段15を退避位置から所定冷却位置にセットする。
(7)操作スイッチを冷却モードに切り替える。
(8)冷却ブース15の入り口に取り付けた温度検出器63により、ブース内に入ろうとするベルト温度を検出してその温度に応じて、予め求めてある冷却ブース内の通過速度にモーター回転を制御し調整する。
(9)温度センサー63で検出した温度が、ベルト全周で定められた温度以下になって、冷却が終了しランプが点灯する。
(10)冷却ブース手段15を後退させる。
(11)Vプーリ車5をベルトが緩む方向に移動させて、一対のVプーリ車5のそれぞれの正面側の軸受(図1参照)の連結腕体36を掛け外して開放し、加硫し冷却の終わった複数のVベルト2を取り出す。
【0038】
続いて、Vベルトのプレス加硫成形装置1におけるVベルトのプレス加硫方法について、図5、6、7を用いて説明する。先ず、加硫工程が終了して、一対のVプーリ車5が図2の左方位置つまり冷却ゾーンz1に移動して、一対のVプーリ車5間に加硫ベルト2を張架して回転走行し冷却が始まる。この時、ベルト2の温度分布は、図9に示す様に、加硫取り出し温度の140℃から冷却完了の40℃の間で加硫順番により階段状の温度構成になっている。
【0039】
この様な、階段状の温度分布を持ったVベルト2を、所定の軸間距離に伸張設定して取り出し温度(40℃均一)迄、短時間で冷却するもので、冷却ブース内の通過時間を高温度箇所ほど長くして、つまりVベルト2の走行速度を遅くし、冷却延べ時間を短縮するものである。
【0040】
ベルトの温度をリアルタイムで検出してベルトの走行速度を調整する方法について、図5を用いて説明する。例えば、図9にはプレス熱盤温度148℃、加硫間隔20分、加硫位置ずらし計4回で一周加硫して冷却ゾーンz1に移動した時のベルトの表面温度を測定した場合を示している。階段状の温度分布は55、70、90、135℃となっている。図中の加硫位置別では、初回加硫位置(S1,S1’)で55℃、2回目加硫位置(S2,S2’)で70℃、3回目加硫位置(S3,S3’)で90℃、加硫終了直後の4回目加硫位置(S4,S4’)では135℃であった。
【0041】
以上の階段状の温度分布を持ったベルトを次のように走行速度を調整するものである。図5を用いて、説明する。STARTしてベルト表面の検出温度TbがT1以上では、走行速度VbをV1m/minで走行する(走行指令を回転モータのドライバーに与える)。TbがT1以下の時はT2,T3、T4の判定値に基づいて走行速度VbをV2、V3,V4の何れかを選択して走行自在に調整する。所定の冷却温度40℃に近づいて、TbがT4以下になると走行速度VbをVfとして、その位置からベルト1周の間、ベルト表面の検出温度Tbが所定温度40℃以下である事を判定して走行はSTOPする。
【0042】
以上図5は制御プログラムを示しており、制御盤内のCPUにインストールして作動する。加硫回数に対応した判定温度値とその温度に対応した走行速度を予め求めて、以上の如く検出温度基準で走行速度を変えて、調整するものである。
【0043】
なお、本発明のVベルトのプレス加硫成形装置及びプレス加硫成形方法では、図1〜図8に示すものに限定されず、例えば、次のような形態をとることができる。
(1)ブース手段15は、必ずしも一対のVプーリー車5間のベルト上列v1下列v2に限定することを要しない。ベルト上下列の片方の構成も採用できる。
(2)プーリー回転モーター51の回転をコントロールする制御手段19は、油圧モーターを用いて、油流量を制御弁で制御して変速自在とする構成も採用できる。
【0044】
【発明の効果】
請求項1に記載のVベルトのプレス加硫装置によれば、ベルト冷却部を周囲雰囲気からブース手段により物理的に隔離できるので、冷却用の冷風流体や霧状ミストを局部的に、重点的に噴射使用できる。つまり冷却源を広く求めることが出来る。同時に飛散や垂れ流しを阻止できる。
【0045】
更に、請求項1に記載のVベルトのプレス加硫装置及び請求項3に記載のVベルトのプレス加硫方法によれば、ベルトの温度をリアルタイムで検出してベルト冷却部を通過するベルトの走行速度を調整出来るので、ベルトの局部的な高温部位を集中的に冷却出来る。従って、冷却開始時に周上で加硫順番に起因した階段状の温度分布に成っている加硫後のベルトを、温度分布毎に冷却調整する差別冷却により、最短時間で所定の均一温度に冷却できものである。また単に速度調節によるから冷却源の能力を複雑に調整することもなく、簡単に、確実に精度よく、フレキシブルなベルト冷却工程が出来る。この結果、全周を所定の温度に最短時間で冷却出来て、加硫を含む全体工程のサイクル短縮が出来て、生産性が向上する。
【0046】
請求項2に記載のVベルトのプレス加硫装置及び請求項3に記載のVベルトのプレス加硫方法によれば、霧水冷却で高温部に触れた霧水が瞬時に蒸発気化してその潜熱で冷却作用を発揮する。同時にベルトの裏からも好適に上方噴霧し冷却できる。水滴の飛散することもなく、冷却に寄与しない過剰な冷却水の供給も無く、ロスも少なくなる。更には作業環境の改善や周辺設備の保全費の削減にも効果がある。
【0047】
以上の様に、本願請求項1〜記載のVベルトのプレス加硫装置及びプレス加硫方法に係わる発明では、階段状の温度分布を持った加硫直後のVベルトをその温度ギャップを検出して、リアルタイムで差別冷却が出来るから、全ての加硫ベルトに対応出来て最短時間で冷却出来て生産性が向上する。同時に冷却熱媒の改質により、水滴の飛散と冷却水の垂れ流しが阻止できてランニングコストの削減にも機能を発揮する事が出来る。
【図面の簡単な説明】
【図1】 Vベルトのプレス加硫装置を示す全体正面図である。
【図2】 図1の側面図で、Vプーリ車の横移動機構と長手方向移動の駆動機構を示すものである。
【図3】 図1の上面図で、加硫ゾーンと冷却ゾーンの位置関係を明瞭に示すものである。
【図4】 本発明に係わるベルト冷却部の配置模式図とベルト走行速度の調整手段の構成図である。
【図5】 本発明に係わる調整制御フロー図である。
【図6】 本発明に係わるベルト冷却部のブース手段の側面断面図でベルト表裏に噴霧する2流体ノズル配置を示している。
【図7】 本発明に係わるベルト冷却部のブース手段の正面断面図で霧水噴射と冷風導入の構成を示している。
【図8】 従来のシャワリング冷却斜視図である。
【図9】 加硫完了時のベルト温度分布図である。
【符号の説明】
1 Vベルトのプレス加硫成形装置
5 一対のVプーリー車
5a 駆動プーリー車
5b 従動プーリー車
7 Vプーリー車支持移動部
8 プレス加硫部
9 ベルト冷却部
14 冷却手段
15 ブース手段
17 調整手段
18 温度検出手段
19 制御手段
v1 ベルト上列
v2 ベルト下列
51 プーリー回転モーター
61 二流体噴霧ノズル
63 温度検出器
64 冷気
z1 冷却ゾーン
z2 加硫ゾーン
[0001]
BACKGROUND OF THE INVENTION
In the present invention, an unvulcanized product of a so-called V-belt having a trapezoidal cross section and covered with a cover canvas is suspended between a pair of V-pulley wheels, and the circumferential portion thereof is narrowed with a mold. The present invention relates to a press vulcanizing apparatus and a press vulcanizing method for vulcanizing and vulcanizing the entire circumference repeatedly by shifting the position a plurality of times and subsequently stretching and cooling. Specifically, in this cooling treatment process, the cooling belt in which the residual temperature difference is distributed stepwise immediately after the entire vulcanization is shortened to reduce the total cooling time of the cooling belt, thereby eliminating the productivity and scattering of cooling water droplets. It is intended to improve maintainability.
[0002]
[Prior art]
Japanese Patent Publication No. 45-34694 has been proposed and proposed as a conventional V-belt press vulcanizing apparatus. According to this, the V belt using the polyester core wire is annealed to control the elongation and contraction of the belt.
[0003]
In this belt processing apparatus, the belt processing is performed by using the annealing process alone as a dedicated process after manufacturing the belt. On the other hand, as in this example, an embodiment in which the cooling process is combined with each other at the time of press vulcanization and configured in an integrated process and processed in the same manner was also used. The previous belt processing apparatus heats the belt, stretches the belt in the longitudinal direction, subsequently cools it, and maintains the stretched state. In this cooling, a plurality of V belts are stretched between a pair of V pulley wheels, and water is showered from the pores of the cooling water pipe on the belt running at a constant speed to cool to a predetermined temperature. (See FIG. 9). Thus, a V-belt having excellent dimensional stability after removal is manufactured.
[0004]
[Problems to be solved by the invention]
However, in the conventional V-belt press vulcanizing apparatus as described above, the belt temperature immediately after vulcanization has a stepwise temperature distribution in the entire circumferential direction, and the portion immediately after vulcanization is the highest. The vulcanized part is lowest. In other words, the temperature of the belt at the start of cooling varies over the entire circumference of the belt, and the subsequent cooling time varies depending on the order of vulcanization, and the remaining temperatures are different. However, since the high temperature part and the comparatively low temperature part are conventionally cooled equally in the cooling, particularly the high temperature part is insufficiently cooled, and a total cooling time is required. As a result, the cycle time for manufacturing the belt is long and the productivity is hindered, and since the cooling water is showered, the working environment is poor due to the splashing of water droplets, and the maintenance of peripheral devices is also hindered.
[0005]
The object of the present invention is to improve the work environment by improving the above problems, shortening the belt cooling treatment time after vulcanization and improving the productivity, and simultaneously modifying the cooling means to suppress the generation of water droplets. An object of the present invention is to provide a V-belt press vulcanization apparatus and a press vulcanization method that can prevent rusting of equipment and reduce maintenance costs.
[0006]
[Means for Solving the Problems]
A press vulcanizing apparatus for a V-belt according to claim 1, which solves the above problem, a pair of V pulley wheels that are moved back and forth by a moving means between a cooling zone having a tension applying means and a running means and a vulcanizing zone, A press vulcanizing unit provided with a hot platen that sandwiches the upper and lower rows of a plurality of belts suspended between a pair of V pulley pulleys with a hot mold, a belt cooling unit provided with a booth means, and a belt for cooling running And adjusting means for constantly detecting the temperature and adjusting the belt running speed .
Thereby, since the cooling space can be isolated from the surroundings, the cold air can be effectively utilized. At the same time, splashing of water droplets can be prevented, and an exhaust system can be easily installed locally.
[0007]
According to the first aspect of the present invention, the belt temperature passing through the cooling section can be adjusted by detecting the belt temperature distribution realistically. In other words, it is possible to locally and intensively cool and adjust the high temperature part of the belt on the basis of the belt temperature, so that the vulcanized belts with different temperatures stepwise on the circumference of the belt according to the vulcanization order can be differentially adjusted for cooling. Thus, it is possible to cool to a uniform temperature easily, accurately and quickly without controlling the performance capacity of the cooling source.
[0008]
According to a second aspect of the present invention, there is provided a V-belt press vulcanization molding apparatus according to the first aspect, wherein the belt cooling section provided with the booth means includes at least fog water spray and cold air introduction.
Thereby, the fog water which touched the high temperature part vaporizes and evaporates instantly, and there is no scattering of water. At the same time, upward spraying can be easily performed without scattering, so that it can be suitably cooled from the back of the belt. Therefore, excessive cooling water can be prevented and running loss is small.
[0009]
The V-belt press vulcanization molding apparatus according to claim 3 suspends a plurality of unvulcanized V-belts between a pair of V-pulley wheels, and presses and vulcanizes the upper and lower rows of V-belts with hot molds. Then, the entire circumference is vulcanized by shifting the position a plurality of times in succession, and then the belt is stretched between a pair of V-pulley cars and cooled between the front and back of the belt simultaneously using the cooling booth while running between the V-pulley cars . The belt travels between the V pulley wheels, and the belt traveling speed is adjusted by constantly detecting the temperature of the belt that travels by cooling .
As a result, the cooling contact area can be cooled not only on the upper surface of the belt but also on the bottom surface of the trapezoidal shape, thereby providing cooling capacity.
[0010]
Further, in the V belt press vulcanization molding method according to claim 3, the belt is stretched between the pair of V pulley wheels, and the belt traveling speed is adjusted by always detecting the temperature of the belt that is cooled. . Thus, the belt cooling step together with the apparatus of claim 1 can be cooled based on the temperature of the belt. In other words, since the high-temperature portion of the belt can be locally and intensively adjusted for cooling, the cooling time can be shortened to optimally correspond to each size, and cooling to a uniform temperature can be performed with high accuracy.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the V-belt press vulcanization apparatus and the press vulcanization method of the present invention will be described with reference to FIGS. First, FIG. 1 shows an overall front view of a V-belt press vulcanizing apparatus 1, FIG. 2 is a side view thereof, and FIG. 3 is a top view thereof.
[0012]
As is apparent from FIG. 1, the V-belt press vulcanizing apparatus 1 suspends a plurality of unvulcanized V-belts 2 covered with a canvas and formed between a pair of V pulley wheels 5a and 5b. An upper row V1 and a lower row of the V belt 2 are arranged in the press vulcanizing section 8 having an upper heating plate 41, a middle heating plate 42, and a lower heating plate 43, which are disposed between the V pulley wheels 5 and fitted with molds. V2 is squeezed and vulcanized at the same time, and when the vulcanization of that part is finished, the vulcanization end width is shifted, the squeezing position is changed in order, and vulcanization is repeated one time to vulcanize the entire circumference. Perform (see FIG. 9).
[0013]
When the above-mentioned vulcanization of the entire circumference is completed, the V belt 2 is suspended between the pair of V pulley wheels 5 and then moved laterally to the cooling zone Z1 (to the front of the press in FIG. 1). Stretched between the cars 5 at a predetermined inter-axis distance, rotated the driving pulley 5a to run the V-belt 2 between the V-pulley cars 5, cooled to 40 ° C, and measured with polyester core wire. A V-belt excellent in stability is manufactured.
[0014]
The V-belt press vulcanization molding apparatus 1 includes a pair of V pulley wheels 5 a and 5 b, a press vulcanization unit 8, and a cooling unit 9.
[0015]
First, the pair of V pulley wheels 5 has a configuration in which a drive pulley wheel 5a and a driven pulley wheel 5b form a pair and include tension applying means, traveling means, and moving means.
[0016]
The shafts of the V pulley wheels 5a and 5b are parallel and adjusted horizontally. A plurality of trapezoidal grooves that match the cross-sectional dimensions of the V-belt 2 are engraved on the outer circumferences of the two V pulley wheels 5. When the V-belt 2 is suspended, the V-belt 2 is guided by the facing grooves and aligned in parallel with each other. Positioning. In addition, a trapezoidal groove having a V-belt cross-sectional shape is formed on the upper and lower surfaces of the intermediate heating plate 42 for vulcanization in the press vulcanization unit 8 described later according to the running core. Aligned to match multiple trapezoidal grooves. When vulcanizing belts having different belt cross-sectional sizes, the V pulley wheel 5 and the upper, middle, and lower heating plates 41, 42, and 43 are replaced by one set.
[0017]
Next, the tension applying means of the V pulley wheels 5a and 5b is configured to move in the left-right direction on the integrated frame 20 shown in FIG. 1, and the distance between the shafts of the two pulley wheels 5 facing each other is increased. To do. A linear rail 23 is arranged with the operating core aligned in the left-right direction, and the longitudinal movement table 21 is guided through the linear ball bearing 22. In this drive, two ball screw bearings 24 (see FIG. 3) supported by the integral frame 20 are rotationally driven by a motor 26 using a transmission chain 25 (see FIG. 2), and fastened to a moving nut that meshes with the ball screw. The longitudinal movement table 21 is pushed and pulled.
[0018]
Each axle of the V pulley wheel 5 is connected to the beam body 34 and both ends thereof are supported by bearings so as to withstand the belt extension force. However, the bearing on the near side is the loading / unloading side of the V-belt 2 and can be released by pushing and pulling the connecting arm body 36.
[0019]
Subsequently, the travel means of the V pulley wheels 5a and 5b is such that the drive pulley wheel 5a rotates and the V belt suspended or stretched between the pulley wheels 5 travels. The drive pulley wheel 5a includes a drive motor 51. Is mounted and can be rotated (see FIG. 2).
[0020]
Further, the moving means of the V pulley wheels 5a and 5b are suspended in the above-described longitudinal direction as shown in the top view of FIG. 3, and the vulcanization zone Z2 (position during vulcanization) and the cooling zone Z1 (cooling). Between the time position and the belt removal position).
[0021]
This back-and-forth movement is performed by extending and retracting the sliding cylinder 37 on the back-and-forth moving base 32 mounted on the front and rear sliding rail 31. At the forward end, the cooling zone Z1 can be positioned and the V-belt 2 can be detached. At the reverse end, the intermediate heating platen 42 is moved to the press vulcanizing section 8 so as to be sandwiched between the upper row V1 and the lower row V2 of the belt 2, and the V belt 2 is positioned in the trapezoidal groove of the intermediate heating plate 42, and press vulcanized. Is possible.
[0022]
The pulleys 5a and 5b of the pair of V pulley wheels 5 are respectively constructed by contrasting mechanisms in which the press vulcanizing portion 8 is located at the left and right in FIG. Both end shafts are horizontally supported by the supported beam body 34. As described above, when the belt 2 is detached from the pair of V pulley wheels 5, the support on the front side can be released by releasing the support of the connecting arm body 36. The lateral movement table 32 is mounted on a slide rail 31 fastened on the longitudinal movement table 21.
[0023]
Next, as shown in a front view in FIG. 1, the press vulcanizing unit 8 is disposed at the center between the pair of V pulley wheels 5. The upper row V1 and the lower row V2 of the belt suspended between the pulley wheels 5 are simultaneously pressed, heated under pressure, and vulcanized. This is the same as when the upper row V1 of the belt is pressed by the extension of the cylinder 45 between the middle heating platen 42 fixed between the upper and lower rows and the upper heating platen 41 located above the middle heating platen 42. The lower row V2 of the belt is pressed by the extension of the cylinder 46 between the lower heating platen 43 and the lower heating platen 43.
[0024]
When the vulcanization of a part of the unvulcanized V-belt 2 is completed, a position shift substantially corresponding to the hot platen width is rotationally driven between the V pulley wheels 5, and this is repeated in order to vulcanize the entire circumference. (See FIG. 9). The boundary of vulcanization corresponding to the joint of each vulcanization is not over-vulcanized.
[0025]
Further, with respect to the belt cooling unit 9, with the completion of vulcanization, the V belt 2 is suspended between the pair of V pulley wheels 5 and moved laterally to the cooling zone Z1 (see FIG. 3), and is stretched to a predetermined inter-axis distance. The driving pulley wheel 5a is rotationally driven by the rotative motor 51, and the vulcanized V-belt 2 is caused to travel. The following booth means 15 (see FIGS. 6 and 7) is provided for the cooling process of the traveling belt 2.
[0026]
The contents of the apparatus according to the present invention will be described in detail below. The belt cooling unit 9 provided with the booth means 15 will be described with reference to FIGS. FIG. 4 is a schematic diagram of the arrangement of the belt cooling section and a configuration diagram of the belt running speed adjusting means. FIG. 6 is a side sectional view of the booth means of the belt cooling section showing a two-fluid nozzle arrangement for spraying on the front and back of the belt. FIG. 7 is a front cross-sectional view of the booth means and shows the configuration of spraying fog water and introducing cold air.
[0027]
The belt cooling section 9 is provided with booth means 15 so as to sandwich the upper row V1 and the lower row V2 of the belt 2 traveling between the pair of V pulley wheels 5 as shown in FIG. 4 (see FIGS. 6 and 7). The inner space is the belt cooling unit 9. At this time, the traveling belt 2 is moved together with the pair of V pulley wheels 5 to the cooling zone Z1 of FIG.
[0028]
Next, the booth means 15 provided in the upper and lower rows of the belt 2 to travel is configured as shown in its side and front cross-sections in FIGS. And the upper row V1 of the V belt 2 is caused to travel through the slit-like opening at the center. Further, the lower row V2 of the V belt 2 is provided in the same manner. The arrangement of the cooling means 14 in the upper and lower rows is positioned so that the portions where the press vulcanization is simultaneously performed in the upper and lower rows correspond to each other and match the positional relationship that can be cooled at the same timing.
[0029]
Subsequently, the cooling means 14 uses spray of mist-like moisture mist and cold air 64 introduced into the booth. The mist-like moisture mist is generated by supplying pressurized air and pressurized cooling water to the two-fluid spray nozzle 60. At the same time, the cold air introduced into the booth uses cold air cooled by an air heat exchanger (not shown).
[0030]
Further, as shown in FIGS. 6 and 7, in the upper row v <b> 1, a mist-like moisture mist is effectively injected also to the back surface side of the traveling belt 2. The same applies to the lower row v2. Next, a pair of belt running speed adjusting means will be described with reference to FIGS. FIG. 4 is a schematic diagram of the arrangement of the belt cooling unit and a configuration diagram of the belt traveling speed adjusting means. FIG. 5 is an adjustment flowchart of the adjusting means.
[0031]
As described above, when the vulcanization is completed, the cooling process starts. The V belt 2 suspended on the pair of V pulley wheels 5 is moved from the vulcanization zone z2 to the cooling zone z1. At the same time, between the pair of V pulley wheels 5 is set to extend to a predetermined inter-axis distance, and starts rotating.
[0032]
The belt cooling section 9 provided with the booth means 15 described above accommodates the cooling means 14 and travels while cooling the V belt 2 between the pair of V pulley wheels 5 as shown in FIG. Next, the surface temperature of the traveling V-belt 2 is further detected, and cooling is performed by freely adjusting the belt traveling speed as follows.
[0033]
As shown in FIG. 4, the adjusting means 17 includes a temperature detecting means 18 for detecting the temperature of the traveling belt 2 and a rotation control means 19 for rotationally driving the driving pulley wheel 5a. The temperature detection means 18 includes a temperature sensor 63 and a temperature controller 65, and the rotation control means 19 includes a driver for controlling the rotation of the motor 51 and a control program described later.
[0034]
The temperature sensor 63 is installed in the vicinity of the inlet and outlet of either the upper or lower cooling booth means 15 using a non-contact type radiation thermometer, detects the temperature of the belt 2, and cools based on the higher temperature. To make adjustments. The thermometer is not necessarily limited to the non-contact type, and the contact type can be combined with a mechanism that can be freely contacted and separated. Although the cooling booth means 15 is divided and installed in the upper and lower rows, the temperature is detected in any of the upper and lower rows and travel adjustment is performed.
[0035]
As described above, it is preferable to detect the surface temperature of the V-belt 2 and perform speed control to adjust the belt traveling speed passing through the cooling booth means 15 to a predetermined speed according to the temperature difference. Cooling is possible.
[0036]
Next, the operation of the V-belt press vulcanization molding apparatus 1 will be described. The device 1 is provided with a pair of V pulley wheels 5 on the left side of FIG. 2 which is also the cooling zone z1 (see FIG. 3), and the V belt is removed after the previous cycle is completed. Is the original position, and each press hot plate satisfies a predetermined temperature.
(1) First, according to the length of the unvulcanized belt 2, the drive pulley wheel 5a and the driven pulley wheel 5b which are a pair of V pulley wheels 5 are moved to a predetermined position.
(2) A plurality of unvulcanized belts 2 are inserted into and suspended from the opposing trapezoidal grooves of the drive pulley 5a and the driven pulley 5b.
(3) Each pulley wheel 5 is moved to have an appropriate tension. Then, the pair of V pulley wheels 5 are moved laterally, and the unvulcanized belt 2 is positioned and pressed between the upper, middle, and lower heating plates of the vulcanizer, and vulcanization is started.
(4) After a predetermined vulcanization time, the press is released, the position of the subsequent unvulcanized belt 2 is shifted and vulcanized in the same manner, and this is repeated to vulcanize the entire circumference.
[0037]
(5) When vulcanization of the entire circumference is completed, the vehicle is laterally moved to the cooling zone z1 while being suspended between the pair of V pulley wheels 5 and positioned on the left side in FIG.
(6) Set the cooling booth means 15 from the retracted position to the predetermined cooling position.
(7) Switch the operation switch to the cooling mode.
(8) The temperature detector 63 attached to the entrance of the cooling booth 15 detects the temperature of the belt about to enter the booth, and controls the motor rotation to the predetermined passing speed in the cooling booth according to the temperature. Adjust.
(9) The temperature detected by the temperature sensor 63 becomes equal to or lower than the temperature determined for the entire circumference of the belt, cooling is completed, and the lamp is turned on.
(10) The cooling booth means 15 is moved backward.
(11) The V pulley wheel 5 is moved in the direction in which the belt is loosened, and the connecting arm body 36 of the bearing (see FIG. 1) on the front side of each of the pair of V pulley wheels 5 is disengaged and opened, and vulcanized. The plurality of V belts 2 having been cooled are taken out.
[0038]
Next, a V-belt press vulcanization method in the V-belt press vulcanization molding apparatus 1 will be described with reference to FIGS. First, after the vulcanization process is completed, the pair of V pulley wheels 5 is moved to the left position in FIG. 2, that is, the cooling zone z1, and the vulcanizing belt 2 is stretched between the pair of V pulley wheels 5 to rotate. Drive and start cooling. At this time, as shown in FIG. 9, the temperature distribution of the belt 2 has a stepped temperature configuration in the order of vulcanization between the vulcanization take-off temperature of 140 ° C. and the cooling completed of 40 ° C.
[0039]
Such a V-belt 2 having a step-like temperature distribution is set at a predetermined inter-axis distance and is cooled in a short time until the temperature is taken out (uniform at 40 ° C). Is made longer as the temperature is higher, that is, the traveling speed of the V-belt 2 is decreased, and the total cooling time is shortened.
[0040]
A method for detecting the belt temperature in real time and adjusting the belt running speed will be described with reference to FIG. For example, FIG. 9 shows a case where the surface temperature of the belt is measured when the press hot platen temperature is 148 ° C., the vulcanization interval is 20 minutes, the vulcanization position is shifted and the vulcanization position is shifted four times to move to the cooling zone z1. ing. The stepwise temperature distribution is 55, 70, 90, and 135 ° C. By vulcanization position in the figure, the initial vulcanization position (S1, S1 ′) is 55 ° C., the second vulcanization position (S2, S2 ′) is 70 ° C., and the third vulcanization position (S3, S3 ′). The temperature was 135 ° C. at 90 ° C. at the fourth vulcanization position (S4, S4 ′) immediately after completion of vulcanization.
[0041]
The running speed of the belt having the above stepwise temperature distribution is adjusted as follows. This will be described with reference to FIG. When the detected temperature Tb on the belt surface is T1 or more after START, the vehicle travels at a travel speed Vb of V1 m / min (a travel command is given to the driver of the rotary motor). When Tb is equal to or less than T1, the traveling speed Vb is selected from V2, V3, and V4 based on the determination values of T2, T3, and T4, and is adjusted so that the vehicle can travel freely. When Tb becomes T4 or less when the predetermined cooling temperature approaches 40 ° C, the running speed Vb is set to Vf, and it is determined that the detected temperature Tb on the belt surface is less than the predetermined temperature 40 ° C from the position for one belt revolution. And stop running.
[0042]
FIG. 5 shows the control program, which is installed and operated in the CPU in the control panel. A determination temperature value corresponding to the number of vulcanizations and a traveling speed corresponding to the temperature are obtained in advance, and the traveling speed is changed and adjusted based on the detected temperature reference as described above.
[0043]
The V-belt press vulcanization molding apparatus and the press vulcanization molding method of the present invention are not limited to those shown in FIGS. 1 to 8 and can take the following forms, for example.
(1) The booth means 15 is not necessarily limited to the belt upper row v1 and lower row v2 between the pair of V pulley wheels 5. One configuration of the belt upper and lower rows can also be adopted.
(2) The control means 19 for controlling the rotation of the pulley rotation motor 51 can employ a configuration in which a hydraulic motor is used to control the oil flow rate with a control valve so that the speed can be changed.
[0044]
【The invention's effect】
According to the press vulcanizing apparatus for the V-belt according to claim 1, since the belt cooling part can be physically isolated from the ambient atmosphere by the booth means, the cooling cold air fluid and the mist mist are locally focused. Can be used for injection. That is, a cooling source can be widely obtained. At the same time, scattering and dripping can be prevented.
[0045]
Furthermore, according to the press vulcanization apparatus for the V belt according to claim 1 and the press vulcanization method for the V belt according to claim 3 , the temperature of the belt that detects the belt temperature in real time and passes through the belt cooling section is detected. Since the running speed can be adjusted, the local high temperature part of the belt can be cooled intensively. Therefore, the belt after vulcanization, which has a stepwise temperature distribution due to the vulcanization order on the circumference at the start of cooling, is cooled to a predetermined uniform temperature in the shortest time by differential cooling that adjusts cooling for each temperature distribution. It is a product. In addition, since the speed is simply adjusted, the ability of the cooling source is not complicatedly adjusted, and a flexible belt cooling process can be performed easily, reliably and accurately. As a result, the entire circumference can be cooled to a predetermined temperature in the shortest time, the cycle of the entire process including vulcanization can be shortened, and productivity can be improved.
[0046]
According to the V-belt press vulcanization apparatus according to claim 2 and the V-belt press vulcanization method according to claim 3 , the mist water that has touched the high-temperature part by mist water cooling is instantly evaporated and evaporated. The cooling effect is demonstrated by latent heat. At the same time, it can be suitably sprayed and cooled from the back of the belt. Water droplets do not scatter, excessive cooling water that does not contribute to cooling is not supplied, and loss is reduced. Furthermore, it is effective in improving the working environment and reducing maintenance costs for peripheral equipment.
[0047]
As described above, in the invention relating to the press vulcanizing apparatus and press vulcanizing method for the V belt according to claims 1 to 3 of the present application, the temperature gap of the V belt immediately after vulcanization having a stepped temperature distribution is detected. In addition, since differential cooling can be performed in real time, it can be applied to all vulcanization belts and can be cooled in the shortest time, thereby improving productivity. At the same time, by modifying the cooling heat medium, it is possible to prevent the splashing of water droplets and the dripping of cooling water.
[Brief description of the drawings]
FIG. 1 is an overall front view showing a V-belt press vulcanizing apparatus.
FIG. 2 is a side view of FIG. 1, showing a lateral movement mechanism and a longitudinal movement drive mechanism of a V pulley wheel.
FIG. 3 is a top view of FIG. 1 and clearly shows the positional relationship between a vulcanization zone and a cooling zone.
FIG. 4 is a schematic diagram of an arrangement of a belt cooling unit and a configuration diagram of a belt traveling speed adjusting unit according to the present invention.
FIG. 5 is an adjustment control flowchart according to the present invention.
FIG. 6 is a side sectional view of a booth means of a belt cooling unit according to the present invention, showing a two-fluid nozzle arrangement for spraying on the front and back of the belt.
FIG. 7 is a front cross-sectional view of a booth means of a belt cooling unit according to the present invention, showing a configuration of fog water injection and cold air introduction.
FIG. 8 is a conventional showering cooling perspective view.
FIG. 9 is a belt temperature distribution diagram upon completion of vulcanization.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 V-belt press vulcanization molding apparatus 5 A pair of V pulley wheel 5a Drive pulley wheel 5b Driven pulley wheel 7 V pulley wheel support moving part 8 Press vulcanization part 9 Belt cooling part 14 Cooling means 15 Booth means 17 Adjusting means 18 Temperature Detection means 19 Control means v1 Belt upper row v2 Belt lower row 51 Pulley rotation motor 61 Two-fluid spray nozzle 63 Temperature detector 64 Cold air z1 Cooling zone z2 Vulcanization zone

Claims (3)

張力付与手段と走行手段を備え冷却ゾーンと加硫ゾーン間を移動手段によって往複動する一対のVプーリ車と、前記一対のVプーリ車間に懸架した複数本のベルトの上下各列を熱い金型で挟圧する熱盤を備えたプレス加硫部と、ブース手段を備えたベルト冷却部と、更に冷却走行するベルトの温度を常時検出し、ベルト走行速度を調整する調整手段と、からなることを特徴とするVベルトのプレス加硫装置 A pair of V pulley wheels that move back and forth between a cooling zone and a vulcanization zone having tension applying means and traveling means by moving means, and upper and lower rows of a plurality of belts suspended between the pair of V pulley wheels It comprises a press vulcanizing unit having a hot platen clamped by a mold, a belt cooling unit having a booth unit, and an adjusting unit that constantly detects the temperature of the belt that runs while cooling and adjusts the belt running speed. V-belt press vulcanizing device characterized by the above . 前記ブース手段を備えたベルト冷却部が、少なくとも霧水噴霧と冷風導入を具備した請求項1に記載のVベルトのプレス加硫装置 2. The V-belt press vulcanizing apparatus according to claim 1, wherein the belt cooling section provided with the booth means comprises at least fog water spray and cold air introduction . 複数本の未加硫Vベルトを一対のVプーリ車間に懸架し、その上下各列のVベルトを熱い金型で挟んでプレス加硫し順に複数回位置をずらせて全周を加硫し、続いて一対のVプーリ車間に張架してVプーリ車間を走行させながら冷却ブースを用いベルトの表裏から同時に冷却するとともに、前記一対のVプーリ車間に張架し、冷却走行するベルトの温度を常時検出してベルト走行速度を調整するようにしたことを特徴とするVベルトのプレス加硫方法 A plurality of unvulcanized V-belts are suspended between a pair of V-pulley wheels, and the upper and lower rows of V-belts are sandwiched between hot dies and press vulcanized. Subsequently, the belt is stretched between a pair of V pulleys and cooled between the front and back surfaces of the belt using a cooling booth while running between the V pulleys, and the temperature of the belt running between the pair of V pulleys is cooled. A V-belt press vulcanization method characterized in that the belt running speed is adjusted by always detecting .
JP2001054547A 2001-02-28 2001-02-28 V-belt press vulcanizing apparatus and vulcanizing method thereof Expired - Fee Related JP4536944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001054547A JP4536944B2 (en) 2001-02-28 2001-02-28 V-belt press vulcanizing apparatus and vulcanizing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001054547A JP4536944B2 (en) 2001-02-28 2001-02-28 V-belt press vulcanizing apparatus and vulcanizing method thereof

Publications (2)

Publication Number Publication Date
JP2002254438A JP2002254438A (en) 2002-09-11
JP4536944B2 true JP4536944B2 (en) 2010-09-01

Family

ID=18914864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001054547A Expired - Fee Related JP4536944B2 (en) 2001-02-28 2001-02-28 V-belt press vulcanizing apparatus and vulcanizing method thereof

Country Status (1)

Country Link
JP (1) JP4536944B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102873803A (en) * 2012-09-20 2013-01-16 益阳橡胶塑料机械集团有限公司 Rubber belt cooling device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4309795B2 (en) * 2004-04-16 2009-08-05 北川精機株式会社 Press machine
JP5067807B2 (en) * 2008-07-31 2012-11-07 三ツ星ベルト株式会社 Wrapped V-belt vulcanizing method and wrapped V-belt vulcanizing apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273914A (en) * 1985-05-29 1986-12-04 Kobe Kikai Kk Vulcanizing device for endless rubber belt
JPS6317034A (en) * 1986-07-09 1988-01-25 Mitsuboshi Belting Ltd Manufacture of double timing belt
JPH01156022A (en) * 1987-12-14 1989-06-19 Mitsuboshi Belting Ltd Manufacture of long-sized v belt with cog
JPH036911U (en) * 1989-06-07 1991-01-23
JPH03114804A (en) * 1989-09-29 1991-05-16 Bando Chem Ind Ltd Cooling device of belt mold
JPH0718820U (en) * 1993-09-22 1995-04-04 バンドー化学株式会社 Vulcanizing device
JPH10264173A (en) * 1997-03-26 1998-10-06 Bando Chem Ind Ltd Vulcanizing apparatus for power transmission belt

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273914A (en) * 1985-05-29 1986-12-04 Kobe Kikai Kk Vulcanizing device for endless rubber belt
JPS6317034A (en) * 1986-07-09 1988-01-25 Mitsuboshi Belting Ltd Manufacture of double timing belt
JPH01156022A (en) * 1987-12-14 1989-06-19 Mitsuboshi Belting Ltd Manufacture of long-sized v belt with cog
JPH036911U (en) * 1989-06-07 1991-01-23
JPH03114804A (en) * 1989-09-29 1991-05-16 Bando Chem Ind Ltd Cooling device of belt mold
JPH0718820U (en) * 1993-09-22 1995-04-04 バンドー化学株式会社 Vulcanizing device
JPH10264173A (en) * 1997-03-26 1998-10-06 Bando Chem Ind Ltd Vulcanizing apparatus for power transmission belt

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102873803A (en) * 2012-09-20 2013-01-16 益阳橡胶塑料机械集团有限公司 Rubber belt cooling device
CN102873803B (en) * 2012-09-20 2015-11-18 益阳橡胶塑料机械集团有限公司 Adhesive tape cooling device

Also Published As

Publication number Publication date
JP2002254438A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
USRE25349E (en) Method of forming an endless tire tread and sidewall
JPH11291363A (en) Tire molding machine and method for molding tire using the same
US20190351634A1 (en) Molded article extractor and method
US4043729A (en) Apparatus for shaping floor coverings for the interiors of vehicles
JP4536944B2 (en) V-belt press vulcanizing apparatus and vulcanizing method thereof
NO791867L (en) PROCEDURE AND APPARATUS FOR PREPARING A PATH
US4428723A (en) Apparatus for stretching a continuously advancing synthetic-resin web and feeding same stepwise to a thermoforming machine
JP2004082437A (en) Apparatus for molding light guiding plate and method for molding light guiding plate
JP5067807B2 (en) Wrapped V-belt vulcanizing method and wrapped V-belt vulcanizing apparatus
US2958096A (en) Method and apparatus for continuously curing plastic material
JPH06297486A (en) Manufacture of film
JPH061380Y2 (en) Rubber sheet continuous vulcanizer
JPH068308A (en) Production of semi-finished product made of rubber mixture and device therefor
US3085287A (en) Belt curing apparatus
CN114018742A (en) Rubber abrasion testing device
JPH0118348Y2 (en)
EP0585647B1 (en) Road vehicle tire inner stitching device
KR100208539B1 (en) Ventilation film extension apparatus
JP3897673B2 (en) Shaping freezer
JPH0118347Y2 (en)
CN216594623U (en) Rubber abrasion testing device
US2476868A (en) Apparatus for continuously vulcanizing strip material
US2565684A (en) Method and apparatus for making endless belts
CN220198267U (en) Vehicle back of body back board working of plastics adds hot frock
KR200374746Y1 (en) Apparatus for cooling tire strip with auto positioning water spray line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4536944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees