JP4534620B2 - Infrared radiation element - Google Patents

Infrared radiation element Download PDF

Info

Publication number
JP4534620B2
JP4534620B2 JP2004184008A JP2004184008A JP4534620B2 JP 4534620 B2 JP4534620 B2 JP 4534620B2 JP 2004184008 A JP2004184008 A JP 2004184008A JP 2004184008 A JP2004184008 A JP 2004184008A JP 4534620 B2 JP4534620 B2 JP 4534620B2
Authority
JP
Japan
Prior art keywords
heating element
element layer
layer
infrared radiation
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004184008A
Other languages
Japanese (ja)
Other versions
JP2006012459A (en
Inventor
由明 本多
祥文 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2004184008A priority Critical patent/JP4534620B2/en
Publication of JP2006012459A publication Critical patent/JP2006012459A/en
Application granted granted Critical
Publication of JP4534620B2 publication Critical patent/JP4534620B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、赤外線放射素子に関するものである。   The present invention relates to an infrared radiation element.

従来から、赤外線発光ダイオードに比べて赤外線の放射量を増大させることができる小型の赤外線放射素子として、図5に示すように、厚み方向に貫通する多数の通孔が形成された絶縁性の多孔質体(多孔質セラミックス)からなる支持基板1’と、支持基板1’の一表面上に形成された発熱体層3’と、発熱体層3’の両端部それぞれの上に形成されたパッド4’,4’とを備えた赤外線放射素子が提案されている(例えば、特許文献1)。ここにおいて、発熱体層3’は、炭素、タンタル、ニッケル−クロム合金、白金などにより形成され、パッド4’,4’は、金により形成されている。   Conventionally, as a small infrared radiation element capable of increasing the amount of infrared radiation compared to an infrared light emitting diode, as shown in FIG. 5, an insulating porous material having a large number of through holes penetrating in the thickness direction. A support substrate 1 'made of a porous material (porous ceramic), a heating element layer 3' formed on one surface of the support substrate 1 ', and pads formed on both ends of the heating element layer 3'. An infrared radiation element having 4 ′ and 4 ′ has been proposed (for example, Patent Document 1). Here, the heating element layer 3 ′ is made of carbon, tantalum, nickel-chromium alloy, platinum or the like, and the pads 4 ′ and 4 ′ are made of gold.

図5に示す構成の赤外線放射素子は、発熱体層3’への通電に伴うジュール熱により発熱体層3’から赤外線を放射させるものであり、支持基板1’が断熱部を兼ねているので、発熱体層3’の温度を高速に上昇させることができ、発熱体層3’へ与えるパルス状の入力電力に対して高速に応答することができるので、各種分析装置(例えば、赤外線ガス分析計など)の赤外線パルス光源として用いることができる。なお、図5に示す構成の赤外線放射素子では、発熱体層3’の温度が高いほど、発熱体層3’から放射される赤外線のピークエネルギおよび全エネルギが多くなるとともに、赤外線のピーク波長が低波長側へシフトする。
特開2004−153640号公報
The infrared radiation element having the configuration shown in FIG. 5 radiates infrared rays from the heating element layer 3 ′ by Joule heat accompanying energization of the heating element layer 3 ′, and the support substrate 1 ′ also serves as a heat insulating portion. Since the temperature of the heating element layer 3 ′ can be increased at high speed and the pulsed input power applied to the heating element layer 3 ′ can be responded at high speed, various analyzers (for example, infrared gas analysis) It can be used as an infrared pulse light source. In the infrared radiating element having the configuration shown in FIG. 5, the higher the temperature of the heating element layer 3 ′, the more the peak energy and the total energy of the infrared radiation radiated from the heating element layer 3 ′ and the infrared peak wavelength. Shift to the lower wavelength side.
JP 2004-153640 A

しかしながら、図5に示した構成の赤外線放射素子では、支持基板1’が断熱部を兼ねているが、ヒートシンクが存在しないので、温度ドリフトが大きく、赤外線の放射特性が不安定となってしまうという不具合があった。特に、発熱体層3’から放射される全エネルギは発熱体層3’の絶対温度の4乗に比例し、絶対温度が高いほど半値幅が狭くなるので、赤外線の放射量を増加させるために発熱体層3’の温度を高くするほど、赤外線の放射量が不安定となってしまうという不具合があった。   However, in the infrared radiation element having the configuration shown in FIG. 5, the support substrate 1 ′ also serves as a heat insulating part, but since there is no heat sink, the temperature drift is large and the infrared radiation characteristic becomes unstable. There was a bug. In particular, the total energy radiated from the heating element layer 3 ′ is proportional to the fourth power of the absolute temperature of the heating element layer 3 ′, and the half-value width becomes narrower as the absolute temperature increases, so that the amount of infrared radiation can be increased. As the temperature of the heating element layer 3 ′ is increased, the radiation amount of infrared rays becomes unstable.

本発明は上記事由に鑑みて為されたものであり、その目的は、小型で入力電力に対する応答速度が速く且つ赤外線の放射特性の安定性に優れ、しかも、赤外線発光ダイオードに比べて赤外線の放射量を増大させることができる赤外線放射素子を提供することにある。   The present invention has been made in view of the above-mentioned reasons, and the object thereof is small size, high response speed to input power, excellent stability of infrared radiation characteristics, and infrared radiation compared with infrared light emitting diodes. An object of the present invention is to provide an infrared radiation element capable of increasing the amount.

請求項1の発明は、支持基板の一表面側に形成された発熱体層と、支持基板の前記一表面側で支持基板と発熱体層との間に介在する断熱層とを備え、発熱体層へ電力を与えることにより発熱体層から赤外線が放射される赤外線放射素子であって、支持基板が単結晶シリコンにより形成されるとともに、断熱層が多孔質シリコンにより形成され、発熱体層がシリコンよりも高融点の金属により形成されてなり、支持基板の前記一表面側で発熱体層と接する形で形成された一対のパッドを備え、各パッドは、少なくとも発熱体層に接する部位がシリコンよりも高融点の金属により形成されてなることを特徴とする。 The invention according to claim 1 includes a heating element layer formed on one surface side of the support substrate, and a heat insulating layer interposed between the support substrate and the heating element layer on the one surface side of the support substrate. An infrared radiation element that emits infrared rays from a heating element layer by applying electric power to the layer, wherein the support substrate is made of single crystal silicon, the heat insulating layer is made of porous silicon, and the heating element layer is made of silicon A pair of pads formed in contact with the heating element layer on the one surface side of the support substrate, and each pad has at least a portion in contact with the heating element layer made of silicon. Is formed of a metal having a high melting point .

この発明によれば、支持基板が単結晶シリコンにより形成されるとともに、断熱層が多孔質シリコンにより形成されており、支持基板の熱容量および熱伝導率それぞれが断熱層よりも大きく、支持基板がヒートシンクとしての機能を有するので、小型で入力電力に対する応答速度が速く且つ赤外線の放射特性の安定性を向上させることができ、しかも、発熱体層がシリコンよりも高融点の金属により形成されているので、発熱体層の温度をシリコンの最高使用温度まで上昇させることができ(シリコンの融点は1410℃)、赤外線発光ダイオードに比べて赤外線の放射量を大幅に増大させることができる。   According to this invention, the support substrate is formed of single crystal silicon, the heat insulating layer is formed of porous silicon, the heat capacity and the thermal conductivity of the support substrate are larger than the heat insulating layer, and the support substrate is a heat sink. Because it has a function as a small size, the response speed to input power is small, the stability of infrared radiation characteristics can be improved, and the heating element layer is made of a metal having a melting point higher than that of silicon. The temperature of the heating element layer can be raised to the maximum use temperature of silicon (the melting point of silicon is 1410 ° C.), and the amount of infrared radiation can be greatly increased compared to infrared light emitting diodes.

また、この発明によれば、支持基板の前記一表面側で発熱体層と接する形で形成された一対のパッドを備え、各パッドは、少なくとも発熱体層に接する部位がシリコンよりも高融点の金属により形成されているので、発熱体層の温度をパッドの材料に制約されることなく上昇させることができる。 Further, according to the present invention comprises a pair of pads formed in a manner contacting the heat generation body layer in said one surface side supporting region substrate, each pad portion contacting the least even fever body layer is silicon In this case, the temperature of the heating element layer can be increased without being restricted by the pad material.

請求項1の発明では、小型で入力電力に対する応答速度が速く且つ赤外線の放射特性の安定性を向上させることができ、しかも、赤外線発光ダイオードに比べて赤外線の放射量を大幅に増大させることができるという効果がある。   According to the first aspect of the present invention, the response speed to input power is small, the stability of infrared radiation characteristics can be improved, and the amount of infrared radiation can be greatly increased compared to infrared light emitting diodes. There is an effect that can be done.

(実施形態1)
本実施形態の赤外線放射素子は、図1に示すように、単結晶のシリコン基板からなる支持基板1の厚み方向の一表面(図1における上面)側に発熱体層3が形成され、発熱体層3と支持基板1との間に断熱層2が形成され、支持基板1の上記一表面側に発熱体層3の両端部(図1における左右両端部)それぞれと接する形で一対のパッド4,4が形成されている。ここに、支持基板1の平面形状は矩形状であって、断熱層2および発熱体層3の平面形状も矩形状に形成してある。なお、発熱体層3は、断熱層2よりも平面サイズが小さく(発熱体層3は断熱層2の外周よりも内側に形成されている)、各パッド4,4はそれぞれ、発熱体層3の端部と断熱層2の端部と支持基板1の端部とに跨って形成されている。
(Embodiment 1)
As shown in FIG. 1, the infrared radiation element of the present embodiment has a heating element layer 3 formed on one surface (upper surface in FIG. 1) in the thickness direction of a support substrate 1 made of a single crystal silicon substrate. A heat insulating layer 2 is formed between the layer 3 and the support substrate 1, and a pair of pads 4 are in contact with both end portions (left and right end portions in FIG. 1) of the heating element layer 3 on the one surface side of the support substrate 1. , 4 are formed. Here, the planar shape of the support substrate 1 is rectangular, and the planar shapes of the heat insulating layer 2 and the heating element layer 3 are also rectangular. The heating element layer 3 has a smaller planar size than the heat insulating layer 2 (the heating element layer 3 is formed on the inner side of the outer periphery of the heat insulating layer 2), and each of the pads 4 and 4 has the heating element layer 3 respectively. And the end portion of the heat insulating layer 2 and the end portion of the support substrate 1.

ところで、本実施形態では、上述のように支持基板1として単結晶のシリコン基板を用いており、断熱層2を多孔度が略70%の多孔質シリコン層により構成しているので、支持基板1として用いるシリコン基板の一部をフッ化水素水溶液中で陽極酸化処理することにより断熱層2となる多孔質シリコン層を形成することができる。ここに、陽極酸化処理の条件(例えば、電流密度、通電時間など)を適宜設定することにより、断熱層2となる多孔質シリコン層の多孔度や厚みそれぞれを所望の値とすることができる。多孔質シリコン層は、多孔度が高くなるにつれて熱伝導率および熱容量が小さくなり、例えば、熱伝導率が148〔W/(m・K)〕、熱容量が1.63×10〔J/(m・K)〕の単結晶のシリコン基板を陽極酸化して形成される多孔度が60%の多孔質シリコン層は、熱伝導率が1〔W/(m・K)〕、熱容量が0.7×10〔J/(m・K)〕であることが知られている。なお、本実施形態では、上述のように断熱層2を多孔度が略70%の多孔質シリコン層により構成してあり、断熱層2の熱伝導率が0.12〔W/(m・K)〕、熱容量が0.5×10〔J/(m・K)〕となっている。 By the way, in this embodiment, since the single crystal silicon substrate is used as the support substrate 1 as described above, and the heat insulating layer 2 is composed of a porous silicon layer having a porosity of approximately 70%, the support substrate 1 A porous silicon layer serving as the heat insulation layer 2 can be formed by anodizing a part of the silicon substrate used as a hydrogen fluoride aqueous solution. Here, by appropriately setting the conditions for anodizing treatment (for example, current density, energization time, etc.), the porosity and thickness of the porous silicon layer to be the heat insulating layer 2 can be set to desired values, respectively. The porous silicon layer has a lower thermal conductivity and heat capacity as the porosity increases. For example, the thermal conductivity is 148 [W / (m · K)] and the heat capacity is 1.63 × 10 6 [J / ( The porous silicon layer having a porosity of 60% formed by anodizing a single crystal silicon substrate of m 3 · K)] has a thermal conductivity of 1 [W / (m · K)] and a heat capacity of 0 7 × 10 6 [J / (m 3 · K)]. In the present embodiment, as described above, the heat insulating layer 2 is composed of a porous silicon layer having a porosity of approximately 70%, and the heat conductivity of the heat insulating layer 2 is 0.12 [W / (m · K )], And the heat capacity is 0.5 × 10 6 [J / (m 3 · K)].

また、発熱体層3は、高融点金属の一種であるタングステンにより形成してあり、発熱体層3は、熱伝導率が174〔W/(m・K)〕、熱容量が2.5×10〔J/(m・K)〕となっている。発熱体層3の材料はタングステンに限らず、シリコンよりも高融点の金属であればよく、例えば、チタン(シリコンの融点が1410℃であるのに対してチタンの融点は1668℃である)や、トリウム、白金、ジルコニウム、クロム、バナジウム、ロジウム、ハフニウム、ルテニウム、ボロン、イリジウム、ニオブ、モリブデン、タンタル、オスミウム、レニウムなどのチタンよりも高融点の金属、その他、ニッケル、ホルミウム、コバルト、エルビウム、イットリウム、鉄、スカンジウム、ツリウム、パラジウム、ルテチウムなどの金属(これらの金属の融点はシリコンの融点とチタンの融点との間にある)を採用してもよい。 The heating element layer 3 is made of tungsten which is a kind of high melting point metal. The heating element layer 3 has a thermal conductivity of 174 [W / (m · K)] and a heat capacity of 2.5 × 10. 6 [J / (m 3 · K)]. The material of the heating element layer 3 is not limited to tungsten but may be any metal having a melting point higher than that of silicon. For example, titanium (the melting point of silicon is 1410 ° C. whereas the melting point of titanium is 1668 ° C.) , Metals with higher melting points than titanium such as thorium, platinum, zirconium, chromium, vanadium, rhodium, hafnium, ruthenium, boron, iridium, niobium, molybdenum, tantalum, osmium, rhenium, others, nickel, holmium, cobalt, erbium, Metals such as yttrium, iron, scandium, thulium, palladium, and lutetium (the melting point of these metals is between the melting point of silicon and the melting point of titanium) may be employed.

ただし、シリコンの線膨張係数は4.68×10−6〔K−1〕であるに対して、上述の各金属それぞれの線膨張係数は下記表1に示すような値であり、発熱体層3の材料として採用する金属としては、熱応力に起因して発熱体層3や断熱層2が破壊されるのを防止するという観点から、シリコンの熱膨張係数に近い熱膨張係数を有する金属を採用することが好ましく、例えば、線膨張係数が10×10−6〔K−1〕以下の金属を採用すればよい。 However, while the linear expansion coefficient of silicon is 4.68 × 10 −6 [K −1 ], the linear expansion coefficient of each of the above metals is a value as shown in Table 1 below, and the heating element layer The metal used as the material of 3 is a metal having a thermal expansion coefficient close to that of silicon from the viewpoint of preventing the heating element layer 3 and the heat insulating layer 2 from being destroyed due to thermal stress. For example, a metal having a linear expansion coefficient of 10 × 10 −6 [K −1 ] or less may be used.

Figure 0004534620
Figure 0004534620

また、各パッド4,4は、3層構造を有しており、発熱体層3に接する第1層を高融点金属の他の一種であるクロムにより形成し、第1層に積層された第2層をニッケルにより形成し、第2層に積層された第3層を金により形成してあるが、少なくとも発熱体層3と接する部位をシリコンよりも高融点の金属により形成すればよく、3層構造以外の多層構造でもよいし、単層構造でもよい。ここに、パッド4,4に用いる高融点の金属は、発熱体層3と同じ金属でもよいし異なる金属でもよい。   Each of the pads 4 and 4 has a three-layer structure. The first layer in contact with the heating element layer 3 is formed of chromium, which is another kind of refractory metal, and is laminated on the first layer. The two layers are formed of nickel, and the third layer laminated on the second layer is formed of gold. However, at least a portion in contact with the heating element layer 3 may be formed of a metal having a melting point higher than that of silicon. A multilayer structure other than the layer structure may be used, or a single layer structure may be used. Here, the high melting point metal used for the pads 4 and 4 may be the same metal as the heating element layer 3 or a different metal.

なお、本実施形態の赤外線放射素子では、断熱層2の形成前のシリコン基板の厚さを525〔μm〕、断熱層2の厚さを2〔μm〕、発熱体層3の厚さを50〔nm〕、各パッド4,4の厚さを0.5〔μm〕としてあるが、これらの厚さは一例であって特に限定するものではない。   In the infrared radiation element of the present embodiment, the thickness of the silicon substrate before the formation of the heat insulating layer 2 is 525 [μm], the thickness of the heat insulating layer 2 is 2 [μm], and the thickness of the heating element layer 3 is 50. [Nm] and the thickness of each of the pads 4 and 4 is 0.5 [μm], but these thicknesses are merely examples and are not particularly limited.

以下、本実施形態の赤外線放射素子の製造方法について簡単に説明する。   Hereinafter, the manufacturing method of the infrared radiation element of this embodiment is demonstrated easily.

まず、支持基板1として用いるシリコン基板の他表面(図1における下面)側に陽極酸化処理時に用いる通電用電極(図示せず)を形成した後、シリコン基板の一表面側における断熱層2の形成予定部位を陽極酸化処理にて多孔質化することで多孔質シリコンからなる断熱層2を形成する陽極酸化処理工程を行う。ここにおいて、陽極酸化処理工程では、電解液として55wt%のフッ化水素水溶液とエタノールとを1:1で混合した混合液を用い、シリコン基板を主構成とする被処理物を処理槽に入れられた電解液に浸漬し、通電用電極を陽極、シリコン基板の上記一表面側に対向配置された白金電極を陰極として、電源から陽極と陰極との間に所定の電流密度の電流を所定時間だけ流すことにより多孔質シリコンからなる断熱層2を形成している。   First, a current-carrying electrode (not shown) used at the time of anodizing treatment is formed on the other surface (lower surface in FIG. 1) side of the silicon substrate used as the support substrate 1, and then the heat insulating layer 2 is formed on the one surface side of the silicon substrate. An anodizing treatment step for forming the heat insulating layer 2 made of porous silicon by making the planned portion porous by anodizing treatment is performed. Here, in the anodizing process, a mixed solution in which a 55 wt% aqueous solution of hydrogen fluoride and ethanol are mixed at a ratio of 1: 1 is used as an electrolytic solution, and an object to be processed mainly composed of a silicon substrate can be placed in a processing tank. Immersion in the electrolyte solution, the current-carrying electrode is the anode, the platinum electrode facing the one surface side of the silicon substrate is the cathode, and a current of a predetermined current density is supplied from the power source to the anode and the cathode for a predetermined time. The heat insulating layer 2 made of porous silicon is formed by flowing.

上述の陽極酸化処理工程の後、発熱体層3を形成する発熱体層形成工程、パッド4,4を形成するパッド形成工程を順次行うことによって、赤外線放射素子が完成する。なお、発熱体層形成工程およびパッド形成工程では、例えば、各種のスパッタ法、各種の蒸着法、各種のCVD法などによって膜形成を行えばよい。   After the above-described anodizing process, an infrared radiation element is completed by sequentially performing a heating element layer forming process for forming the heating element layer 3 and a pad forming process for forming the pads 4 and 4. In the heating element layer forming step and the pad forming step, for example, the film may be formed by various sputtering methods, various vapor deposition methods, various CVD methods, and the like.

ところで、本実施形態の赤外線放射素子において発熱体層3から放射される赤外線のピーク波長λは、発熱体層3の温度に依存し、ピーク波長をλ〔μm〕、発熱体層3の絶対温度をT〔K〕とすれば、ピーク波長λは、
λ=2898/T
となり、発熱体層3の絶対温度Tと発熱体層3から放射される赤外線のピーク波長λとの関係がウィーンの変位則を満足している。要するに、本実施形態の赤外線放射素子では、発熱体層3が黒体を構成しており、図示しない外部電源からパッド4,4間に与える入力電力を調整することにより、発熱体層3に発生するジュール熱を変化させる(つまり、発熱体層3の温度を変化させる)ことができる。したがって、図2に示すように発熱体層3への最大入力電力に応じて発熱体層3の温度を変化させることができ、また、図3に示すように発熱体層3の温度を変化させることで発熱体層3から放射される赤外線のピーク波長λを変化させることができる。ここにおいて、本実施形態では、発熱体層3が上述のように黒体を構成し、発熱体層3の単位面積が単位時間に放射する全エネルギEがTに比例している(つまり、シュテファン−ボルツマンの法則を満足している)ので、発熱体層3の温度を高くするほど赤外線の放射量を増大させることができ、広範囲の赤外線波長域において高出力の赤外線光源として用いることが可能となる。
By the way, the peak wavelength λ of infrared rays emitted from the heating element layer 3 in the infrared radiation element of the present embodiment depends on the temperature of the heating element layer 3, the peak wavelength is λ [μm], and the absolute temperature of the heating element layer 3. Is T [K], the peak wavelength λ is
λ = 2898 / T
Thus, the relationship between the absolute temperature T of the heating element layer 3 and the peak wavelength λ of infrared rays emitted from the heating element layer 3 satisfies the Vienna displacement law. In short, in the infrared radiation element of the present embodiment, the heating element layer 3 forms a black body, and is generated in the heating element layer 3 by adjusting the input power applied between the pads 4 and 4 from an external power source (not shown). The Joule heat to be changed can be changed (that is, the temperature of the heating element layer 3 can be changed). Therefore, the temperature of the heating element layer 3 can be changed according to the maximum input power to the heating element layer 3 as shown in FIG. 2, and the temperature of the heating element layer 3 is changed as shown in FIG. Thus, the peak wavelength λ of infrared rays emitted from the heating element layer 3 can be changed. Here, in the present embodiment, the heating element layer 3 constitutes a black body as described above, and the total energy E radiated per unit time by the unit area of the heating element layer 3 is proportional to T 4 (that is, (Stefan-Boltzmann's law is satisfied), the higher the temperature of the heating element layer 3, the more the infrared radiation can be increased, and it can be used as a high-power infrared light source in a wide infrared wavelength range. It becomes.

図4に、室温(300〔K〕)下にある赤外線放射素子に対して発熱体層3の温度が1003〔K〕になるような入力電力を単パルス的に与えた場合の発熱体層3の室温からの温度上昇値ΔT〔K〕を測定した結果を示す。ここに、図4の横軸は時間であって、縦軸は入力電力および温度上昇値ΔTそれぞれのピークを1として正規化してあり、同図中の「イ」が入力電力の時間変化(つまり、入力波形)を示し、「ロ」が温度上昇値ΔTの時間変化(つまり、入力波形に対する応答波形)を示している。この図4から、発熱体層3へ入力電力を単パルス的に与えることにより発熱体層3の温度が瞬時に上昇・下降していることが分かり(入力波形の半値幅は5.3μsec、応答波形の半値幅は20μsecである)、高速応答が可能であることが確認された。   FIG. 4 shows a heating element layer 3 in a case where input power is applied in a single pulse so that the temperature of the heating element layer 3 is 1003 [K] to an infrared radiation element at room temperature (300 [K]). The temperature rise value ΔT [K] from room temperature is measured. Here, the horizontal axis of FIG. 4 is time, and the vertical axis is normalized with the peaks of the input power and the temperature rise value ΔT as 1, and “i” in FIG. , “Input waveform”, and “B” indicates the time change of the temperature rise value ΔT (that is, the response waveform to the input waveform). From FIG. 4, it is understood that the temperature of the heating element layer 3 is instantaneously increased and decreased by applying input power to the heating element layer 3 in a single pulse (the half width of the input waveform is 5.3 μsec, the response The half width of the waveform is 20 μsec), and it was confirmed that a high-speed response was possible.

以上説明した本実施形態の赤外線放射素子では、支持基板1が単結晶シリコンにより形成されるとともに、断熱層2が多孔質シリコンにより形成されており、支持基板1の熱容量および熱伝導率それぞれが断熱層2よりも大きく、支持基板1がヒートシンクとしての機能を有するので、小型で入力電力に対する応答速度が速く且つ赤外線の放射特性の安定性を向上させることができ、しかも、発熱体層3がシリコンよりも高融点の金属により形成されているので、発熱体層3の温度をシリコンの最高使用温度(シリコンの融点よりもやや低い温度)まで上昇させることができ、赤外線発光ダイオードに比べて赤外線の放射量を大幅に増大させることができる。また、各パッド4,4において少なくとも発熱体層3に接する部位がシリコンよりも高融点の金属により形成されているので、発熱体層3の温度をパッドの材料に制約されることなく上昇させることができる。   In the infrared radiation element of the present embodiment described above, the support substrate 1 is formed of single crystal silicon and the heat insulating layer 2 is formed of porous silicon, and the heat capacity and the heat conductivity of the support substrate 1 are each insulated. Since the support substrate 1 is larger than the layer 2 and has a function as a heat sink, it is small in size, has a high response speed to input power, can improve the stability of infrared radiation characteristics, and the heating element layer 3 is made of silicon. It is made of a metal having a melting point higher than that, so that the temperature of the heating element layer 3 can be raised to the maximum use temperature of silicon (a temperature slightly lower than the melting point of silicon). The amount of radiation can be greatly increased. In addition, since at least a portion in contact with the heating element layer 3 in each of the pads 4 and 4 is formed of a metal having a melting point higher than that of silicon, the temperature of the heating element layer 3 is increased without being restricted by the pad material. Can do.

なお、本実施形態の赤外線放射素子では、入力電力に対する高速応答が可能なので、高速の赤外光通信用の赤外線光源としての利用することが可能となる。また、赤外分光装置に利用する場合、瞬間的に赤外線を放射させることができるので、測定対象物を加熱せずに測定することが可能となる。また、従来から中赤外光源として用いられているガスレーザは高出力化が可能であるものの大型であって小型化が難しいという課題があり、従来の半導体レーザは、素子自体は小型であるものの、室温でのレーザ発振が難しく、冷却装置が必要でコストが高くなるとともに冷却装置を含めた赤外線発光装置全体が大型化してしまうという課題があり、赤外線発光ダイオードやヒータを用いた赤外光源では、応答速度が比較的遅く出力が比較的小さいという課題があるのに対して、本実施形態の赤外線放射素子では、これらの課題を解決することができる。   In addition, since the infrared radiation element of this embodiment can respond at high speed to input power, it can be used as an infrared light source for high-speed infrared light communication. In addition, when used in an infrared spectroscopic apparatus, infrared light can be emitted instantaneously, so that measurement can be performed without heating the measurement object. In addition, gas lasers conventionally used as mid-infrared light sources are capable of high output, but are large and difficult to miniaturize, while conventional semiconductor lasers are small in size, There is a problem that laser oscillation at room temperature is difficult, a cooling device is required and the cost is high, and the entire infrared light emitting device including the cooling device is enlarged. In an infrared light source using an infrared light emitting diode or heater, In contrast to the problem that the response speed is relatively slow and the output is relatively small, the infrared radiation element of the present embodiment can solve these problems.

実施形態を示す赤外線放射素子の概略断面図である。It is a schematic sectional drawing of the infrared rays radiating element which shows embodiment. 同上の赤外線放射素子の特性説明図である。It is characteristic explanatory drawing of an infrared radiation element same as the above. 同上の赤外線放射素子の特性説明図である。It is characteristic explanatory drawing of an infrared radiation element same as the above. 同上の赤外線放射素子の特性説明図である。It is characteristic explanatory drawing of an infrared radiation element same as the above. 従来例を示す赤外線放射素子の概略断面図である。It is a schematic sectional drawing of the infrared rays radiating element which shows a prior art example.

符号の説明Explanation of symbols

1 支持基板
2 断熱層
3 発熱体層
4 パッド
DESCRIPTION OF SYMBOLS 1 Support substrate 2 Heat insulation layer 3 Heat generating body layer 4 Pad

Claims (1)

支持基板の一表面側に形成された発熱体層と、支持基板の前記一表面側で支持基板と発熱体層との間に介在する断熱層とを備え、発熱体層へ電力を与えることにより発熱体層から赤外線が放射される赤外線放射素子であって、支持基板が単結晶シリコンにより形成されるとともに、断熱層が多孔質シリコンにより形成され、発熱体層がシリコンよりも高融点の金属により形成されてなり、支持基板の前記一表面側で発熱体層と接する形で形成された一対のパッドを備え、各パッドは、少なくとも発熱体層に接する部位がシリコンよりも高融点の金属により形成されてなることを特徴とする赤外線放射素子 By providing a heating element layer formed on one surface side of the support substrate and a heat insulating layer interposed between the support substrate and the heating element layer on the one surface side of the support substrate, and applying power to the heating element layer An infrared radiation element that emits infrared rays from a heating element layer, wherein the support substrate is made of single crystal silicon, the heat insulating layer is made of porous silicon, and the heating element layer is made of a metal having a melting point higher than that of silicon. A pair of pads formed in contact with the heating element layer on the one surface side of the support substrate, and each pad is formed of a metal having a melting point higher than that of silicon at least in a portion contacting the heating element layer Infrared radiation element characterized by being made .
JP2004184008A 2004-06-22 2004-06-22 Infrared radiation element Expired - Fee Related JP4534620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004184008A JP4534620B2 (en) 2004-06-22 2004-06-22 Infrared radiation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004184008A JP4534620B2 (en) 2004-06-22 2004-06-22 Infrared radiation element

Publications (2)

Publication Number Publication Date
JP2006012459A JP2006012459A (en) 2006-01-12
JP4534620B2 true JP4534620B2 (en) 2010-09-01

Family

ID=35779476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004184008A Expired - Fee Related JP4534620B2 (en) 2004-06-22 2004-06-22 Infrared radiation element

Country Status (1)

Country Link
JP (1) JP4534620B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649929B2 (en) * 2004-09-27 2011-03-16 パナソニック電工株式会社 Pressure wave generator
CN102404886B (en) * 2011-11-22 2014-01-15 周存文 Full infrared radiation ceramic heater and manufacturing method thereof
JP6070166B2 (en) * 2012-12-21 2017-02-01 富士ゼロックス株式会社 Planar heating element, method for manufacturing planar heating element, fixing device, and image forming apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140100A (en) * 1989-10-26 1991-06-14 Fuji Xerox Co Ltd Electroacoustic transducing method and apparatus therefor
JPH0864183A (en) * 1994-06-23 1996-03-08 Instrumentarium Oy Heat radiation source that can be adjusted electrically
JPH11300274A (en) * 1998-04-23 1999-11-02 Japan Science & Technology Corp Pressure wave generation device
JP2001289808A (en) * 2000-04-11 2001-10-19 Fuji Electric Co Ltd Thin-film gas sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140100A (en) * 1989-10-26 1991-06-14 Fuji Xerox Co Ltd Electroacoustic transducing method and apparatus therefor
JPH0864183A (en) * 1994-06-23 1996-03-08 Instrumentarium Oy Heat radiation source that can be adjusted electrically
JPH11300274A (en) * 1998-04-23 1999-11-02 Japan Science & Technology Corp Pressure wave generation device
JP2001289808A (en) * 2000-04-11 2001-10-19 Fuji Electric Co Ltd Thin-film gas sensor

Also Published As

Publication number Publication date
JP2006012459A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JP4672597B2 (en) Substrate processing equipment
JP3808493B2 (en) Thermally excited sound wave generator
JPH11354260A (en) Multiple-layered ceramic heater
JP4557279B2 (en) Radiation window for electron beam emitter
JP5591627B2 (en) Ceramic member and manufacturing method thereof
JP5689934B2 (en) light source
JP4513546B2 (en) Pressure wave generating element and manufacturing method thereof
JP2017119593A (en) Ceramic member
JP4534620B2 (en) Infrared radiation element
JP2007057456A (en) Infrared emitting element, gas sensor, and manufacturing method of infrared emitting element
JP2009210290A (en) Infrared radiation element
JP3918806B2 (en) Heater member for placing object to be heated and heat treatment apparatus
JP2018005998A (en) Ceramic heater
JP5243817B2 (en) Infrared radiation element
JP2013170090A (en) Method of bonding ceramics and metal and bonded structure of ceramics and metal
JP2010113935A (en) Heating unit
JP4501705B2 (en) Infrared radiation element
JP4466231B2 (en) Pressure wave generating element and manufacturing method thereof
Park et al. Research on generation of micro-plasma arc and its power intensity
JP2006331752A (en) Infrared-ray emitting element
JP4534645B2 (en) Infrared radiation element
JPH06300719A (en) Method and apparatus for measuring thermoelectric conversion characteristic
JP4534597B2 (en) Infrared radiation element
JP4682573B2 (en) Pressure wave generator
JP4396395B2 (en) Infrared radiation element manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees