JP4532391B2 - Solid catalyst filling method - Google Patents

Solid catalyst filling method Download PDF

Info

Publication number
JP4532391B2
JP4532391B2 JP2005328644A JP2005328644A JP4532391B2 JP 4532391 B2 JP4532391 B2 JP 4532391B2 JP 2005328644 A JP2005328644 A JP 2005328644A JP 2005328644 A JP2005328644 A JP 2005328644A JP 4532391 B2 JP4532391 B2 JP 4532391B2
Authority
JP
Japan
Prior art keywords
reaction tube
solid catalyst
catalyst
reaction
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005328644A
Other languages
Japanese (ja)
Other versions
JP2006159186A (en
Inventor
康彦 森
宣仁 大本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005328644A priority Critical patent/JP4532391B2/en
Publication of JP2006159186A publication Critical patent/JP2006159186A/en
Application granted granted Critical
Publication of JP4532391B2 publication Critical patent/JP4532391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、固定床反応器の反応管内に固体触媒を充填する方法に関する。   The present invention relates to a method of filling a solid catalyst in a reaction tube of a fixed bed reactor.

一般に、反応管を備えた固定床反応器では、固体触媒を反応管の上端開口から管内に投入落下させて充填している。例えば特許文献1には、固定床反応器の反応管内に固体触媒を落下充填するに際し、反応管内雰囲気ガスの水分度を0.3〜1.2重量%の範囲内に保持する固体触媒の充填方法が記載されている。この文献によると、投入落下させた際の衝撃による固体触媒の粉化・崩壊を抑制できると記載されており、前記水分度が0.3重量%未満では、触媒が乾燥して粉化・崩壊しやすくなり、1.2重量%を超えると、触媒が吸湿して粉化・崩壊しやすくなると記載されている。   In general, in a fixed bed reactor equipped with a reaction tube, a solid catalyst is charged by dropping into the tube from the upper end opening of the reaction tube. For example, in Patent Document 1, when a solid catalyst is dropped and filled into a reaction tube of a fixed bed reactor, the solid catalyst is charged so that the moisture content of the atmosphere gas in the reaction tube is kept within a range of 0.3 to 1.2% by weight. A method is described. According to this document, it is described that pulverization / disintegration of a solid catalyst due to an impact at the time of dropping can be suppressed. It is described that when the amount exceeds 1.2% by weight, the catalyst absorbs moisture and is easily pulverized / disintegrated.

しかしながら、この文献に記載されている上記水分度の範囲は、気温が比較的低い時期の飽和水分を一部上回っており、例えば気温10℃の飽和水分は約0.76重量%であり上記範囲に入るため、わずかな気温変動によって各反応管の内面が結露するおそれがある。結露すると、触媒成分が溶出することによる触媒の活性低下や、触媒中の酸性成分による反応管の腐食等の問題がある。   However, the range of the moisture content described in this document partially exceeds the saturated moisture at the time when the temperature is relatively low. For example, the saturated moisture at a temperature of 10 ° C. is about 0.76% by weight. Therefore, the inner surface of each reaction tube may condense due to slight temperature fluctuations. Condensation causes problems such as a decrease in the activity of the catalyst due to the elution of the catalyst component and corrosion of the reaction tube due to the acidic component in the catalyst.

一方、特許文献2には、シェルアンドチューブ式反応器において、チューブ(反応管)内壁面の温度を作業雰囲気の露点より高く維持する触媒の交換方法が記載されている。この文献によると、触媒を交換するにあたり、反応管の内面が結露するのを効果的に防止することができると記載されている。
しかしながら、シェル側に常温で液体の熱媒を流す必要があり、反応温度制御時に高融点の溶融塩を用いる反応プロセスにおいては適用しにくい。
On the other hand, Patent Document 2 describes a catalyst replacement method in a shell-and-tube reactor in which the temperature of the inner wall surface of the tube (reaction tube) is maintained higher than the dew point of the working atmosphere. According to this document, it is described that when the catalyst is replaced, it is possible to effectively prevent condensation on the inner surface of the reaction tube.
However, it is necessary to flow a liquid heat medium at normal temperature to the shell side, which is difficult to apply in a reaction process using a high melting point molten salt when controlling the reaction temperature.

特開2005−224661号公報JP 2005-224661 A 特開2001−38196号公報JP 2001-38196 A

本発明の課題は、反応管の内面が結露するのを防止することができる固体触媒の充填方法を提供することである。   The subject of this invention is providing the filling method of the solid catalyst which can prevent that the inner surface of a reaction tube condenses.

本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、反応管内およびその上方に設けた覆いの中の相対湿度を90%以下に保持しながら固体触媒を充填する場合には、反応管の内面が結露するのを防止することができるという新たな事実を見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventor, when filling the solid catalyst while maintaining the relative humidity in the reaction tube and the cover provided thereabove at 90% or less, The present inventors have found a new fact that it is possible to prevent the inner surface of the tube from condensing and have completed the present invention.

すなわち、本発明の固体触媒充填方法は、固定床反応器の反応管内に上方から固体触媒を投入落下させて充填する方法であって、前記固体触媒を充填する際に、前記反応器の下部から乾燥ガスを供給し、該乾燥ガスを反応管内の下から上方向へ流しながら、反応管内の相対湿度を90%以下に保持し、かつ前記反応器上方の空間であって各反応管内に固体触媒を充填する作業空間に覆いを設け、該覆いの中の相対湿度を90%以下に保持し、該覆いの中で固体触媒の充填を行なうことを特徴とする。 That is, the solid catalyst filling method of the present invention is a method of charging a solid catalyst by dropping it into the reaction tube of the fixed bed reactor from above, and when filling the solid catalyst, From the bottom of the reaction tube, while maintaining the relative humidity in the reaction tube at 90% or less, and in the space above the reactor and solid in each reaction tube The working space for filling the catalyst is provided with a cover, the relative humidity in the cover is maintained at 90% or less, and the solid catalyst is filled in the cover.

本発明によれば、反応管反応管の上方に設けた覆いの中の相対湿度を90%以下に保持するので、各反応管の内面が結露するのを防止することができ、そのため結露による触媒成分の溶出、触媒活性の低下、触媒中の酸性成分溶出による反応管の腐食等を防止することができるという効果がある According to the present invention, since holding the relative humidity in the cover provided above the reaction tube and the reaction tube to 90% or less, it is possible to inner surfaces of the reaction tubes to prevent the condensation, condensation therefore It is possible to prevent the elution of the catalyst component by the catalyst, the decrease in the catalyst activity, the corrosion of the reaction tube due to the elution of the acidic component in the catalyst, and the like .

さらに、乾燥ガスを反応管内の下から上方向へ流しながら、反応管内の相対湿度を90%以下に保持する場合には、反応管内を乾燥ガスが上向きに流れることにより、固体触媒の落下速度が遅くなるので、投入落下させた際の衝撃による固体触媒の粉化や崩壊を抑制することができるという効果もある。 Furthermore, while flowing dry gas from the bottom of the reaction tube upward, when holding the relative humidity of the reaction tube to 90% or less, by drying gas flows upwardly through the anti応管, falling velocity of the solid catalyst Therefore, there is an effect that the solid catalyst can be prevented from being pulverized or collapsed by an impact when dropped .

本発明の固体触媒の充填方法について、図面を参照して詳細に説明する。図1は、本発明の一実施形態にかかる固体触媒の充填方法を説明するための概略説明図である。この実施形態の充填方法は、同図に示すように、固定床多管式反応器1が有する複数の反応管2内に固体触媒3を充填するものである。   The solid catalyst filling method of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic explanatory diagram for explaining a solid catalyst filling method according to an embodiment of the present invention. In the filling method of this embodiment, as shown in the figure, the solid catalyst 3 is filled into a plurality of reaction tubes 2 of the fixed bed multitubular reactor 1.

固定床多管式反応器1は、通常、熱交換型反応器として使用される。この熱交換型反応器では、触媒が充填された反応管の外側にジャケット部4(シェル部)を有し、反応で生成した反応熱をジャケット部4内の熱媒体によって除去する。具体的には、固定床多管式反応器1としては、ディスク・アンド・ドーナツ型の多管式反応器、欠円バッフル型の多管式反応器などが好適に使用される。熱媒体としては、例えば溶融塩、スチーム、有機化合物、溶融金属などが挙げられ、特に溶融塩、スチームを使用するのが熱安定性や取り扱い性のうえから好ましい。   The fixed bed multitubular reactor 1 is usually used as a heat exchange reactor. This heat exchange type reactor has a jacket portion 4 (shell portion) outside the reaction tube filled with the catalyst, and the reaction heat generated by the reaction is removed by the heat medium in the jacket portion 4. Specifically, as the fixed bed multitubular reactor 1, a disk and donut type multitubular reactor, a non-circular baffle type multitubular reactor, or the like is preferably used. Examples of the heat medium include a molten salt, steam, an organic compound, and a molten metal. In particular, it is preferable to use a molten salt and steam from the viewpoint of thermal stability and handleability.

固定床多管式反応器1では、固体触媒が充填された複数の縦型反応管2内に所定の原料化合物を通過させながら、例えば気相接触反応により原料化合物を酸化させ、目的化合物を得る。   In the fixed bed multitubular reactor 1, a target compound is oxidized by, for example, a gas phase contact reaction while passing a predetermined raw material compound through a plurality of vertical reaction tubes 2 filled with a solid catalyst to obtain a target compound. .

反応管2は直線状の直管であり、反応器1内に垂直方向に配置されており、この反応器1内に原料化合物を通過させて反応を行なわせる。また、各反応管2は、通常、内径が約15〜50mmの範囲から選ばれる実質的に同一形状の金属管であるのが好ましい。ここで「実質的に同一形状」とは、反応管2の外径、肉厚および長さが設計誤差の範囲にあることを意味し、該設計誤差は通常±2.5%以内、好ましくは±0.5%以内が許容される。なお、反応管2の内径は触媒径の4倍以上となるように、反応管2の内径と触媒径とを決定するのが好ましいが、特に制限されるものではない。   The reaction tube 2 is a straight straight tube and is disposed in the reactor 1 in the vertical direction, and the raw material compound is allowed to pass through the reactor 1 to carry out the reaction. Moreover, it is preferable that each reaction tube 2 is a metal tube having substantially the same shape, usually selected from the range of an inner diameter of about 15 to 50 mm. Here, “substantially the same shape” means that the outer diameter, thickness and length of the reaction tube 2 are within the range of design error, and the design error is usually within ± 2.5%, preferably Within ± 0.5% is allowed. Although it is preferable to determine the inner diameter of the reaction tube 2 and the catalyst diameter so that the inner diameter of the reaction tube 2 is four times or more the catalyst diameter, it is not particularly limited.

反応管2は、内面が平滑であるのが好ましい。これにより、各反応管2での触媒充填密度を高くすることができる。具体的には、例えば継ぎ目のないシームレス管が好適に採用可能である。   The reaction tube 2 preferably has a smooth inner surface. Thereby, the catalyst packing density in each reaction tube 2 can be made high. Specifically, for example, seamless seamless pipes can be suitably used.

各反応管2の上端部は開口しており、この上部開口から固体触媒を投入し落下させて充填する。   The upper end of each reaction tube 2 has an opening, and a solid catalyst is charged through this upper opening and dropped and filled.

反応管2内に充填される固体触媒としては、例えば塩化水素および酸素から塩素を得る気相酸化法では、酸化ルテニウムを主成分とし、ルチル型酸化チタンに担持させた酸化触媒が挙げられ、さらにプロピレンおよび酸素からアクロレイン、さらにアクリル酸を得るための気相酸化法や、イソブチレンおよび酸素からメタクロレイン、さらにメタクリル酸を得るための気相酸化法の場合には、それぞれ所定の酸化触媒が使用される。   Examples of the solid catalyst filled in the reaction tube 2 include, for example, an oxidation catalyst mainly composed of ruthenium oxide and supported on rutile titanium oxide in a gas phase oxidation method for obtaining chlorine from hydrogen chloride and oxygen. In the case of the gas phase oxidation method for obtaining acrolein and further acrylic acid from propylene and oxygen, and the gas phase oxidation method for obtaining methacrolein and further methacrylic acid from isobutylene and oxygen, a predetermined oxidation catalyst is used. The

固体触媒は、反応に対して不活性な不活性充填材で希釈して用いてもよい。また、触媒を複数の触媒層に分けて反応管内に充填してもよく、その場合には触媒層同士の間に不活性充填材層を介在させてもよい。   The solid catalyst may be diluted with an inert filler that is inert to the reaction. Further, the catalyst may be divided into a plurality of catalyst layers and filled in the reaction tube. In that case, an inert filler layer may be interposed between the catalyst layers.

固体触媒の形状としては、例えば球形粒状、円柱形ペレット状、リング形状、あるいは成形後に粉砕分級した顆粒状などの形状が挙げられ、特に制限されるものではない。触媒の大きさは、通常、径が10mm以下であるのが好ましく、触媒径が10mmを超えると、活性が低下するおそれがある。また、触媒径が過度に小さくなると、反応管2内の圧力損失が大きくなるため、通常は触媒径が0.1mm以上であるのがよい。   Examples of the shape of the solid catalyst include, but are not particularly limited to, a spherical particle shape, a cylindrical pellet shape, a ring shape, and a granular shape that is pulverized and classified after molding. In general, the catalyst preferably has a diameter of 10 mm or less, and if the catalyst diameter exceeds 10 mm, the activity may decrease. Moreover, since the pressure loss in the reaction tube 2 increases when the catalyst diameter becomes excessively small, the catalyst diameter is usually preferably 0.1 mm or more.

固体触媒を充填する際に、各反応管2内の相対湿度は90%以下、好ましくは80%以下、より好ましくは70%以下に保持される。これにより、反応管2の内面が結露するのを防止することができる。各反応管2内の相対湿度を前記所定の値に保持するには、例えば各反応管2内に乾燥ガスを流す方法が挙げられる。
なお、本発明における「固体触媒を充填する際」とは、主として、反応管2内に固体触媒を充填する前および充填中を意味するが、充填後も反応管2内およびその上方の相対湿度を90%以下に維持するのが、反応管内の結露防止の上で好ましい。
When filling the solid catalyst, the relative humidity in each reaction tube 2 is maintained at 90% or less, preferably 80% or less, more preferably 70% or less. Thereby, it is possible to prevent condensation on the inner surface of the reaction tube 2. In order to maintain the relative humidity in each reaction tube 2 at the predetermined value, for example, a method of flowing a dry gas into each reaction tube 2 can be mentioned.
In the present invention, “when filling the solid catalyst” mainly means before and during the filling of the solid catalyst in the reaction tube 2, but the relative humidity in and above the reaction tube 2 after the filling. Is preferably maintained at 90% or less in order to prevent condensation in the reaction tube.

本発明では、さらに反応器1の上方空間10の相対湿度も90%以下、好ましくは80%以下、より好ましくは70%以下に保持する。これにより、反応管2の内面が結露するのがより確実に防止される。上方空間10の相対湿度を前記所定の値に保持するには、例えば上方空間10に覆い20を設けるのがよく、さらに覆い20内に空調機や除湿機、乾燥機等を設けるのが好ましい。空調機や除湿機に代えて、覆い20内に乾燥ガスを送風するための送風機を設けてもよい。さらに、覆い20を設けることにより、例えば雨天時に屋外で触媒を充填する際には、雨が各反応管2内に浸入するのを防止できる。   In the present invention, the relative humidity of the upper space 10 of the reactor 1 is also maintained at 90% or less, preferably 80% or less, more preferably 70% or less. Thereby, it is more reliably prevented that the inner surface of the reaction tube 2 is condensed. In order to maintain the relative humidity of the upper space 10 at the predetermined value, for example, a cover 20 is preferably provided in the upper space 10, and an air conditioner, a dehumidifier, a dryer, and the like are preferably provided in the cover 20. Instead of an air conditioner or a dehumidifier, a blower for blowing dry gas in the cover 20 may be provided. Furthermore, by providing the cover 20, for example, when the catalyst is filled outdoors in the rain, it is possible to prevent rain from entering the reaction tubes 2.

固体触媒の充填作業は、前記覆い20の中で行なわれる。従って、前記上方空間10とは、固体触媒3を各反応管2内に投入充填する作業空間をも意味する。この上方空間10は、覆い20によって完全に外部から遮断された密閉空間であってもよく、あるいは相対湿度が90%を超えない限りにおいて、外部と連通する非密閉空間であってもよい。   The solid catalyst filling operation is performed in the cover 20. Therefore, the upper space 10 also means a working space in which the solid catalyst 3 is charged into each reaction tube 2. The upper space 10 may be a sealed space completely blocked from the outside by the cover 20 or may be a non-sealed space communicating with the outside as long as the relative humidity does not exceed 90%.

覆い20は、反応管2の上端開口が臨むフロアー21(作業台)上に設置され、上方空間10の周囲を覆う屋根20aと周壁20bとで構成されている。周壁20bの出入口には開閉扉22が設けられ、この扉22を開いて作業員23が覆い20内に出入りするようになっている。周壁20bは、上方空間10の周囲を覆うように構成されているので、雨が各反応管2内に浸入するのを確実に防止できる。覆い20としては、本発明の効果を妨げない範囲で特に限定されるず、例えばテント等が使用可能である。   The cover 20 is installed on a floor 21 (work bench) where the upper end opening of the reaction tube 2 faces, and is configured by a roof 20a and a peripheral wall 20b covering the periphery of the upper space 10. An opening / closing door 22 is provided at the entrance / exit of the peripheral wall 20 b, and the operator 23 enters and exits the cover 20 by opening the door 22. Since the peripheral wall 20 b is configured to cover the periphery of the upper space 10, it is possible to reliably prevent rain from entering the reaction tubes 2. The cover 20 is not particularly limited as long as the effects of the present invention are not hindered. For example, a tent or the like can be used.

次に、反応管2の下から乾燥ガスを流す方法を説明する。すなわち、反応器1の下部には、通常、各反応管2を流下した反応生成物を集めるチャンネルカバー30が付設されている。チャンネルカバー30には、反応生成物を次工程に送るための排出口31が設けられる。乾燥ガスは、チャンネルカバー30の壁部に設けられるマンホール32から反応器1内に供給される(乾燥ガスを矢印Aで示す)。また、乾燥ガスを排出口31から供給することも可能である。   Next, a method for flowing dry gas from under the reaction tube 2 will be described. That is, a channel cover 30 that normally collects reaction products flowing down the reaction tubes 2 is attached to the lower portion of the reactor 1. The channel cover 30 is provided with a discharge port 31 for sending the reaction product to the next process. The dry gas is supplied into the reactor 1 from a manhole 32 provided on the wall portion of the channel cover 30 (the dry gas is indicated by an arrow A). It is also possible to supply dry gas from the outlet 31.

乾燥ガスとしては、各種のガスが採用可能であり、例えば空気、ヘリウムガス、窒素ガス等が挙げられ、これらは1種または2種以上を混合して用いてもよい。本発明では、取り扱いが容易な空気を使用するのが好ましい。乾燥ガスを流す方向としては、各反応管2内に下から上方向でありこれにより触媒充填作業に支障がなく、また投入落下させた際の衝撃による固体触媒の粉化や崩壊を抑制することができるまた、乾燥ガスは各反応管2内に連続して流すのが、各反応管2内の相対湿度を90%以下に維持する上で好ましい。 Various gases can be employed as the dry gas, and examples thereof include air, helium gas, nitrogen gas, and the like. These may be used alone or in combination. In the present invention, it is preferable to use air that is easy to handle. The direction of flow of drying gas is upward from below into the reaction tube 2, thereby no trouble in the catalyst filling work, also inhibit powdering and collapse of the solid catalyst due to impact when were introduced drop it is possible. In addition, it is preferable to continuously flow the dry gas into each reaction tube 2 in order to maintain the relative humidity in each reaction tube 2 at 90% or less.

乾燥ガスの流量としては、反応管2およびその上方の相対湿度を90%以下にすることができる限り、特に限定されるものではなく、例えば反応管1本当り0.1〜10L/時間、好ましくは1〜5L/時間であるのがよい。   The flow rate of the drying gas is not particularly limited as long as the relative humidity of the reaction tube 2 and the upper part thereof can be 90% or less. For example, 0.1 to 10 L / hour per reaction tube, preferably Is preferably 1 to 5 L / hour.

各反応管2への固体触媒3の充填方法は、特に限定されないが、例えば縦型の場合は、反応管2の上部に空間部を残して触媒を管内に投入落下させて充填すればよい。この際、各反応管2への充填速度を一定にしたり、できるだけゆっくりと充填するのが好ましい。固体触媒3の充填は、手作業で行ってもよく、あるいは触媒充填機(例えば特開平11−333282号公報などに記載の触媒充填機)を用いて行ってもよい。   The method for filling each reaction tube 2 with the solid catalyst 3 is not particularly limited. For example, in the case of a vertical type, the catalyst may be charged and dropped into the tube while leaving a space above the reaction tube 2. At this time, it is preferable that the filling speed into each reaction tube 2 is made constant or is filled as slowly as possible. The filling of the solid catalyst 3 may be performed manually, or may be performed using a catalyst filling machine (for example, a catalyst filling machine described in JP-A-11-333282).

以上のようにして固体触媒が充填された複数の反応管2に、所定の原料化合物を通過させながら、例えば気相接触反応により原料化合物を酸化させ、目的化合物を得る。このような反応に供される原料化合物には、例えば気相酸化法により塩素を得るための塩化水素および酸素、気相酸化法によりアクロレイン、さらにアクリル酸を得るためのプロピレンおよび酸素、気相酸化法によりメタクロレイン、さらにメタクリル酸を得るためのイソブチレンおよび酸素などが挙げられる。   As described above, the raw material compound is oxidized by, for example, a gas phase contact reaction while passing the predetermined raw material compound through the plurality of reaction tubes 2 filled with the solid catalyst to obtain the target compound. The raw material compounds subjected to such a reaction include, for example, hydrogen chloride and oxygen for obtaining chlorine by a gas phase oxidation method, acrolein by a gas phase oxidation method, and propylene and oxygen for obtaining acrylic acid, gas phase oxidation Examples include methacrolein, isobutylene and oxygen for obtaining methacrylic acid.

なお、使用する反応管2は直線状に限定されるものではなく、例えばコイル状であってもよい。また、本発明方法は、固定床多管式反応器1に限定されるものではなく、各種の固定床反応器にも適用可能である。   In addition, the reaction tube 2 to be used is not limited to a linear shape, and may be a coil shape, for example. Further, the method of the present invention is not limited to the fixed bed multitubular reactor 1 but can be applied to various fixed bed reactors.

本発明の一実施形態にかかる固定床多管式反応器を示す概略説明図である。It is a schematic explanatory drawing which shows the fixed bed multitubular reactor concerning one Embodiment of this invention.

符号の説明Explanation of symbols

1 固定床多管式反応器
2 反応管
3 固体触媒
10 作業空間
20 覆い
20a 屋根
20b 周壁
31 排出口
32 マンホール
DESCRIPTION OF SYMBOLS 1 Fixed bed multi-tubular reactor 2 Reaction tube 3 Solid catalyst 10 Work space 20 Cover 20a Roof 20b Perimeter wall 31 Outlet 32 Manhole

Claims (1)

固定床反応器の反応管内に上方から固体触媒を投入落下させて充填する方法であって、前記固体触媒を充填する際に、前記反応器の下部から乾燥ガスを供給し、該乾燥ガスを反応管内の下から上方向へ流しながら、反応管内の相対湿度を90%以下に保持し、かつ前記反応器上方の空間であって各反応管内に固体触媒を充填する作業空間に覆いを設け、該覆いの中の相対湿度を90%以下に保持し、該覆いの中で固体触媒の充填を行なうことを特徴とする固体触媒の充填方法。 A method in which a solid catalyst is charged and dropped from above into a reaction tube of a fixed bed reactor, and when the solid catalyst is filled, a dry gas is supplied from a lower portion of the reactor, and the dry gas is reacted. While flowing from the bottom to the top of the tube, the relative humidity in the reaction tube is maintained at 90% or less, and a space is provided above the reactor, and a working space in which each catalyst tube is filled with a solid catalyst is provided with a cover, A method for filling a solid catalyst, wherein the relative humidity in the cover is maintained at 90% or less, and the solid catalyst is filled in the cover.
JP2005328644A 2005-11-14 2005-11-14 Solid catalyst filling method Active JP4532391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005328644A JP4532391B2 (en) 2005-11-14 2005-11-14 Solid catalyst filling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005328644A JP4532391B2 (en) 2005-11-14 2005-11-14 Solid catalyst filling method

Publications (2)

Publication Number Publication Date
JP2006159186A JP2006159186A (en) 2006-06-22
JP4532391B2 true JP4532391B2 (en) 2010-08-25

Family

ID=36661763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005328644A Active JP4532391B2 (en) 2005-11-14 2005-11-14 Solid catalyst filling method

Country Status (1)

Country Link
JP (1) JP4532391B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020192531A (en) * 2020-08-07 2020-12-03 日本化薬株式会社 Method for filling solid catalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230545A (en) * 1985-07-31 1987-02-09 Mitsubishi Heavy Ind Ltd Method for packing catalyst
JP2001038196A (en) * 1999-08-04 2001-02-13 Nippon Shokubai Co Ltd Exchanging method of catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230545A (en) * 1985-07-31 1987-02-09 Mitsubishi Heavy Ind Ltd Method for packing catalyst
JP2001038196A (en) * 1999-08-04 2001-02-13 Nippon Shokubai Co Ltd Exchanging method of catalyst

Also Published As

Publication number Publication date
JP2006159186A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
US8557192B2 (en) Method and reactor for the preparation of methanol
EP1813346B1 (en) Multitubular reaction apparatus for contact gas-phase reaction
US7022877B2 (en) Long-term operation of a heterogeneously catalyzed gas phase partial oxidation of acrolein to acrylic acid
US6977066B1 (en) Method for producing chlorine
US8076510B2 (en) Process for starting-up a heterogeneously catalyzed partial gas phase oxidation of acrolein to acrylic acid or of methacrolein to methacrylic acid
TW527218B (en) Multitube reactor, especially for catalytic gas-phase reactions
US20080307648A1 (en) Process for introducing a portion withdrawn from at least one production charge of annular coated catalysts k into a reaction tube of a tube bundle reactor
EP1251100B1 (en) Method for producing chlorine
BRPI0608407B1 (en) PROCESS FOR LOADING A REACTOR WITH CATALYST PARTICULATES, REACTOR, PROCESS FOR PREPARING ACRYLIC ACID, AND USING A REACTOR
US7211692B2 (en) Long-term operation of a heterogeneously catalyzed gas phase partial oxidation of propene to acrylic acid
JP4532391B2 (en) Solid catalyst filling method
CN103313782B (en) Multi-tube reactor having structured packing
JP2007515454A (en) Formaldehyde production method
WO2004018403A1 (en) Method of vapor phase catalytic oxidation using multitubular reactor
JP2003519673A (en) Gas phase catalytic oxidation method for obtaining maleic anhydride.
JP3606147B2 (en) Chlorine production method
CN113286651B (en) Fixed bed multitubular reactor for manufacturing alkenyl acetate
JP5821636B2 (en) Removal method of solid catalyst
JP4295462B2 (en) Gas phase catalytic oxidation method
JP3570322B2 (en) Method for producing chlorine
WO2015163260A1 (en) Fluid bed reactor and method of producing nitrile compound using same
JP2005330205A (en) Method for producing (meth)acrolein or (meth)acrylic acid
JP5782213B2 (en) Corrosion prevention method for multi-tube reactors
JP5130155B2 (en) Chlorine production method
JPH10277381A (en) Method for filling solid catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100610

R150 Certificate of patent or registration of utility model

Ref document number: 4532391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350