JP4531807B2 - 工程内測定装置 - Google Patents

工程内測定装置 Download PDF

Info

Publication number
JP4531807B2
JP4531807B2 JP2007503344A JP2007503344A JP4531807B2 JP 4531807 B2 JP4531807 B2 JP 4531807B2 JP 2007503344 A JP2007503344 A JP 2007503344A JP 2007503344 A JP2007503344 A JP 2007503344A JP 4531807 B2 JP4531807 B2 JP 4531807B2
Authority
JP
Japan
Prior art keywords
measurement
vibration
tube
value
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007503344A
Other languages
English (en)
Other versions
JP2007529729A (ja
Inventor
リーダー,アルフレート
フクス,ミヒャエル
ドラーム,ヴォルフガング
イティン,イプホ
シュプリヒ,ハンス‐イェルク
ウィース,ザームエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004014029A external-priority patent/DE102004014029A1/de
Priority claimed from DE102004021690.8A external-priority patent/DE102004021690B4/de
Application filed by Endress and Hauser Flowtec AG filed Critical Endress and Hauser Flowtec AG
Publication of JP2007529729A publication Critical patent/JP2007529729A/ja
Application granted granted Critical
Publication of JP4531807B2 publication Critical patent/JP4531807B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • G01F1/8418Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments motion or vibration balancing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8422Coriolis or gyroscopic mass flowmeters constructional details exciters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8427Coriolis or gyroscopic mass flowmeters constructional details detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8431Coriolis or gyroscopic mass flowmeters constructional details electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means
    • G01F15/024Compensating or correcting for variations in pressure, density or temperature using electrical means involving digital counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/16Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by measuring damping effect upon oscillatory body
    • G01N11/162Oscillations being torsional, e.g. produced by rotating bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Measuring Volume Flow (AREA)

Description

本発明は、振動式の測定値検知器(measurement pickup)を有する工程内測定器、特にパイプラインを流れる媒体、特に2相以上の媒体、のためのコリオリ式質量流量/濃度測定装置、およびその測定値検知器によって例えば質量流速、濃度および/または粘度などの媒体の物理的測定量を表わす測定値を生成する方法に関する。
プロセス測定および自動化測の技術において、例えば質量流速、濃度および/または粘度のような、パイプ中を流れる媒体の物理的パラメーターの測定において、そのような工程内測定装置、特にコリオリ式質量流量測定装置が使用され、該装置は、媒体を運ぶパイプラインの途中に挿入され動作中媒体が横切る振動式測定値検知器によって、また、それと接続した動作回路によって、例えば質量流速に対応するコリオリ力、密度に対応する慣性力および粘度に対応する摩擦力などの媒体中の反作用力(reaction forces)をもたらす。これらの反作用力から導き出して、測定装置は次に特定の質量流速、特定の粘度、および/または特定の濃度を表わす測定信号を生成する。振動式の測定値検知器およびその動作の方法を用いたこの種の工程内測定装置は当業者には知られているし、例えば次の資料中に詳細に記されている。WO-A 03/095950, WO-A 03/095949, WO-A 03/076880, WO-A 02/37063, WO-A 01/33174, WO-A 00/57141, WO-A 99/39164, WO-A 98/07009, WO-A 95/16897, WO-A 88/03261, US 2003/0208325, またはUS-B 6,691,583, US-B 6,651,513, US-B 6,513,393, US-B 6,505,519, US-A 6,006,609, US-A 5,869,770, US-A 5,796,011, US-A 5,602,346, US-A 5,602,345, US-A 5,531,126, US-A 5,301,557, US-A 5,253,533, US-A 5,218,873, US-A 5,069,074, US-A 4,876,898, US-A 4,733,569, US-A 4,660,421, US-A 4,524,610, US-A 4,491,025, US-A 4,817,721, EP-A 1 281 938, EP-A 1 001 254, またはEP-A 553 939。
媒体を案内するために測定値検知器は、常に、例えば管状あるいは箱型の支持フレーム中に保持される少なくとも一つの測定用チューブを持っている。動作中上述の反作用力を生じるために、上記チューブ部材は、電気機械的励起機構によって駆動される振動を起こされる。振動、特にチューブ部材の入力端および出力端の振動、を記録するために、測定値検知器はチューブ部材の動きに反応する電気物理センサー機構を追加的に有している。
コリオリ式質量流量測定装置の場合、パイプラインを流れる質量流量の測定は、パイプライン中に挿入された測定用チューブを通して媒体を流し、動作中そのチューブを測定用チューブの軸の横方向に振動させ、媒体内にコリオリ力を誘引することによって行われる。これらの力は、今度は測定用チューブの入力端および出力端の領域が互いにその位相を変えながら振動する効果をもたらす。この位相変化の大きさが質量流速の目安として役立つ。次に、上記測定用チューブの長さ方向に沿って互いに離れている上記センサー機構の2つの振動センサーによって、測定用チューブの振幅が記録され、振幅測定信号に変換され、そこから質量流速の相互の位相差が導き出される。
すでに上記で述べたUSP No. 4,187,721では、さらに、流れている媒体の瞬時の濃度もそのような工程内測定装置によって測定可能で、しかも、実際、センサー機構によって出力される少なくとも1つの振動測定信号の周波数をもとに測定可能であることを述べている。さらに、通常、適切な方法、例えば測定用チューブ上に配置した温度センサーで媒体の温度も直接測定される。さらに、真っ直ぐな測定用チューブは、知られているように、測定用チューブの長手方向軸に本質的に平行または一致しているねじれ振動軸の周りにねじれ振動を励起されたときは、媒体がチューブ内を流れるときにその媒体内に円周方向の剪断力を生じ、それによってねじれ振動から大きな振動エネルギーが引き抜かれ、媒体中に消散してしまう。その結果、振動する測定用チューブのねじれ振動に大きな減衰が生じ、ねじれ振動を維持するために追加的に電気的な励起力が加えられなければならない。測定用チューブのねじれ振動を維持するために必要な電気的な励起力に基づいて、測定値検知器は媒体の粘度を、少なくとも近似的に決定するためにも使用される。この点についても、US-A 4,524,610, US-A 5,253,533,US-A 6,006,609, US-A 6,651,513を参照のこと。したがって、以下ではそれより多くのことを記載していないが、表記的に述べていない場合でも、振動する測定値検知器を有する最新の工程内測定装置、特にコリオリ式質量流量測定装置は、質量流速の測定中に、媒体の濃度および/または粘度の変動から生じる測定誤差を補償するために常に必要になるため、どんな場合でも媒体の濃度、粘度および/または温度の測定ができる能力を有していると想定される。この点については特にすでに述べた以下を参照されたい。 US-B 6,513,393, US-A 6,006,609, US-A 5,602,346, WO-A 02/37063, WO-A 99/39164, WO-A 00/36379。
しかし、例えば、JP-A 10-281846, WO-A 03/076880, US-B 6,505,519, US-A 4,524,610でも論じられているように、振動性の測定値検知器を用いた工程内測定装置の適用において、不均質媒体、特に媒体が2相またはそれ以上の不均質媒体の場合、測定用チューブの振動から導かれる振動測定信号、特に上述した位相のシフトも、非常に大きく変動に支配され、したがって、時には各媒体相の粘度および濃度、また質量流速を実質的に一定に保ち、かつ/または適切にそれらを考慮に入れるどころか、信号は所望の物理的パラメーターを計測するためには、補助の測定値の利用なくしては完全に利用できないようになってしまうということが分かっている。そのような不均質媒体とは、例えば、分配プロセスやボトリングプロセス中に、その中に実際上避けられない気体、特にパイプラインの中に存在する空気が混入してしまう液体とか、溶け込んでいた媒体、例えば2酸化炭素の気体が出て泡沫の形態になるものなどである可能性がある。そのような不均質媒体の他の例は、乳濁液や、湿った状態のあるいは飽和した蒸気などである。振動性の測定値検知器による不均質物質の測定で生じる変動の理由としては、以下のように例を使って述べることが出来る: 測定用チューブの内壁面に液体中に混入した気体の泡や固形の粒子の片寄った付着や沈殿、および、流入した気体の泡が測定用チューブの長手方向の軸を加速して横切る液体主要素の流体として作用する、いわゆる“泡効果”である。
WO-A 03/076880 では、2相以上の媒体に関連する測定誤差を減少させるため、実際の質量流量測定の前に、各媒体ごとに流れの条件を調整することが提案されているが、例えばJP-A 281846 および US-B 6,515,519 では各々、特に、高精度で計測される実際の媒体濃度と、コリオリ式質量流量装置による動作中の見かけの濃度との間の不足分の評価値にしたがって、振動測定信号に基づいて流速測定値、特に質量流速測定値を補正することを述べている。
特に、事前に検討された、時には適応的ですらある分級器(classifiers)がこのために提案されている。分級器はコホーネンマップ、またはニューラルネットワークとして設計され、動作中に測定される2,3のパラメーター、特に質量流速および濃度とそこから引き出される更なる特性に基づいて、または1つ以上の振動周期内の振動測定信号の間隔をも用いて、補正を行う。そのような分級器を使用することは、例えば古いコリオリ式質量流量/濃度計に比べて、機械的構成において、測定値検知器、すなわち特定のアプリケーションに適応する励起機構や、その機構を制御する動作回路を全く変えないでよいか、ほんの少しだけ変えればよいという利点をもたらす。しかしながら、他の中にあって、そのような分級器には重大な不具合があり、従来のコリオリ式質量流量測定装置に比べて測定値の生成という領域で、特にアナログデジタルトランスジューサおよび使用されるマイクロプロセッサーに関して大きな変更が必要とされる。すなわちUSP No. 6,505,519 に述べられてもいるように、そのような信号評価のために、例えば約80Hzの振動周波数を示す振動測定信号のデジタル化において充分な正確さを得るには約55kHz、またはそれ以上のサンプリング周期を必要とする。別な言い方をすれば、振動測定信号のサンプリングは600:1を大幅に上回るサンプリング周期で行われなければならない。それ以前に、デジタル測定回路の中に格納され動作するファームウェアは、相応して複雑になる。そのような分級器のさらなる不具合は、分級器が測定値検知器の動作中に実際に存在する測定条件に対して慣らされ、相応して有効性確認されていなければならないということであり、例えばその条件は特に、設置条件、測定される媒体、およびその通常変化する特性、または測定の精度に影響する他の要素についてである。これら全ての相互作用の高度な複雑さのおかげで、慣らしと有効性確認作業は、最終的にはその場所でのみ各測定値検知器に個別に行うことが出来るが、このことは、逆に測定値検知器の立ち上げに対する非常に多くの努力を意味する。最後に、そのような区分けのためのアルゴリズムは一方でその非常な複雑さゆえに、また一方で技術的に関係のある、または納得のいくパラメーターを持った、相応する物理-数学モデルが明快には存在しないという事実ゆえに、分級器は非常に低い透明性しか示さず、したがって、しばしば表現することが困難である。この状況と共に、例えば、分級器が、さらにニューラルネットワークのように自己適応である時に特に生じる、上記のような受容上の問題を伴って、顧客の側に非常に大きな抵抗が生じることは明白である。
不均質媒体に伴う問題を避けるための他の可能性として、USP No. 4,524,610 は、例えば、真っ直ぐな測定用チューブを基本的に垂直に置いて、出来るだけそのような邪魔をする、特に気体状の不均質物質が付着するのを妨げるように測定値検知器を設置することを提案している。
これはしかし、工業的なプロセス測定技術においては、常には実施されない非常に特殊な解法である。他方、このケースで、測定値検知器が挿入されるパイプラインを、測定値検知器に適合させなければならないということが起こり得、その逆ではない。この事実は測定位置を設けるための費用の増大を意味する可能性がある。他方、すでに述べたように、測定用チューブは曲がった形をしていても良い、いずれにしてもこの場合、設置方向を適合させることによって常に問題が満足するように解決するわけではない。また、このケースで、上述した測定信号の劣化は、いずれにせよ必ずしも垂直に設置した真っ直ぐな測定用チューブの使用によって確実に回避は出来ないことが判っている。
本発明の目的は、特に2相以上の媒体の不均質媒体の場合においても物理的測定量、特に質量流速、濃度および/または粘度を非常に正確に測定するのに適した、実際、測定量の実際値に対して特に望ましくは測定誤差が10%以下の測定誤差の、対応する工程内測定装置、特にコリオリ式質量流量測定装置を提供することである。更なる目的は、対応する測定値を生成する相応の方法を提供することである。
この目的を達成するために、本発明は、パイプライン内を流れる媒体の少なくとも1つの物理的測定量を測定する工程内測定装置にするものである。本工程内測定装置は、この目的のために、振動する測定値検知器と、この測定値検知器に電気的に接続された測定装置電子回路とを有する。測定値検知器は、パイプラインの途中に挿入され、このパイプラインと繋がり、かつ、測定する媒体を通す測定用チューブと、測定用チューブに作用して少なくとも1つの測定用チューブに振動を起こさせる励起機構と、少なくとも1つの測定用チューブの振動を記録し、測定用チューブの振動を表わす少なくとも1つの振動測定信号を出力するセンサー機構とを含む。励起機構は、動作中少なくとも時々、および、少なくとも部分的に測定用チューブを横振動で振動させる。さらに、励起機構は、動作中少なくとも時々、および、少なくとも部分的に測定用チューブを、測定用チューブと軸合わせされた仮想の測定用チューブ長手方向軸の周りにねじれ振動で振動させる。測定装置電子回路は、少なくとも時々、励起機構を駆動する励起電流を配電する。さらに、測定装置電子回路は、測定用チューブの横振動を維持するための励起電流の横電流成分、および/または励起電流の横振動の減衰に対応する第1の中間値を決定する。さらに、測定装置電子回路は、測定用チューブのねじれ振動を維持するための励起電流のねじれ電流成分、および/または測定用チューブのねじれ振動の減衰に対応する第2の中間値を決定する。測定装置電子回路は、少なくとも1つの振動測定信号および/または励起電流から導き出される、測定すべき少なくとも1つの物理量に対応する最初の測定値を決定し、第1の中間値と第2の中間値との比較、および/または、第1の中間値と第2の中間値との間に存在する差に基づいて、最初の測定値に対する補正値を決定し、補正値によって最初の測定値を補正して、測定値を生成する。
さらに、本発明は、パイプラインを流れる媒体の物理的測定量を、振動式の測定値検知器と、その検知器に電気的に接続されている測定装置電子回路とを有する工程内測定器によって測定する方法に関するものであり、本方法は以下のステップを含む。
すなわち、測定する媒体を、パイプラインと繋がっている測定値検知器の少なくとも1つの測定用チューブを通って流し、測定用チューブに機械的振動を起こさせるために、媒体を案内する測定用チューブと機械的に結合している励起機構に励起電流を流すステップ、
測定用チューブの横振動をもたらし、かつ、測定用チューブのねじれ振動をもたらすステップ、
測定用チューブの振動を記録して、測定用チューブの振動を表わす少なくとも1つの振動測定信号を生成するステップ、
励起電流から導き出され、測定用チューブの横振動を維持するための励起電流の横電流成分、および/または測定用チューブの横振動の減衰に対応する、第1の中間値を決定するステップ、
励起電流から導き出され、測定用チューブのねじれ振動を維持するための励起電流のねじれ電流成分、および/または測定用チューブのねじれ振動の減衰に対応する、第2の中間値を決定するステップ
少なくとも1つの振動測定信号および/または励起電流を用いて、測定すべき物理量に対応する最初の測定値を生成するステップ、
第1の中間値と第2の中間値との比較、および/または、第1の中間値(X1)と第2の中間値との間に存在する差に基づいて、最初の測定値に対する補正値を決定するステップ、および、
補正値によって最初の測定値を補正して、測定値を生成するステップ、を含む。
本発明の工程内測定装置の実施例において、励起機構によって駆動される測定用チューブは、測定用チューブが励起機構によって横振動を起こされる測定用チューブ曲げ振動周波数とは異なる測定用チューブねじれ振動周波数を有するねじれ振動を起こす。
本発明の工程内測定装置の実施例において、測定用チューブは、入口端に開口している入口側チューブ片を介して、かつ、出口端に開口している出口側チューブ片を介して、結合するパイプラインに繋げられ、測定値検知器は入口端および出口端に固定され、動作中、少なくとも時々、測定用チューブの位相とは反対の位相で振動する反振動子を含む。
本発明の工程内測定装置の実施例において、測定装置電子回路は少なくとも1つの振動測定信号にも基づいて、第1および/または第2の中間値を生成する。
本発明の工程内測定装置の実施例において、少なくとも1つの測定値は測定用チューブを流れる媒体の粘度を表わし、測定装置電子回路は、励起機構を駆動する励起電流および/または励起電流の成分に基づいて最初の測定値をも決定する。
本発明の工程内測定装置の実施例において、少なくとも1つの測定値は測定用チューブを流れる媒体の濃度を表わし、測定装置電子回路は、少なくとも1つの振動測定信号を用いて、および/または、最初の測定値が、測定する濃度および/または少なくとも1つの振動測定信号の振動周波数に対応するという認識に立って、励起電流を用いて最初の測定値を決定する。
本発明の工程内測定装置の実施例において、測定装置電子回路は少なくとも時々、第1および第2の中間値に基づいて、測定用チューブ内の2またはそれ以上の相の媒体の場合における、ある媒体相の体積および/または質量の割合を表わす混入率測定値(a concentration measured value)を決定する。
本発明の工程内測定装置の実施例において、センサー機構は測定用チューブの入口端横振動を少なくとも部分的に表わす少なくとも1つの振動測定信号と、測定用チューブの出口端横振動を少なくとも部分的に表わす少なくとも1つの第2の振動測定信号を出力する。
本発明の工程内測定装置の実施例において、少なくとも1つの測定値は測定用チューブを流れる媒体の質量流速を表わし、測定装置電子回路は、最初の測定値が測定すべき質量流速、および/または2つの振動測定信号の位相差に対応するという認識に立って、2つの振動測定信号を用いて最初の測定値を決定する。
本発明の基本的な考え方は、測定する媒体中の特に不均質性から生じる、起こり得る測定誤差を補正または補償するために、測定値検知器を2つのモードで動作させるということにある。2つのモードでは、測定用チューブは本質的に互いに独立した少なくとも2つの振動モード、すなわち横振動モードおよびねじれ振動モードで交互に振動を起こされる。2つのモードでの動作中に決定され、測定用チューブの横およびねじれ振動の維持に必要な測定値検知器の動作パラメーター、特に測定用チューブの励起電流、周波数および/または振幅等に基づいて、実際の測定値に対する非常に正確な、驚くほどしっかりした補正値が非常に簡単な方法で決定される。
この点に関して、本発明は、測定用チューブの横振動を維持するために測定値検知器に供給される励起力が、測定する媒体中の不均質物質、例えば気体泡沫または固形粒子等によって大きな程度影響されるということの発見に基づいている。このことと比較して、測定用チューブのねじれ振動を維持するために測定値検知器に供給される励起力は、そのような不均質物質に非常に僅かな程度しか依存しないため、動作中、この励起力、特にねじれ振動を維持するために実際に供給される励起電流成分に基づいて、最新の参照値が決定され、その助けを借りて、横振動に対して対応して決定される測定値、例えば横振動を維持するために実際供給される励起電流成分の比較が可能になる。この、例えば正規化された、または減算的に行われる比較に基づいて、媒体中の瞬間の不均質性の程度が見積もられ、それから導かれて、測定値に入り込んだ測定誤差に関して正確な結論がなされる。したがって、本発明の工程内測定装置は、物理的測定量、特にパイプラインを流れる2相以上の媒体、特に液体−気体混合体の質量流速、濃度および/または粘度の測定に特に適している。
本発明の利点は、決定されるべき補正値が広い適用範囲にわたってよく再現性があり、動作中に補正値を決定する手順を形成することが比較的簡単に形作られることである。 その上、この手順の形成が内部的に、比較的小さな努力で計算される。さらなる本発明の利点は、追加的に以下の事実に見られる。すなわち、特にWO-A 03/095950, WO-A 03/095949, US-A 4,524,610に述べられているような旧来のタイプと比べて、本発明の工程内測定装置の場合、通常デジタルの測定値の生成には僅かな変更しか必要でなく、これらは基本的にファームウェアに限定され、また、測定値検知器の場合、および振動測定信号の事前処理において、変更は必要ないか、少しだけである。したがって、例えば2つ以上の媒体の場合でも以前のように振動測定信号はサンプリング周期が100:1よりもずっと低い、特に約10:1でサンプリング可能である。
発明を実施するための最良の方法
本発明とさらにその有利な実施例について図に示される実施例を基に詳細に述べる。同じ部品は全ての図中同じ符号を付すが、はっきりさせる必要があれば、既に述べられた符号をそれ以後の図では省略する。
図1は、パイプライン(図示しない)中を流れる媒体の物理的測定量、例えば 質量流速m、濃度ρおよび/または粘度ηを記録し、この測定量を瞬時に表わす測定値XXに反映するのに適した工程内測定装置1の外観図を示す。この場合、媒体は事実上どんな流れる物質でもよく、例えば液体、気体、蒸気、などのようなものである。
例えばコリオリ式質量流量、濃度および/または粘度計の形で供される工程内測定装置1は、したがって、測定する媒体が流れる振動式測定値検知器10を含み、図2と図7に図示される測定装置電子回路50とともに、その実施例と発展形が図2から図6に示されている。好ましくは、測定装置電子回路50は、工程内測定装置1の動作中、測定データおよび/または他の操作データを、上位の測定値処理ユニット、すなわち、それよりも上位に位置づけられている例えばプログラマブルロジックコントローラ(PLC)、パソコン、および/またはワークステーションと、例えばフィールドバスシステムのようなデータ搬送システムを介して交換できるように設計されている。さらに、測定装置電子回路は、例えば上述のフィールドバスシステムを介して外部電源から供給されるように設計される。振動型の測定装置がフィールドバスまたはいくつかの他の通信システムに接続されているケースでは、特にプログラム可能な測定装置電子回路50は、例えばすでに述べたプログラマブルロジックコントローラまたは上位のプロセスコントロールシステムに測定値を送るための、対応する通信インターフェースを備えている。測定装置電子回路50を設置するために電子回路ケース200がさらに用意され、特に振動式測定値検知器10上に直接取り付けられるか、さもなければ多分そこから離れて取り付けられる。
すでに述べたように、工程内測定装置は振動式測定値検知器を含み、動作中測定される媒体がそこを通って流れる。測定値検知器は、そこを通って流れる媒体内に機械的な反作用力、特に質量流速に依存するコリオリ力と、媒体の濃度に依存する慣性力、および/または媒体の粘度に依存する摩擦力を生じさせるために機能し、それらの力はトランスジューサ上で測定可能なように、すなわち、特に測定値検知器上のセンサーによって記録可能なように作用する。媒体を特徴付けるこれらの反作用力に基づいて、例えば媒体の質量流速、濃度および/または粘度が、当業者には知られた方法で測定可能である。図3および4に、振動式測定値検知器10として機能する電気物理トランスジューサ機構の具体例が概略的に図示されている。そのようなトランスジューサの構造および機能する仕組みは、それ自体、当業者には知られており、また例えばUSP No. 6,691,583, WO-A 03/095949,または WO-A 03/095950に詳細に述べられている。
媒体を案内し、上記の反作用力を生じるために、測定値検知器は少なくとも1つの、所定の直径の基本的に真っ直ぐな測定用チューブ10を有する。測定用チューブ10は、動作中少なくとも時々振動を起こされ、それによって繰り返しの弾性変形を受ける。 測定用チューブ内腔の弾性変形は、ここではチューブの内腔の空間的な形状および/または空間的な位置が循環的に、特に周期的に、測定用チューブ10の弾性範囲内で所定の方法で変化することを意味する。この点についても以下の資料を参照されたい。US-A 4,801,897, US-A 5,648,616, US-A 5,796,011, US-A 6,066,609, US-B 6,691,583, WO-A 03/095949,および/またはWO-A 03/095950。1本だけの真っ直ぐな測定用チューブを含むこの明細書の実施例に示す測定値検知器の代わりに、本発明の実現に役立つ測定値検知器は、最新の技術に知られている多くの振動式測定値検知器から選択することが出来る。特に、例えばUSP No. 5,602,345にも詳細が述べられているような、例えば測定する媒体が通る2本の平行な真っ直ぐな測定用チューブを持つ振動式測定値検知器は適している。
図1に示すように、工程内測定装置1は、測定用チューブ10および測定値検知器の他の部材を取り囲む測定値検知器ケース100を有する(さらに下記も参照)。測定値検知器ケース100は、チューブ10および他の部材が環境への影響にダメージを与えることを防止したり、および/または測定値検知器から周囲への起こり得る音の放出を緩衝するように働く。さらに、測定値検知器ケース100は測定装置電子回路50を収容する電子回路ケース200のための取り付けプラットフォームとしても機能する。このため、測定値検知器ケース100はネック状の中間部材を有し、電子回路ケース200が適切に固定される(図1参照)。ここで示されるような、測定用チューブと同軸に延伸するチューブ状のトランスジューサケース100の代わりに、例えば箱型構造のような他の適切なケースの形ももちろん使用可能である。
測定する媒体を各々流入流出するパイプラインに入口端および出口端で普通に繋がっている測定用チューブ10は、好ましくは剛性のある、特に曲がりおよびねじれに強い測定値検知器ケース100内で振動するように支持されている。
媒体がそこを通って流れるように測定用チューブは、入口端11#に開口している入口側チューブ片11を介して、また、出口端12#に開口している出口側チューブ片12を介して、パイプラインに結合される。測定用チューブ10、入口側チューブ端11、および出口端チューブ端12は、互いに軸合わせされており、また、上述の測定用チューブの長手方向軸Lに出来るだけ正確に軸合わせされており、そして都合良くは、例えば1本の管状の棒がその製造に役立つように、1つの部品として供される。必要な場合は、しかし、測定用チューブ10およびチューブ片11,12は別々の、後で例えば溶接される棒によって作ることも可能である。測定用チューブ10、および入口側および出口側チューブ片11,12の製造のために、実際上そのような測定値検知器のためのあらゆる通常の材質、例えば鉄合金、チタン合金、ジルコニウム合金、および/またはタンタル合金、合成物質、またはセラミックのような材質も使用できる。
測定値検知器がパイプラインから取り外し可能に組みつけられている場合、好ましくは第1および第2のフランジ13,14が、入口側チューブ片11、および出口側チューブ片12に各々形成されている。しかし、必要ならば入口側および出口側チューブ片は、例えば溶接や半田付けでパイプラインに直接繋ぐことも出来る。さらに、図1に概略図示したように、測定用チューブ10を適合させるために入口側出口側チューブ片11,12に固定されたトランスジューサケース100が設けられる。この点では図1と図2を比較されたい。
少なくとも質量流速mを測定するために、測定用チューブ10は横振動モードとして発生する1次の有効振動モードの振動に励起され、測定用チューブ10は少なくとも部分的に、特に測定用チューブの仮想の長手方向軸Lの横方向、特に横の外側に曲がるように、基本的に1次固有振動による曲げ固有振動数での振動、特に曲げ振動を起こす。つながっているパイプライン中を媒体が流れ、したがって質量流速mがゼロでない場合、有効モードで振動している測定用チューブ10は、媒体が流れる時にその中にコリオリ力を誘引する。この力は、今度は、測定用チューブ10と相互作用し、当業者に知られている方法で、1次の固有振動に同一面上で重畳する2次の固有振動に本質的に従って、追加の、センサーが検出可能な、測定用チューブの変形を起こすことになる。そのような場合、測定用チューブの変形の瞬間的な変形の形状も、特にその振幅に関して、瞬間的な質量流速mに依存する。そのような測定値検知器の場合には通常であるように、2つまたは4つの振動振幅を持った非対称曲げ振動が例えば2次の固有振動、いわゆるコリオリモードとして作用する。 測定用チューブのそのような横振動モードの固有周波数は、媒体濃度ρにも特別な程度で依存することは判っているので、さらに濃度ρも、質量流速mに加えて、工程内測定装置によって測定可能である。横振動に加えて、少なくとも1つの測定用チューブ10は、少なくとも時々、ねじれ振動モードで駆動され、流れている媒体中に粘度依存性の剪断力を生じる。このねじれ振動モードでは、測定用チューブは、測定用チューブの長手方向軸Lに本質的に平行、または一致して延伸しているねじれ振動軸の周囲にねじれ振動を励起される。本質的に、この励起とは、測定用チューブ10がその長手方向軸Lの周りに固有のねじれ振動の形でねじられるというものである。この点に関しては、例えば、またUS-A 4,524,610, US-A 5,253,533, US-A 6,006,609, EP-A 1 158 289を参照のこと。ねじれ振動の励起は、そのようなケースで、1次の有効振動モードと交番で、それとは分離して、2次の有効振動モードで起こるか、または、少なくとも互いに識別可能な振動周波数の場合、1次の有効振動モードでの横振動と同時にも起こるか、どちらかである。言い換えると、測定値検知器は、2つのモードでの動作において、少なくとも時々、少なくとも1つの測定用チューブが、少なくとも2つの振動モードが本質的に互いに独立した振動モード、すなわち横振動モードとねじれ振動モードで交互に振動させられる。
本発明の1実施例において、測定用チューブ10は、少なくとも時々、流れている媒体中に、測定用チューブ10の最も低い曲げ固有振動数に出来るだけ正確に対応する横振動周波数を持った質量流速依存のコリオリ力を生じるように励起され、したがって横振動する測定用チューブ10は、流れている媒体を含まないときには、測定用チューブの長手方向軸Lに直角な中心軸に対して本質的に対称に外側に曲がり、この場合、1個の振動振幅を示す。ステンレスで公称径20mm、厚さ1.2mm、長さ約350mmの測定用チューブ10の場合、この最も低い曲げ固有振動周波数は、通常の猶予を持って、約850Hzから900Hzである。
本発明のさらなる実施例において、測定用チューブ10は、特に有効モードの横振動と同時に、測定用チューブのねじれ固有周波数に可能な限り正確に対応するねじれ振動周波数fexcT で励起される。真っ直ぐな測定用チューブの場合、最も低いねじれ固有振動数は、例えば最も低い曲げ固有振動数の約2倍の範囲にある。
一方では、すでに述べたように、測定用チューブ11の振動は、振動エネルギーの移動、特に媒体への移動によって減衰する。他方では、しかし、例えばトランスジューサケース100や結合しているパイプラインのような測定用チューブと機械的に結びついている部品の振動によって、相当程度、振動測定チューブから振動エネルギーが引き抜かれてしまう。周辺への可能性ある振動エネルギー損失を抑圧または回避するために、測定用チューブ10の入口側および出口側端に固定される測定値検知器に反振動子20が、したがって、設けられる。反振動子は、図2に概略的に示されているように好ましくは一体で作られる。USP No. 5,969,265, EP-A 317 340 WO-A 00 14 485 に見られるように、必要なら反振動子20は複数の部品で構成するか、または測定用チューブ10の入口および出口端に固定される2つの分離した反振動部材で実現される(図6参照)。反振動子20は、他の部材の中で、少なくとも1つの予め決定された媒体の濃度値、例えば最も頻繁に生じると期待される濃度値、あるいは臨界的な媒体濃度値に対して、振動する測定用チューブ10に生じる可能性のある横断力および/または曲げモーメントが大きく補正される程度にまで、動的に測定値検知器のバランスをとるために役立つ。このことに関してもUSP No. 6,691,583 を参照。それ以上に、反振動子20は、上述のケース、すなわち測定用チューブ10が動作中ねじれ振動も生じるように励起されているときに、望ましくはその長手方向軸Lの周りにねじれを生じる1本の測定用チューブ10によって生じるねじれモーメントを大きく補正する反ねじれモーメントをさらに生じるように作用し、これによってトランスジューサの周辺部材、しかし特に、連結しているパイプラインを動的なねじれモーメントから大きく開放された状態に保つ。反振動子20は、図2および図3に示すように、例えばチューブの形で具体化され、図3に示すように測定用チューブ10に基本的に同軸に配置され、測定用チューブ10の入口端11#および出口端12#に結合される。反振動子20は実用上測定用チューブ10に使用される材質、したがって例えばステンレス、チタン合金、等で作ることが出来る。
反振動子20は、特に測定用チューブ10と比較して幾分ねじれが起こりにくく、および/または曲げ弾性も少ないが、同様に動作中振動が生じ、しかも実際、測定用チューブ10と基本的に同じ周波数であるが位相が異なる、特に逆位相の振動を生じる。ここで、反振動子20は、測定用チューブ10が動作中ねじれ振動を起こす有力な周波数に出来るだけ正確なねじれ固有振動数の少なくともそのうちの1つで振動するように調整される。その上、反振動子20は、測定用チューブ10が特にその有効モードで振動する曲げ振動周波数の少なくとも1つに等しい曲げ固有振動数の少なくとも1つに調整され、かつ、反振動子20は測定値検知器の動作中横振動、特に、測定用チューブ10の横振動、特に有効モードの曲げ振動と本質的に同平面上に生じる曲げ振動も生じるように励起される。
図3に示す本発明の実施例において、反振動子20は、この目的のために、溝201,202を有し、それらがそのねじれ固有振動数の正確な調整、特に、反振動子20のねじれ剛性を下げることでねじれ固有振動数を下げることを可能にしている。溝201,202は、図2,3では長手方向軸Lの方向に本質的に均一に分布して示されているが、必要ならもちろん、長手方向軸Lの方向に不均一に配置しても良い。その上、反振動子の質量分布も同様に図3に図示するように、測定用チューブ10に固定される相応する質量バランス体101、102によって補正される。質量バランス体101、102は、例えば測定用チューブ10に押装される金属リング、またはそれに固定する金属片などである。
測定用チューブ10の機械的な振動を生じさせるために、測定値検知器はさらに測定用チューブに結合される励起機構40、特に電気機械式励起機構を有する。励起機構40は、測定電子回路から供給される、例えば標準化された励起電流iexcおよび/または標準化された電圧を持つ電気的励起力Pexcを、測定用チューブ10に作用し弾性的変形を与える作用をするパルス状または調波の励起モーメントMexc、および/または励起力Fexcに変換するように働く。可能性のある最も高い効率と可能性のある最も高い信号/雑音比を達成するために、励起パワーPexcは有効モードにある測定用チューブ10の振動が優勢に維持されるよう、しかも実際、流れる媒体を含む測定用チューブの瞬間的な固有周波数に可能な限り正確に調整される。励起力Fexcおよび励起モーメントMexcは、このケースでは実際、図4および図6に図示されるように各々双方向、しかしまたは1方向の形態でも生成され、当業者に知られた方法で、例えばその振幅に関しては電流および/または電圧が標準化された回路によって、および、例えばその周波数に関しては位相固定ループによって、調整される。励起機構40は、そのような振動測定値検知器では通常であるように、例えば、反振動子20、またはトランスジューサケース100、またはトランスジューサケース200の内部に取り付けられた円筒型の励起コイルを持ったプランジャコイルを有する。動作中励起コイルは、それを通って流れる相応の励起電流iexcLを流す。さらに、励起機構40の中には、励起コイルのなかに少なくとも部分的に延伸し、測定用チューブ10に固定される永久磁石の電機子を内蔵している。
さらに、励起機構40は、例えばUSP No. 4,542,610、または WO-A 03/09950に示されるように複数のプランジャ型コイルまたは電磁石によっても実現可能である。
測定用チューブ10の振動を検出するために、測定値検知器はさらに検出機構50を有し、測定用チューブ10の振動を代表するものとして、そのような振動に反応する第1の振動センサー51によって、第1の、特にアナログ信号である、振動測定信号S1を生成する。第1の振動センサー51は、測定用チューブ10に固定されている反振動子20またはトランスジューサケースに設けられたセンサーコイルと相互作用する永久磁石電機子によって作ることが出来る。
特に振動センサー51として機能するために、特にそのようなセンサーは、電気力学的原理に基づいて、測定用チューブ10の変位の速度を記録するものが適している。しかし、電気力学的な加速度計測の、あるいは電気抵抗式あるいは光学式の移動量測定のセンサーも、使用可能である。もちろん、当業者に知られており、そのような振動の検出に適した他のセンサーも使用可能である。検出機構60はさらに、特に第1の振動センサー51と同じ第2の振動センサー52を含む。振動センサー52は、同様に測定用チューブ10の振動を代表する第2の振動測定信号S2を出力する。本実施例の2つの振動センサー51,52測定用チューブ10の中で互いに測定用チューブ10の長さ方向に沿って、特に測定用チューブ10の中心から等しい距離だけ離れて配置され、検出機構50は測定用チューブ10の入口および出口の振動を記録してそれらを対応する振動測定信号S1、S2に変換する。2つの振動測定信号S1、S2は、各々通常測定用チューブ10の瞬間の振動周波数に対応する信号周波数を示し、図2に示すように測定装置電子回路50に導かれて、当業者に知られた方法で事前処理、特にデジタル化され、続いて対応する要素によって適切に評価される。
本発明のある実施例において、励起機構40は図2および図3に示されるように、実際は測定値検知器の中で、測定用チューブ10上と反振動子20上では、同時に、特に異なった風に動作するように構成され配置される。本発明のさらなる発展形の場合、励起機構40は、実際図2に示されるように、測定値検知器中で、動作中測定用チューブ10上と反振動子20上では、同時に、特に異なった風に動作するように都合よく構成され配置される。図4に示す実施例において、励起機構40は、その目的のために、動作中少なくとも時々励起電流または励起電流の成分が流れる少なくとも1つの第1の励起コイル41aを有する。励起コイル41aは、測定用チューブ10に結合するレバー41cに固定され、このレバーと外部から反振動子20に固定される電機子41bを介して、測定用チューブ10上と反振動子20上で異なるように作用する。この機構は、他の機構の中で、一方では、反振動子20および、したがってトランスジューサケース20の断面が小さく保たれるという利点を有し、かつ、このことにもかかわらず、励起コイル41aは特に組み立てのとき容易にアクセスが可能である。さらに、この励起機構40の実施例の他の利点は、特にその公称径が80mm以上もあってその重量が無視できない、使用される可能性のあるコイルキャップ41dを反振動子20上に固定することが出来、したがって、測定用チューブ10の固定周波数には実質的に何の影響も与えないということである。しかし、必要があれば励起コイル41aを反振動子20に保持し、電機子41bを測定用チューブ10に保持することも出来ることを注意されたい。
対応する方法で、振動センサー51、52は、測定値検知器の中で、測定用チューブ10の振動と反振動子20の振動がそれらによって個別に記録されるように設計し配置することが出来る。図5に示す実施例において、センサー機構50は測定用チューブ10に固定されたセンサーコイル51aを有し、それはセンサー機構50のすべての慣性主軸の外側に位置する。センサーコイル51aは、反振動子20上に固定された電機子51bに可能な限り近づけて位置させ、また、測定用チューブ10と反振動子20がその相対的な位置を変化させたり、および/または相対的に離れたりしたときの、両者の回転のおよび/または横方向の相対的な動きに影響されて、センサーコイルの中に変化する測定電圧が誘引されるように電機子51bと磁気的に接続される。
センサーコイル51aのそのような機構を基に、上述のねじれ振動と励起された曲げ振動の両方が、有利なことに同時に記録される。しかし、必要ならば、センサーコイル51aは、したがって、この目的のために反振動子20に固定され、対応して、それと対になる電機子51bが測定用チューブ10に固定されても良い。
本発明の他の実施例において、測定用チューブ10、反振動子20、およびそれらに付いているセンサーおよび励起機構40,50はその質量分布に関して、入口側および出口側チューブ片11,12によって支えられている測定値検知器の結果としての内部部分が、測定用チューブ10の少なくとも内部、好ましくは測定用チューブの長手方向軸Lに出来るだけ近くにある質量MSの中心を持つように互いに位置合わせされる。さらに、上記内部部分は、入口側チューブ片11及び出口側チューブ片12と軸合わせされて、少なくとも部分的に測定用チューブ10の内部に存在する第1の慣性主軸T1を持つように、有利に構成される。上記内部部分の質量中心MSのずれ、特に、しかし、上述の第1の慣性主軸T1の位置のおかげで、動作中に測定用チューブ10によって想定され、反振動子20によって補正される2つの振動形態、すなわち、測定用チューブ10のねじれ振動と曲げ振動は、可能な限り大きく互いに機械的に分離される。この点に関しても、WO-A 03/095950を参照。このように、両振動形態、すなわち横振動および/またはねじれ振動は、それ以上なく有利に、互いに分離して励起される。測定用チューブの長手方向軸Lに対する質量中心MSおよび第1の慣性主軸T1の両方の位置変位は、例えば、上記内部部分、すなわち、測定用チューブ10、反振動子20、および付随するセンサーおよび励起機構50,40が、測定用チューブの長手方向軸Lに沿った内部部分の質量分布が本質的に互いに対称的なように、しかし、少なくとも測定用チューブの長手方向軸Lの周りの180度(c2対称)の仮想回転に関しては不変であるように構成され配置することによって、単純化することが可能である。
加えて、ここでは、チューブ状の、特にまた、充分に軸対称に実現されている反振動子20が、測定用チューブ10と本質的に軸対称に配置され、それによって内部部分の対称的な質量分布の達成が非常に単純化され、かつ、したがって、質量中心MSは簡単に測定用チューブの長手方向軸Lの近くに位置変位される。その上、ここで提供される実施例中のセンサーおよび励起機構50,40は互いに測定用チューブ10上あるいは、また反振動子20上の適切な場所に配置され、それらによって生じる質量の慣性モーメントは測定用チューブの長手方向軸Lと出来るだけ同軸状に形成されるか、または少なくともできるだけ小さく保たれる。
このことは、例えばセンサーおよび励起機構50,40の共通の質量中心が、測定用チューブの長手方向軸Lの出来るだけ近くに位置するか、および/またはセンサーおよび励起機構50,40の合計質量が出来るだけ小さく保たれるようにして達成される。
本発明の別の実施例において、励起機構40は、測定用チューブ10のねじれおよび/または曲げ振動が分離して励起するために、曲げ振動を起こす力が、第1の慣性主軸T1に直角または第2の慣性主軸T2を最大1点で横切る、第2の慣性主軸T2の外側に延伸する仮想の力線の方向に測定用チューブ10に作用するように構成され、チューブ10および反振動子に固定される。好ましくは、上記内部部分は、第2の慣性主軸T2が本質的に上述の中心軸と一致するように具体化される。 図4に示す実施例において、励起機構40はこの目的のために少なくとも1つの励起コイル41aを有し、そこには少なくとも時々、動作中励起電流または励起電流の1成分が流れる。励起コイル41aは測定用チューブ10に結合しているレバー41cに固定され、そのレバーと外部から反振動子20に固定されている電機子によって、測定用チューブ10上と反振動子20上とでは異なって動作する。この機構は、他の部材の中で、一方では、反振動子20および、したがってトランスジューサケース100も断面が小さく保たれるという利点を有し、かつ、このことにもかかわらず、励起コイル41aは特に組み立てのときも容易にアクセスが可能である。これに加えて、この励起機構40の実施例の他の利点は、特にその公称径が80mm以上もあってその重量が無視できない、使用される可能性のあるコイルキャップ41dを、同じように反振動子20上に固定することが出来、したがって測定用チューブ10の共振周波数には実質的に何の影響も与えないということである。しかし、必要があれば励起コイル41aを反振動子20に保持し、電機子41bを測定用チューブ10に保持することも出来ることを注意されたい。
本発明のさらなる実施例において、励起機構40は測定用チューブ10の直径に沿って配置される少なくとも1つの第2の励起コイル42aを有し、励起コイル41aと同様の方法で測定用チューブ10および反振動子20に結合される。本発明の他の望ましい実施例において、励起機構はさらに2つの励起コイル43a,44aを持ち、したがって少なくとも4つが、第2の慣性主軸T2に関して対称的に配置される。すべてのコイルは上述のような方法で測定値検知器に取り付けられる。 第2の慣性主軸T2の外側で測定用チューブ10に作用する力は、そのような2つまたは4つのコイル配置で簡単に得られる。例えば、励起コイルの1つ、例えば励起コイル41aに、他と比較して、それぞれのケースで異なるインダクタンスを与えるとか、あるいは、励起コイルの1つ、例えば励起コイル41aに、動作中他の励起コイルの励起電流成分とは異なる励起電流成分の流れを起こさせることによって、などである。
本発明の他の実施例において、センサー機構50は、図5に図示するように第2の慣性主軸T2の外に配置され測定用チューブ10に固定されているセンサーコイル51aを有する。センサーコイル51aは、反振動子20上に固定された電機子51bに可能な限り近づけて配置され、センサーコイルの中に、測定用チューブ10と反振動子20がその相対的な位置を変化させたり、および/または相対的に離れたりしたときの、両者の回転のおよび/または横方向の相対的な動きの影響を受けて変化する測定電圧が誘引されるように、電機子51bと磁気的に結合される。本発明のセンサーコイル51aのそのような機構のおかげで、適切な場所に励起される上述のねじれ振動と曲げ振動が有利な方法で、同時に記録される。必要ならば、センサーコイル51aが、したがって、代わりに、反振動子20に固定され、対応して、それと対の電機子51bが測定用チューブ10に固定されても良い。
さらに、励起機構40と励起機構50は、当業者に知られた方法で本質的に同じ機械的構造を有することが出来、したがって、励起機構40の機械的構造の上述した実施例を基本的にセンサー機構50の機械的構造に移転させることが出来る、また逆もまた同じ。
測定用チューブ10に振動を起こさせるために、励起機構40は、すでに述べたように、同じように変動する励起電流iexc、特に多周波数の、可変振幅で可変励起周波数fexcの、振動する電流が供給され、この電流が動作中励起コイル26,36を通って流れ、電機子27,37を動かすのに必要な磁場が対応して生成される。励起電流iexcは、例えば、調波のマルチ周波数、または矩形波でも良い。測定用チューブ10の横振動を保つために必要な、励起電流の横方向電流成分iexcLの横振動励起周波数fexcLは、都合よく、実施例に示す測定値検知器の場合、横振動する測定用チューブ10が、単一の振動振幅を有する曲げ振動の基本モードで振動するように選択し調整することが出来る。そのことと類似して、測定用チューブ10のねじれ振動を保つために必要な、励起電流のねじれ用電流成分iexcTのねじれ振動周波数fexcTは、都合よく、実施例に示す測定値検知器の場合、ねじれ振動する測定用チューブ10が、単一の振動振幅を有するねじれ振動の基本モードで振動するように選択し調整することが出来る。
上述した2つの電流成分、iexcLおよびiexcTは、各々が励起電流選択する動作のタイプに応じて、中間的に励起機構40に導かれ、各々がiexcとして作用するか、または同時に有効な励起電流iexcを形成するために互いに補い合う。
動作中測定用チューブ10がその周波数で振動させられる、横振動周波数fexcLおよびねじれ振動周波数fexcTが、互いに異なるように調製される上述のケースで、ねじれと曲げ振動が同時に励起されるケースでも、例えば信号のフィルタリングや周波数分析に基づいて、測定値検知器によって簡単にまた有利な方法で、励起信号内とセンサー信号内両方で個々の振動モードの分離が生じる。そうでなければ、横およびねじれ振動の交互の励起が、自身を推奨する。
励起電流iexc、または電流成分iexcL、iexcTを生成し調整するために、測定装置電子回路は対応する駆動回路53を有し、それは励起電流iexcおよび/または電流成分iexcLの、望ましい横振動励起周波数fexcLを表わす横振動周波数調整信号YFML、および望ましい横振動振幅を表わす横振動振幅調整信号YAMLによって制御され、また同様に、少なくとも時々、励起電流iexcおよび/またはねじれ用電流成分iexcTの、ねじれ振動励起周波数fexcTを表わすねじれ振動周波数調整信号YFMT、および望ましいねじれ振動振幅を表わすねじれ振動振幅調整信号YAMTによって制御される。駆動回路53は、例えば、瞬間の励起電流iexc、または電流成分iexcL、iexcTを設定するために、数値制御される、アナログではない、デジタルの発振器である電圧制御の発振器、または下流の電圧−電流変換器によって実現できる。
測定装置電子回路50に組み込まれる振幅調整回路51は、横振動振幅調整信号YAML、および/またはねじれ振動振幅調整信号YAMTを生成するために機能することが出来る。振幅制御回路51は、瞬間の横振動周波数および/または瞬間のねじれ振動周波数で測定される2つの振動測定信号S1、S2のうち少なくとも1つの瞬間振幅に基づいて、また、横およびねじれ振動の、対応する一定または可変の振幅参照値WS、WTに基づいて、振幅調整信号YAML、YAMTを実現する。適切であれば、横振動振幅調整信号YAML、および/またはねじれ振動振幅調整信号YAMTを生成するために、励起電流iexcの瞬間振幅もまた参照することが出来る(図7と比較のこと)。そのような振幅制御回路を作成し機能させる方法も、当業者には同じく知られている。そのような振幅制御回路の例として、例えばシリーズ“PROMAS I”という測定値検知器に関して当受託者から入手可能なシリーズ“PROMAS 80”という測定値伝達器も参考にされる。その振幅制御回路は、好ましくは測定用チューブ10の横振動が一定の振幅値に制御されるように設計されており、したがって振幅は濃度ρとも独立している。
周波数制御回路52およびその駆動回路53は、例えば、当業者に知られているような方法で使用される位相固定ループとして構成され、振動測定信号S1、S2間、および各々瞬時測定された調整されるべき励起電流iexcの間の少なくともいずれか1つで測定される位相差に基づいて、横振動周波数調整信号YFML、および/またはねじれ振動周波数調整信号YFMTを、測定用チューブ10の瞬時固有振動数に、継続的に制御する。測定用チューブをその機械的固有周波数の1つで駆動するそのような位相固定ループの作成とその利用は、例えばUSP No. 4,801,897に詳細に述べられている。もちろん、当業者に知られている他の周波数制御回路、例えば、USP No. 4,524,610 または 4,801,897に提案されているものも使用可能である。さらに、振動性測定値検知器に対するそのような周波数調整回路の応用を期待する、すでに述べた“PROMAS 80”という測定値伝達器も参考にされる。駆動回路として適している他の回路は、例えば、USP No. 5,869,770 または 6,505,519から学ぶことが出来る。
本発明の他の実施例において、振幅制御回路51および周波数制御回路52は、図7に概略図示されるように、測定装置電子回路50内に設けられるデジタル信号処理器DSP、および相応してDSP内に組み込まれ実行されるプログラムコードを備えている。プログラムコードは、信号処理器を制御および/または監視するマイクロコンピューター55の不揮発性メモリー内に永続的に、あるいは、恒久的に格納することが出来、また、例えば信号処理器DSPの立ち上がりのときに、測定装置電子回路50の揮発性のデータメモリーRAM、例えば信号処理器DSP内に集積されているRAMにロードすることも出来る。そのような使用に適した信号処理器は、例えば、テキサスインスツルメント社から入手可能な型式TMS320VC33のものである。振動測定信号S1、S2は、この点に関して、信号処理器DSP内で処理するために相応のアナログ-デジタル変換器によって対応するデジタル信号に変換される必要があることは自明である。この点に関しては、特にEP-A 866,319を参照のこと。
必要ならば、信号処理器から出力される信号、例えば振幅調整信号YAML、YAMT、および周波数調整信号YFMT、YAMTを相応の方法でデジタルからアナログに変換することが出来る。
図7に図示されるように、もし適切であれば、最初の、適切に調製された振動測定信号S1、S2は、さらに測定装置電子回路の測定回路21に送られ、振動測定信号S1、S2のうち少なくとも1つ、および/または励起電流iexcに基づいて少なくとも1つの測定値XXが生成される。
本発明の1実施例において、測定回路21は少なくとも部分的に流量計算機として機能するように作られ、測定回路は,それ自体が当業者に知られた方法で、少なくとも部分的に横振動している測定用チューブ10の場合に生成される振動測定信号S1、S2の間で検出される位相差から、ここでは質量流速測定値としての、また、測定されるべき質量流速を出来るだけ正確に表わす質量流速測定値XX を決定するために機能する。測定回路21は、振動測定信号S1、S2に基づいて質量流速を決定する旧来のコリオリ式質量流量測定装置にすでに用いられている、特にデジタルのいかなる測定回路でも良い。この点に関しては、特に、最初に述べたWO-A 02/37063, WO-A 99/39164, US-A No. 5,648,616, US-A 5,069,074を参照のこと。もちろん、当業者に知られている、コリオリ式質量流量測定装置に適した、他の測定回路、 すなわち、上述した種類の振動測定信号同士の間の位相差および/または時間差を測定し、相応して評価する測定回路は使用可能である。
さらに、測定回路21は、例えば振動測定信号S1、S2のうち少なくとも1つに基づいて計測された、少なくとも1つの測定用チューブ11の振動周波数を用いて、媒体または媒体の或る相の濃度ρを瞬時に表わす濃度測定値Xρとして使用できる測定値XX を生成するためにも機能する。
上述したように、真っ直ぐな測定用チューブ10は、動作中、横およびねじれ振動が同時または交互に生じるため、測定回路は粘度測定値として使用可能な、また、(見かけの粘度および/または粘度−濃度積の目安として働くことが知られている励起電流iexcから導き出されて)媒体の粘度を瞬時に表わす測定値XX を決定するためにも使用される。この点に関してもUS-A No. 4,524,610 またはWO-A 95 16 897を参照のこと。
この点に関して、それより多くのことを語らずしても、当業者にとって、工程内測定装置が、等しい更新周期であれ異なった更新周期であれ、共通の測定サイクルにおけるさまざまな測定量x、に対して分離した測定値XX を決定することが出来ることは、これ以上なく自明である。例えば、通常、非常に変動する質量流速の非常に正確な測定は、通常非常に高い更新周期が必要で、一方、比較的変動の少ない媒体の粘度は、適切な場合は大きな時間間隔で更新可能である。さらに、現在決定される測定値XX が測定装置電子回路に一時的に格納され、したがって、以後の使用に供される。有利なことに、測定回路21はさらに信号処理器DSPを実装することが出来る。
すでに始めに述べたように、流れている媒体の非均質性、および/または例えば液体中に入り込んだ気体泡沫、および/または固形粒子のような第1および第2の相の形態は、単一の相、および/または均質媒体と想定して従来の方法で決定した測定値が、その測定値が例えば質量流速mであることが期待される量xの実際の値に充分正確には一致しないで、したがって適切に補正されなければならないという結果になる可能性がある。すでに述べたように、その測定値が、測定用チューブ11の振動測定信号S1,S2または測定された振動周波数間で計測される位相差Δφであり得る値であると期待される、この、予備的に決定され、暫定的にそれを表わす、または少なくともそれに対応する物理量xは、したがって、以下において最初の測定値、または始めの測定値X’X と呼ぶことにする。この最初の測定値X’X から、評価電子回路21は、今度は、最終的に、質量流速、濃度または粘度のいずれかの物理測定量xを充分正確に表わす測定値XX を導き出す。非常に包括的かつ詳細な最新技術を考慮すれば、実用上の目的には、従来の方法で生成される測定値に対応する最初の測定値X’X の決定をすることは当業者には何の問題もないので、本発明の以下の説明では最初の測定値X’X は与えられるものとして考えることが出来る。
媒体中の上述した不均質性に関しては、最新技術の中ですでに議論されており、それらは振動測定信号S1、S2の間の位相差、および各々の振動測定信号の振動振幅または振動周波数、したがって実質的には、上記のような種類の測定装置の、通常、直接間接に測定されるすべての動作パラメーターのなかに即座に表われる。実際このことは、特に横振動する測定用チューブの場合に決定される動作パラメーターの場合、WO-A 03/076880 または US-B 6,505,519で扱われているように事実である。このことはしかし、ねじれ振動測定チューブを用いて測定されるその動作パラメーターも常に除外されるものではない。この点に関して、特にUSP-A 4,524,610を参照。
しかしながら、本発明者の側の進んだ研究は次のような驚くべき発見を導いた。すなわち、瞬時の励起電流iexc、および付随して、通常測定装置の動作中にも測定される測定用チューブ10の振動の減衰は、2相あるいはそれ以上の相の媒体の不均質性の程度、および/またはそれらの第2相の混入率、したがって、特性、すなわち、測定すべき液体中に入り込んだ気体泡沫および/または固形粒子の分布および/または量に、横およびねじれ振動の双方に関係なく、少なくとも上述の2つの基本モードにおいて、非常に大きく依存することは事実であるが、横、ねじれの個々の振動を維持するのに瞬間に必要な特定の電流成分iexcL、iexcTと、2またはそれ以上の相の媒体の瞬間的な不均質性の度合い、さらには第2相の媒体、特に干渉物として作用する第2相の媒体の瞬間的な混入率との間で、非常に再現性のある、また結果的に少なくとも実験的に決定可能な関係が想定可能である。
驚くべきことに、さらに、横振動の瞬間的な減衰、および、特にUS-A 4,524,610 および EP-A 1 291 639で論議されているように、ねじれ振動の瞬間的な減衰の両方共が、不均質性または媒体の個々の相の濃度に非常に大きく依存するという事実にもかかわらず、両方の振動モードの瞬間的な減衰を同時に、少なくとも同時存在的に決定することが、中間の値X’Xの驚くほど強力な非常に再現性のある補正を可能にし、したがって、非常に正確な測定値XXを生成することを可能にすることが発見された。さらなる研究は以下のことを示している。すなわち、横振動およびねじれ振動両方の減衰は、実際、測定する媒体の粘度に非常に強く依存している。同時に、横振動の減衰は、測定用チューブ10にその瞬間存在する媒体の不均質性の程度に非常に強い依存性を示し、一方、対照的に、ねじれ振動の媒体の不均質性の程度に対する依存性は、はるかに弱い。
本発明によれば、物理的測定量x、例えば質量流速mまたは濃度ρが決定されるその正確度を増すために、測定値検知器は少なくとも時々、少なくとも1つの測定用チューブが順番におよび/または交互に、横振動モードおよび/またはねじれ振動モードで振動する、前述の2つのモードで操作される。はじめに決定された、最初の、測定値X’X を補正するために、まずそれが検索され、測定装置電子回路2は、動作中に、特にデジタルの、基本的に横振動の減衰に対応する第1の中間値X1と、基本的にねじれ振動の減衰に対応する第2の中間値X2を決定する。第1の中間値の決定は、ここでは横振動を維持するために必要な励起電流iexcの横電流成分iexcL、特に調整された成分に基づいて進行し、一方、第2の中間値の決定は、ねじれ振動を維持するために必要なねじれ電流成分iexcT、特に調整された成分が考慮される。
2つの中間値X1、X2を使って、測定回路21はさらに、中間値X’xの、おなじくデジタルの補正値Xkを決定する。補正値XKに基づく中間値X’xの補正、および測定値Xxの生成は、例えば以下の数学的関係に基づいて測定装置回路の中で起こる。
Figure 0004531807
本発明のある実施例において、補正値XKは以下の数学的関係に基づいて測定装置回路によって決定される。
Figure 0004531807
したがって、これは主には励起されている横およびねじれ振動の動作中の減衰の偏差ΔDの程度を基本的に表す。代替的に、またはそれの補助として、補正値XKはさらに以下の数学的関係に基づいて決定することが出来る。
Figure 0004531807
このように、式(2)においては、補正値XKは、中間値X1と中間値X2の間に存在する差ΔDに基づいて決定されるが、式(3)の場合は、第2の中間値X2と第1の中間値X1の比較に基づいて、補正値XKが決定される。この点で、補正値XKは、少なくとも2相の媒体に対して、第1または第2の媒体相、特に液体中の気体泡沫の瞬間的な、相対的または絶対的な濃度の程度も表わす。質量流量測定値Xxを生成する以外に、補正値XKは、したがって測定用チューブ内の2相以上の媒体の場合、ある媒体相の、特に、相対的な、体積および/または質量の割合を表わす濃度測定値XCに変換され得る。
その上、補正値XKは、例えばその場で、または離れた制御室で、視覚的に見える方法で媒体の不均質性の程度、またはそこから導かれる測定値、例えば媒体中の空気のパーセント、または媒体中に混入した固形粒子の体積、量、質量の割合を信号化するために使用される。
代替的にあるいは追加的に、補正値XKは、測定用チューブ内の瞬間的な流れの条件に対して例えば最初に決定した制限値と比較して測定量xが非常に大きな不確定性および/または大きな誤差をもって測定されたことをユーザーに信号発信するためにも役立つ。 さらに、この場合、補正値XKは、動作中対象の測定量xの測定値XXを発信する信号出力を切断するためにも使用される。
実施例の図示例による測定値検知器に対する更なる実験的研究によって、振動する測定用チューブの瞬間の横振動周波数をよく考慮することで測定値Xxの精度はさらに改良されることが判った。その上、瞬間の横振動周波数の平方根を用いて式(2)または(3)に基づいて決定される補正値XKを正規化すると、少なくとも、気体泡沫、例えば空気を含有した測定すべき液体、例えばグリセリンのケースで、補正値XKが基本的に気体の割合に比例するということが判る。この点に関しても図9参照。したがって、本発明の更なる発展形において、式(2)は瞬間の横振動周波数を表わす横振動周波数測定値XfexcLを用いて以下のように変形される。
Figure 0004531807
横振動周波数測定値の決定は、例えば上述の横振動周波数調整信号YFMLを基に簡単に行われる。
2つの中間値X1、X2の決定において、測定用チューブ10の振動の減衰は媒体中の粘着性摩擦に帰する減衰成分と、実質的に媒体と無関係の減衰成分の両方によって決定されることをさらに覚えておく必要がある。この後者の成分は、例えば励起機構40内および測定用チューブ10の材質内で作用する機械的な摩擦力によって引き起こされる。別な言い方をすれば、瞬時に測定される励起電流iexcは測定値検知器内の機械的摩擦力と媒体中の粘着摩擦力の両方を含む、測定値検知器10内の摩擦力および/または摩擦モーメントの全体を表わす。述べたように、主に媒体中の粘着性摩擦力から生じる測定用チューブの振動の減衰に関係する中間値X1、X2の決定において、媒体に拠らない、機械的な減衰成分は適切に考慮され、例えば適切に分離または取り除かれなければならない。
中間値X1の決定のために、本発明のある実施例は、したがって、横電流成分を瞬時に表わす横電流測定値XexcLから、対応して関係する、空の測定用チューブ10の場合に瞬時に測定値検知器に励起される横振動モードにそれが生じる度に、機械的摩擦力を表わす、横の、空状態の、電流測定値KiexcLを差し引くことを提供している。同じ方法で、中間値X2の決定のために、ねじれ電流成分を瞬時に表わすねじれ電流測定値XexcTから、空の測定用チューブ10の場合に瞬時に測定値検知器に励起されるねじれ振動モードにそれが生じる度に、機械的摩擦力を表わす、ねじれの、空状態の、電流測定値KiexcTを差し引く。
本発明のさらなる実施例において、電流測定値XiexcL,XiexcTおよび質量流速の補正のために実験的に決定される空時の電流測定値KiexcL, KiexcTについての例示によって図8にも示されるように、横振動を駆動する横電流成分iiexcL、および、関係する、空時の電流測定値KiexcLに基づいて、特に以下の数学的関係に基づいて中間値X1の決定が起こる。
Figure 0004531807
および/または、次の数学的関係にもとづく。
Figure 0004531807
これらに類似して、中間値X2は以下の数学的関係で決定される。
Figure 0004531807
および/または以下の数学的関係で決定される。
Figure 0004531807
各空時の電流測定値KiexcL, KiexcTは、装置固有の係数KK、KK’、K1、K2、K1’、またはK2’同様に工程内装置のキャリブレーション中に例えば空の、空気を運ぶ測定用チューブを用いて決定され、測定装置電子回路50の中に、特にそのときに測定された振動振幅に正規化されて適切に格納され、セットされる。必要ならば、例えば測定用チューブおよび/または媒体の瞬間の温度のような、空時の電流測定値KiexcL, KiexcTに影響を与える他の物理パラメーターをキャリブレーション中に考慮すべきであることは、当業者にとっては、明白なことである。
測定値検知器10のキャリブレーションのために、変動するが知ることが出来る流れのパラメーター、例えばキャリブレーション用媒体の個々の媒体相の既知の混入率、その濃度ρ、質量流速m、粘度η、および/または温度などのパラメーターを有する、通常2つ以上の、異なった2つ以上の相の媒体が測定用チューブ10を交互に流れるようにし、測定値検知器10の対応する反応、例えば瞬時励起電流iexc、瞬時の横振動励起周波数fexcL、および/または瞬時のねじれ振動励起周波数fexcTのような反応を測定する。調整された流れのパラメーターおよび測定値検知器10の測定された操作パラメーターの各測定された反応は適切に互いに関係付けられ、結果的に、対応するキャリブレーション定数にマッピングされる。例えば、できるだけ一定に保たれた既知の粘度で、また、不均質性を違えて作られ、いずれもが変化しないように作られた2つのキャリブレーション媒体のキャリブレーション中に定数を決定するために、各々既知の空気割合のときの現状の実際の測定する量に対する、各々のケースにおいて決定された中間値Xx’、および各々のケースにおいて決定された測定値Xxの比であるXx’/xおよびXx/xが生成される。 例えば、第1のキャリブレーション媒体は空気泡沫が混入した流れる水、または油でもよいし、第2のキャリブレーション媒体は出来るだけ均質な水、または油でもよい。
決定されたキャリブレーション定数は次に、例えばデジタルデータの形で測定装置電子回路のテーブルメモリー内に格納される。しかし、それはまた対応するコンピューター回路のためのアナログ設定値としても供せられる。ここで、上述したタイプの測定値検知器のキャリブレーションはそれ自体、当業者にとって知られており、少なくとも上記の記述から実行することが出来、したがってこれ以上の説明は不要であることを述べておく。有利なことに、すでに述べた横振動振幅調整信号YAMLおよび/またはねじれ振動振幅調整信号YAMTは,補正のためには充分正確に励起電流iexc、またはその成分のiexcL、iexcT、を代表しているので、横電流測定値XiexcL,および/またはねじれ電流測定値XiexcTを決定するためにそれらを使用できる。
本発明のさらなる実施例において、記録すべき測定量xが粘度、または流動性にすら対応するというすでに何度も述べたケースで、そうであるので測定値Xxは粘度測定値としても機能し、また最初の中間値Xx’は,測定用チューブが少なくとも部分的にねじれ振動を起こしているときは、励起機構を駆動している励起電流iexc、特に測定用チューブ10のねじれ振動を維持するためのねじれ電流成分iexcTに基づいて決定される。USP-A 4,524,610にすでに述べられている以下の関係を考慮に入れて、
Figure 0004531807
これによれば、上述の空時のねじれ電流測定値KiexcTを差し引いたねじれ電流成分iexcTは、少なくとも一定濃度ρの均質性の高い媒体の場合、実際の粘度ηの平方根と非常に良く相関し、対応するように始めにねじれ電流測定値XiexcTの2乗値XΔiexcT2が測定装置電子回路内で生成され、空時のねじれ電流測定値KiexcTが差し引かれ、また励起電流iexcから誘引されて最初の測定値Xx’が決定される。これもUSP No. 4,524,610に実際述べられているように、電流の2乗が、実際、濃度と粘度の積に関する情報をもたらすということを考慮すれば、例えば工程内測定装置によって最初に決定することが出来る実際の濃度は、上述の方法で最初の測定値Xx’を決定するときにはさらに考慮されるべきである。
本発明のさらなる実施例において、最初の測定値Xηを生成するために、ねじれ電流測定値XiexcTの2乗値XiexcT2は、ねじれ振動を起こす測定用チューブの場合、動作で瞬時に決定される、あるときには変動する、振動測定信号S1、S2の少なくとも1つの振幅を表わす振幅測定値XSTに関して、簡単な数値の割り算でさらに正規化される。
このように、さらに、そのような振動性測定値検知器を有する粘度測定装置にとって、かつ、特に一定値に正規化された振動振幅の時で、かつ/または横およびねじれ振動が同時に励起される時、媒体内に内部摩擦、および、したがって摩擦力を生じる動きの、実際に非直接的に測定可能な速度θに対する励起電流iexcの比iexc/θは、測定用チューブ10の変形に抗する、すでに述べた減衰に対するより正確な類推であるということも、すなわち判明した。したがって、測定値Xxの正確度をさらに増すため、特に、しかし、動作中起きる可能性のある測定用チューブ10の変動する振動振幅に対する感度を下げるために、最初の測定値Xx’を決定するために、さらに、最初に、ねじれ電流測定値XiexcTが振幅測定値XsTに対して正規化され、それは、充分な正確さで、上述の速度θを表わす。別な言い方をすれば、正規化されるねじれ電流測定値X’iexcTは次の式を用いて計算される。
Figure 0004531807
振幅測定値XsTは、媒体内に粘着性摩擦を起こさせる動きは、センサー51またはセンサー52にも拠って現場で記録される、振動性測定用チューブ10の動きに強く合致するという認識に立って、好ましくは測定装置電子回路50を使用して、例えば内部の振幅測定回路によって、少なくとも1つの、多分すでにデジタル化されたセンサー信号S1から導き出される。ここで、センサー信号S1は、好ましくは振動する測定用チューブ10の特に横変形の動きの速度に比例し、センサー信号S1は、しかし、振動する測定用チューブに作用する加速と、振動する測定用チューブ10でカバーされる距離に、また、比例し得る。上記の意味で、センサー信号S1が速度比例であるように設計されているときは、このことは、もちろん、最初の測定値の決定のときに考慮される。
等式(1)から(10)によって代表される、測定値Xxを生成するために役立つ上記に述べられた機能は、少なくとも部分的に信号処理器DSP、または例えば上述したマイクロプロセッサ55に実装される。前述の等式に合致するアルゴリズム、または、振幅調整回路51および周波数調整回路52各々の機能、およびそれらを上記の信号処理器で実行可能なプログラムコードに変換することを模擬する相応のアルゴリズムを創生し、実装することは、それ自体、現状技術の範囲内で、したがって、特に本開示を読めば何の詳細な説明も必要ない。もちろん、上述の等式はまた、相応の、専用に作成されたアナログおよび/またはデジタルのシミュレーション回路によって、測定装置電子回路50の中でそれ以上なく表わすことが出来る。
本発明のさらなる発展形において、動作中瞬間的に適切な補正値XKは、中間の数値X1、X2から始まって、中間値X1、X2とそれに属する補正値XKとの間の特別な関係を測定装置電子回路内、特にプログラム中で表わすことによって、実際的に、直接的に決定される。このため、測定装置電子回路2はテーブルメモリーをさらに有し、その中に、コリオリ式質量流量測定装置のキャリブレーション中に決定される予め決められたデジタルの補正値、例えばコリオリ式質量流量測定装置のキャリブレーション中に決定される補正値XK,iのセットが格納される。これらの補正値XK,iは、瞬間的に有効な中間値X1、X2によって決定されるメモリーアドレスを使って測定回路によって直接アクセスされる。補正値XKは、例えば瞬間的に決定された中間値X1、X2の組み合わせ、例えば上述した減衰差を、テーブルメモリーにこの組合わせ向けに格納された、対応する予め格納してあった値と比較することによって簡単に決定することが出来、この比較を基に、数的に表現する回路2を使った更なる計算のために、上記の瞬間の組み合わせに最も近く合致する予め格納した値に対応する補正値XK,iを読み出す。テーブルメモリーは、プログラマブルな固定値メモリー、すなわちFPGA(field programmable gate array),EPROM、EEPROMなどである。
そのようなテーブルメモリーを使用することは、他と比べて補正値XKが、計算中に中間値X1、X2の計算に続いて非常にすばやく得られる利点がある。
さらに、テーブルメモリーに入力される補正値XK,iは、例えば等式(2)、(3)、および/または(4)に基づいて、および最小2乗法の適用で、予め非常に正確に決定することが出来る。
上記の説明から認められるように、それより多くのことを語らずしても、中間値X’mの補正は、一方でより少ない、非常に簡単に決定し得る補正係数を用いて行うことが可能である。また、補正は、2つの中間値X1、X2とを用いて、現状技術で知られているより複雑に設計された計算方法に比べて非常に小さい計算努力で実行される。本発明のさらなる利点は、少なくとも前述したいくつかの補正係数は、コリオリ式質量流量測定装置によって決定される流れのパラメーター、特に測定された濃度、および/または、ここでは予備的にではあるが、測定された質量流量などから、および/またはコリオリ式質量流量測定装置の動作中に通常直接測定されるパラメーター、特に、測定された振動振幅、振動周波数、および/または励起電流から導かれるパラメーターなどから生成することが出来、結果的に回路や測定の複雑性に目立った増大が無いという事実に見られる。
パイプラインを流れる液体の質量流速を測定するために、パイプライン中に挿入することが出来るコリオリ式質量流量測定装置を示す。 斜視側面図で図1の測定装置に適合する測定値検知器の具体図を示す。 図2の測定値検知器の断面側面図を示す。 図2の測定値検知器の第1の断面図を示す。 図2の測定値検知器の第2の断面図を示す。 図1の工程内測定装置に適合する振動式測定値検知器のさらなる具体例の断面の側面図を示す。 図1の工程内測定装置に適した測定装置電子回路の望ましい実施例を概略のブロックダイヤグラムの形で示す。 図1から図7の工程内測定装置を用いて実験的に決定された測定データのグラフである。 図1から図7の工程内測定装置を用いて実験的に決定された測定データのグラフである。

Claims (11)

  1. パイプライン内を案内される媒体の少なくとも1つの物理的測定量xの測定のための工程内測定装置であって、
    前記工程内測定装置は、振動式の測定値検知器(1)と該測定値検知器に電気的に接続された測定装置電子回路(2)とを有し、
    前記測定値検知器(1)は、
    前記パイプラインの途中に挿入され前記パイプラインと連通しかつ、測定すべき前記媒体を案内する少なくとも1つの測定用チューブ(10)と
    前記測定用チューブに作用し、前記少なくとも1つの測定用チューブを曲げ振動させる励起機構40と、を有し、
    前記励起機構は、
    動作中少なくとも時々、および少なくとも部分的に、前記測定用チューブ(10)に横振動を起こさせ、また、
    作中少なくとも時々、および少なくとも部分的に、前記測定用チューブ(10)にねじれ振動を、前記測定用チューブ(10)と軸合わせされた仮想の測定用チューブ長手方向軸の周りに起こさせ
    前記測定値検知器(1)は、
    前記少なくとも1つの測定用チューブ(10)の振動を記録し、前記測定用チューブ(10)の振動を表わす少なくとも1つの振動測定信号(S1、S2)を出力するセンサー機構(50)を有し、
    前記測定装置電子回路(2)は、少なくとも時々前記励起機構(40)を駆動する励起電流(iexc)を供給し、
    前記測定装置電子回路(2)は、さらに
    前記測定用チューブ(10)の前記横振動を維持するための前記励起電流(iexc)の横電流成分(iexcL)、および/または、前記測定用チューブ(10)の前記横振動の減衰、に対応する第1の中間値(X1)と、
    前記測定用チューブ(10)の前記ねじれ振動を維持するための前記励起電流(iexc)のねじれ電流成分(iexcT)、および/または、前記測定用チューブ(10)の前記ねじれ振動の減衰、に対応する第2の中間値(X2)とを決定し、
    前記測定装置電子回路(2)は、
    前記少なくとも1つの振動測定信号(S1、S2)および/または前記励起電流(iexc)から導き出される、測定すべき少なくとも1つの物理量に対応する最初の測定値(X’X)を決定し、
    前記第1の中間値(X1)と前記第2の中間値(X2)との比較、および/または、前記第1の中間値(X1)と前記第2の中間値(X2)との間に存在する差に基づいて、前記最初の測定値(X’X)に対する補正値(XK)を決定し、
    前記補正値(XK)によって前記最初の測定値(X’X)を補正して、前記測定値(XX)を生成する、工程内測定装置。
  2. 前記励起機構(40)によって駆動される前記測定用チューブ(10)は、該測定用チューブ(10)が該前記励起機構(40)によって駆動されて横振動を起こす時の測定用チューブ曲げ振動周波数とは違えて設定される測定用チューブ曲げ振動周波数を持つねじれ振動を起こす、請求項に記載の工程内測定装置。
  3. 前記測定用チューブ(10)は、入口端(11#)内に開口している入口側チューブ片(11)を介して、かつ、出口端(12#)内に開口している出口側チューブ片(12)を介して、前記結合しているパイプラインとつながっており、
    前記測定値検知器は、前記測定用チューブ(10)の前記入口端(11#)および前記出口端(12#)に固定されている反振動子(20)を含み、前記反振動子は、動作中少なくとも時々、前記測定用チューブ(10)の位相と反対の位相で振動する、請求項1又は2に記載の工程内測定装置。
  4. 前記測定装置電子回路(2)は、前記少なくとも1つの振動測定信号(S1、S2)を用いて前記第1および/または第2の中間値(X1、X2)を生成する、請求項1乃至3のいずれか1項に記載の工程内測定装置。
  5. 前記少なくとも1つの測定値(XX)は、前記測定用チューブ(10)を流れる前記媒体の粘度ηを表わし、
    前記測定装置電子回路(2)は、前記励起機構40を駆動する励起電流(iexc)、および/または該励起電流の1成分(iexcL、iexcT)によって、前記最初の測定値(X’X)も決定する、請求項1乃至4のいずれか1項に記載の工程内測定装置。
  6. 前記少なくとも1つの測定値(XX)は、前記測定用チューブ(10)を流れる前記媒体の濃度ρを表わし、
    前記測定装置電子回路は、前記少なくとも1つの振動測定信号(S1、S2)および/または前記励起電流(iexc)を使って、前記最初の測定値が、測定される前記濃度ρ、および/または前記少なくとも1つの振動測定信号(S1、S2)の振動周波数に対応するように、前記最初の測定値(X’X)を決定する、請求項1乃至4のいずれか1項に記載の工程内測定装置。
  7. 前記測定装置電子回路(2)は、前記第1および第2の中間値(X1、X2)に基づいて、前記測定用チューブ(10)内の2相以上の媒体の場合における、該媒体の或る相の体積および/または質量の割合を表わす混入率測定値(Xc)を決定する、請求項1乃至4のいずれか1項に記載の工程内測定装置。
  8. 前記センサー機構(50)が、
    前記測定用チューブ(10)の入口端横振動を少なくとも部分的に表わす少なくとも1つの第1の振動測定信号(S1)、および
    前記測定用チューブ(10)の出口端横振動を少なくとも部分的に表わす少なくとも1つの第2の振動測定信号(S2)、を出力する、請求項1乃至4のいずれか1項に記載の工程内測定装置。
  9. 前記少なくとも1つの測定値(XX)は、前記測定用チューブ(10)を流れる前記媒体の質量流速mを表わし、
    前記測定装置電子回路は、前記2つの前記振動測定信号(S1、S2)を使って、前記最初の測定値が、測定される前記質量流速m、および/または前記2つの振動測定信号(S1、S2)間の位相差Δφに対応するように、前記最初の測定値(X’X)を決定する、請求項1乃至8のいずれか1項に記載の工程内測定装置。
  10. パイプラインを流れる2相以上の媒体の物理的測定量を測定するために利用される請求項1乃至9のいずれか1項に記載の工程内測定装置。
  11. パイプラインを流れる媒体の物理的測定量を、振動式測定値検知器(1)と、前記測定値検知器(1)に電気的に接続された測定装置電子回路(2)とを有する工程内測定装置によって測定する方法であって、
    測定すべき媒体が前記測定値検知器(1)の少なくとも1本の測定用チューブ(10)を通して流れるよう、該測定用チューブを前記パイプラインにつなぎ、媒体を案内する前記測定用チューブ(10)と機械的に結合した励起機構(40)に励起電流(iexc)を流して前記測定用チューブ(10)に機械的振動を起こさせるステップ、
    前記測定用チューブ(10)に横振動を起こさせ、前記測定用チューブ(10)にねじれ振動を起こさせるステップ、
    前記測定用チューブ(10)の振動を記録し、前記測定用チューブ(10)の振動を表わす少なくとも1つの振動測定信号(S1、S2)を生成するステップ、
    前記測定用チューブ(10)の前記横振動を維持するための前記励起電流(iexc)の横電流成分(iexcL)、および/または、前記測定用チューブ(10)の前記横振動の減衰に対応する、前記励起電流(iexc)から導き出される第1の中間値(X1)を決定するステップ、
    前記測定用チューブ(10)の前記ねじれ振動を維持するための前記励起電流(iexc)のねじれ電流成分(iexcT)、および/または、前記測定用チューブ(10)の前記ねじれ振動の減衰に対応する、前記励起電流(iexc)から導き出される第2の中間値(X2)を決定するステップ、
    前記少なくとも1つの振動測定信号(S1、S2)および/または前記励起電流(iexc)を用いて、測定すべき物理量に対応する最初の測定値(X’X)を生成するステップ、
    前記第1の中間値(X1)と前記第2の中間値(X2)との比較、および/または、前記第1の中間値(X1)と前記第2の中間値(X2)との間に存在する差に基づいて、前記最初の測定値(X’X)に対する補正値(XK)を決定するステップ、および、
    前記補正値(XK)によって前記最初の測定値(X’X)を補正して、前記測定値(XX)を生成するステップ、
    を含む方法。
JP2007503344A 2004-03-19 2005-03-16 工程内測定装置 Expired - Fee Related JP4531807B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004014029A DE102004014029A1 (de) 2004-03-19 2004-03-19 Coriolis-Massedurchfluß-Meßgerät
DE102004021690.8A DE102004021690B4 (de) 2004-04-30 2004-04-30 In-Line-Meßgerät mit einem Messaufnehmer vom Vibrationstyp
PCT/EP2005/051200 WO2005090926A2 (de) 2004-03-19 2005-03-16 In-line-messgerät

Publications (2)

Publication Number Publication Date
JP2007529729A JP2007529729A (ja) 2007-10-25
JP4531807B2 true JP4531807B2 (ja) 2010-08-25

Family

ID=34961435

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007503344A Expired - Fee Related JP4531807B2 (ja) 2004-03-19 2005-03-16 工程内測定装置
JP2007503343A Expired - Fee Related JP4703640B2 (ja) 2004-03-19 2005-03-16 コリオリ式質量流量測定装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007503343A Expired - Fee Related JP4703640B2 (ja) 2004-03-19 2005-03-16 コリオリ式質量流量測定装置

Country Status (6)

Country Link
EP (2) EP1725840B1 (ja)
JP (2) JP4531807B2 (ja)
CA (2) CA2559701C (ja)
DK (1) DK1725839T3 (ja)
RU (2) RU2339916C2 (ja)
WO (2) WO2005090926A2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005012505B4 (de) * 2005-02-16 2006-12-07 Krohne Ag Verfahren zum Betreiben eines Massendurchflußmeßgeräts
EP2026042A1 (en) 2005-12-27 2009-02-18 Endress+Hauser Flowtec AG In-line measuring devices and method for compensating measurement errors in in-line measuring devices
FI120559B (fi) * 2006-01-17 2009-11-30 Sandvik Mining & Constr Oy Menetelmä jännitysaallon mittaamiseksi, mittauslaite ja kallion rikkomislaite
DE102006017676B3 (de) * 2006-04-12 2007-09-27 Krohne Meßtechnik GmbH & Co KG Verfahren zum Betrieb eines Coriolis-Massendurchflußmeßgeräts
JP5171509B2 (ja) * 2008-09-26 2013-03-27 Udトラックス株式会社 エンジンの排気浄化装置
WO2010068202A1 (en) * 2008-12-10 2010-06-17 Micro Motion, Inc. Method and apparatus for vibrating a flow tube of a vibrating flow meter
WO2010103078A1 (de) * 2009-03-11 2010-09-16 Endress+Hauser Flowtec Ag MEßAUFNEHMER VOM VIBRATIONSTYP SOWIE IN-LINE-MEßGERÄT MIT EINEM SOLCHEN MEßAUFNEHMER
DE102012021312B4 (de) * 2012-10-31 2015-05-07 Krohne Messtechnik Gmbh Messvorrichtung, Messanordnung und Verfahren zur Bestimmung einer Messgröße
EP2749334B1 (en) 2012-12-28 2018-10-24 Service Pétroliers Schlumberger Method and device for determining the liquid volume fraction of entrained liquid
EP2775272A1 (en) * 2013-03-06 2014-09-10 Services Pétroliers Schlumberger Coriolis flow meter for wet gas measurement
US9778091B2 (en) 2014-09-29 2017-10-03 Schlumberger Technology Corporation Systems and methods for analyzing fluid from a separator
US11499857B2 (en) * 2017-05-11 2022-11-15 Micro Motion, Inc. Correcting a measured flow rate for viscosity effects
US20200393278A1 (en) 2019-06-13 2020-12-17 Heinrichs Messtechnik Gmbh Device for Compensating Viscosity-Induced Measurement Errors, for Coriolis Flow Measurement
DE102019116872A1 (de) 2019-06-24 2020-12-24 Heinrichs Messtechnik Gmbh Verfahren und Vorrichtung zur Ermittlung eines Strömungsparameters mittels eines Coriolis-Durchflussmessgerätes
RU2714513C1 (ru) * 2019-07-26 2020-02-18 Николай Васильевич Сизов Кориолисовый расходомер вискозиметр
EP3968118B1 (de) 2020-09-15 2022-11-09 Flexim Flexible Industriemesstechnik GmbH Verfahren zur bestimmung eines mittleren gehalts einer komponente in einem fliessenden stoffgemisch
DE102020131459A1 (de) * 2020-11-27 2022-06-02 Endress+Hauser Flowtec Ag Verfahren und Messgerät zur Bestimmung eines Viskositätsmesswerts sowie Verfahren und Messanordnung zum Bestimmen eines Durchflussmesswerts

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524610A (en) * 1983-09-02 1985-06-25 National Metal And Refining Company, Ltd. In-line vibratory viscometer-densitometer
US5497665A (en) * 1991-02-05 1996-03-12 Direct Measurement Corporation Coriolis mass flow rate meter having adjustable pressure and density sensitivity
US5448921A (en) * 1991-02-05 1995-09-12 Direct Measurement Corporation Coriolis mass flow rate meter
EP1281938B1 (de) * 1998-12-11 2012-05-30 Endress + Hauser Flowtec AG Coriolis massedurchfluss-/dichtemesser
DE59904728D1 (de) * 1998-12-11 2003-04-30 Flowtec Ag Coriolis-massedurchfluss-/dichtemesser
US6688176B2 (en) * 2000-01-13 2004-02-10 Halliburton Energy Services, Inc. Single tube densitometer
DE50100328D1 (de) * 2000-04-27 2003-07-31 Flowtec Ag Vibrations-Messgerät und Verfahren zum Messen einer Viskosität eines Fluids
US6651513B2 (en) * 2000-04-27 2003-11-25 Endress + Hauser Flowtec Ag Vibration meter and method of measuring a viscosity of a fluid
EP1291639B1 (de) * 2001-08-24 2013-11-06 Endress + Hauser Flowtec AG Viskositäts-Messgerät
EP1345013A1 (de) * 2002-03-14 2003-09-17 Endress + Hauser Flowtec AG Gemäss dem Coriolisprinzip arbeitendes Massendurchflussmessgerät mit einer Wirbelmischvorrichtung
AU2003227729A1 (en) * 2002-05-08 2003-11-11 Endress + Hauser Flowtec Ag Torsional oscillation damper for a vibrating measuring transformer

Also Published As

Publication number Publication date
RU2339916C2 (ru) 2008-11-27
EP1725839A2 (de) 2006-11-29
WO2005090926A9 (de) 2020-05-14
JP2007529729A (ja) 2007-10-25
CA2559564C (en) 2013-06-25
RU2006136903A (ru) 2008-04-27
EP1725840B1 (de) 2020-11-25
RU2359236C2 (ru) 2009-06-20
CA2559701A1 (en) 2005-10-13
WO2005095901A2 (de) 2005-10-13
CA2559701C (en) 2012-05-22
DK1725839T3 (en) 2014-03-17
WO2005095901A3 (de) 2005-12-22
WO2005090926A2 (de) 2005-09-29
EP1725840A2 (de) 2006-11-29
EP1725839B1 (de) 2014-01-08
RU2006136905A (ru) 2008-04-27
WO2005090926A3 (de) 2005-10-27
CA2559564A1 (en) 2005-09-29
JP4703640B2 (ja) 2011-06-15
JP2007529728A (ja) 2007-10-25

Similar Documents

Publication Publication Date Title
JP4531807B2 (ja) 工程内測定装置
US7040181B2 (en) Coriolis mass measuring device
US7284449B2 (en) In-line measuring device
JP2007529728A5 (ja)
JP5114427B2 (ja) インライン測定装置、およびインライン測定装置における測定誤差を補正するための方法
US9322691B2 (en) Viscometer
US7360453B2 (en) In-line measuring devices and method for compensation measurement errors in in-line measuring devices
CN100437045C (zh) 科里奥利质量流量测量仪表及其测量方法
US8381600B2 (en) Measuring system having a measuring transducer of vibrating-type
US7360452B2 (en) In-line measuring devices and method for compensation measurement errors in in-line measuring devices
RU2369842C2 (ru) Встроенные в трубопровод измерительные устройства и способ компенсации погрешностей измерений во встроенных в трубопровод измерительных устройствах
US7562586B2 (en) Method for monitoring an operating condition of a tube wall contacted by a flowing medium and inline measuring device therefore
US8881604B2 (en) Measuring system having a vibration-type measuring transducer
DK2519806T3 (en) Measurement system with a vibration type transducer
JP2008170448A (ja) 粘度メーター
CA2785933C (en) Measuring system having a measuring transducer of vibration-type
JP4112817B2 (ja) 振動式測定装置および流体の粘度の測定方法
RU2339007C2 (ru) Кориолисов массовый расходомер и способ получения измеренного значения, представляющего массовый расход
JP2017083465A (ja) 改良されたメータゼロに関するコリオリ流量計および方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

R150 Certificate of patent or registration of utility model

Ref document number: 4531807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees