DE102004021690B4 - In-Line-Meßgerät mit einem Messaufnehmer vom Vibrationstyp - Google Patents

In-Line-Meßgerät mit einem Messaufnehmer vom Vibrationstyp Download PDF

Info

Publication number
DE102004021690B4
DE102004021690B4 DE102004021690.8A DE102004021690A DE102004021690B4 DE 102004021690 B4 DE102004021690 B4 DE 102004021690B4 DE 102004021690 A DE102004021690 A DE 102004021690A DE 102004021690 B4 DE102004021690 B4 DE 102004021690B4
Authority
DE
Germany
Prior art keywords
measuring tube
measuring
measuring device
measured
vibrations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE102004021690.8A
Other languages
English (en)
Other versions
DE102004021690A1 (de
Inventor
Alfred Rieder
Michael Fuchs
Dr. Drahm Wolfgang
Hans-Jörg Sprich
Ibho Itin
Samuel Wyss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE102004021690.8A priority Critical patent/DE102004021690B4/de
Application filed by Endress and Hauser Flowtec AG, Flowtec AG filed Critical Endress and Hauser Flowtec AG
Priority to RU2006136903/28A priority patent/RU2339916C2/ru
Priority to PCT/EP2005/051200 priority patent/WO2005090926A2/de
Priority to CA2559701A priority patent/CA2559701C/en
Priority to CA2559564A priority patent/CA2559564C/en
Priority to JP2007503344A priority patent/JP4531807B2/ja
Priority to EP05717067.2A priority patent/EP1725840B1/de
Priority to EP05717065.6A priority patent/EP1725839B1/de
Priority to JP2007503343A priority patent/JP4703640B2/ja
Priority to PCT/EP2005/051198 priority patent/WO2005095901A2/de
Priority to RU2006136905/28A priority patent/RU2359236C2/ru
Priority to DK05717065.6T priority patent/DK1725839T3/en
Priority to US11/084,507 priority patent/US7040181B2/en
Priority to US11/084,527 priority patent/US7284449B2/en
Publication of DE102004021690A1 publication Critical patent/DE102004021690A1/de
Priority to US11/384,369 priority patent/US7357039B2/en
Priority to US11/589,836 priority patent/US7296484B2/en
Application granted granted Critical
Publication of DE102004021690B4 publication Critical patent/DE102004021690B4/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means
    • G01F15/024Compensating or correcting for variations in pressure, density or temperature using electrical means involving digital counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • G01F1/8418Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments motion or vibration balancing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8422Coriolis or gyroscopic mass flowmeters constructional details exciters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8427Coriolis or gyroscopic mass flowmeters constructional details detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8431Coriolis or gyroscopic mass flowmeters constructional details electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits

Abstract

In-Line-Meßgerät, insb. Coriolis-Massedurchfluß-/ Dichtemessgerät und/oder Viskositätsmeßgerät, zum Messen wenigstens einer physikalischen Meßgröße x, insb. eines Massedurchflusses, m, einer Dichte, ρ, und/oder einer Viskosität, η, eines in einer Rohrleitung geführten, insb. zwei- oder mehrphasigen, Mediums, welches In-Line-Meßgerät einen Meßaufnehmer (1) vom Vibrationstyp und eine mit dem Meßaufnehmer elektrisch gekoppelte Meßgerät-Elektronik (2) umfaßt,- wobei der Meßaufnehmer (1) aufweist:- mindestens ein, insb. im wesentlichen gerades, dem Führen des zu messenden Mediums dienendes Meßrohr (10), das dafür ausgestaltet ist, in den Verlauf der Rohrleitung eingesetzt zu werden und mit der angeschlossenen Rohrleitung zu kommunizieren,-- eine auf das Meßrohr (10) einwirkende Erregeranordnung (40) zum Vibrierenlassen des wenigstens einen Meßrohrs (10),--- die das Meßrohr (10) im Betrieb zumindest zeitweise und/oder zumindest anteilig in Lateralschwingungen, insb. Biegeschwingungen, versetzt, und--- die das Messrohr (10) im Betrieb zumindest zeitweise und/oder zumindest anteilig in, insb. mit den Lateralschwingungen alternierende oder diesen zeitweise überlagerte, Torsionsschwingungen um eine gedachte, mit dem Meßrohr (10) im wesentlichen fluchtende, insb. als eine Trägheitshauptachse des Messrohrs (10) ausgebildete, Messrohrlängsachse versetzt, sowie-- eine Sensoranordnung (50) zum Erfassen von Vibrationen des wenigstens einen Meßrohrs (10), die wenigstens ein Schwingungen des Meßrohrs (10) repräsentierendes Schwingungsmeßsignal (s1, s2) liefert,- wobei die Meßgerät-Elektronik (2) zumindest zeitweise einen die Erregeranordnung (40) treibenden Erregerstrom (iexc) liefert,- wobei die Meßgerät-Elektronik (2) ferner-- einen ersten Zwischenwert (X1), der--- mit einem dem Aufrechterhalten der Lateralschwingungen des Meßrohrs (10) dienenden Lateral-Stromanteil (iexcL) des Erregerstroms (iexc) und/oder--- mit einer Dämpfung der Lateralschwingungen des Messrohrs (10) korrespondiert, sowie-- einen zweiten Zwischenwert (X2), der--- mit einem dem Aufrechterhalten der Torsionsschwingungen des Meßrohrs (10) dienenden Torsions-Stromanteil (iexcT) des Erregerstroms (iexc) und/oder--- mit einer Dämpfung der Torsionsschwingungen des Messrohrs (10) korrespondiert, ermittelt und- wobei die Meßgerät-Elektronik (2)-- mittels des wenigstens einen Schwingungsmeßsignals (s1, s2) und/oder mittels des Erregerstroms (iexc) sowie-- unter Verwendung des ersten und des zweiten Zwischenwerts (X1, X2) zumindest zeitweise wenigstens einen Meßwert (Xx) generiert, der die wenigstens eine zu messende physikalische Meßgröße x, insb. den Massedurchfluß , m, die Dichte, p oder die Viskosität, η, des Mediums, repräsentiert,- dadurch gekennzeichnet, daß die Meßgerät-Elektronik (2) einen von dem wenigstens einen Schwingungsmeßsignal (s1, s2) abgeleiteten und/oder vom Erregerstrom (iexc) abgeleiteten Anfangsmesswert (X'x), der mit der wenigstens einen zu messenden Meßgröße x zumindest näherungsweise korrespondiert, und anhand des ersten und des zweiten Zwischenwerts (X1, X2) einen Korrekturwert (XK) für den Anfangsmesswert (X'x) ermittelt,- und daß die Meßgerät-Elektronik (2) den Meßwert (Xx) mittels des Anfangsmesswerts (X'x) und des Korrekturwerts (XK) generiert.

Description

  • Die Erfindung betrifft ein In-Line-Meßgerät mit einem Messaufnehmer vom Vibrationstyp, insb. ein Coriolis-Massedurchfluß-/ Dichtemeßgerät, für ein in einer Rohrleitung strömendes, insb. zwei- oder mehrphasiges, Medium sowie ein Verfahren zum Erzeugen eines eine physikalische Meßgröße des Mediums, beipsielsweise einen Massedurchfluß, eine Dichte und/oder eine Viskosität des Mediums, repräsentierenden Messwerts mittels eines solchen Meßaufnehmers.
  • In der Prozeß-Meß- und Automatisierungstechnik werden für die Messung physikalischer Parameter eines in einer Rohrleitung strömenden Mediums, wie z.B. dem Massedurchfluß, der Dichte und/oder der Viskosität, oftmals solche In-Line-Meßgeräte, insb. Coriolis-Massendurchfluß-Meßgeräte, verwendet, die mittels eines in den Verlauf der mediumsführenden Rohrleitung eingesetzten, im Betrieb vom Medium durchströmten Meßaufnehmers vom Vibrationstyp und einer daran angeschlossenen Meß- und Betriebsschaltung, im Medium Reaktionskräfte, wie z.B. mit dem Massedurchfluß korrespondierende Corioliskräfte, mit der Dichte korrespondierende Trägheitskräfte oder mit der Viskosität korrespondierende Reibungskräfte etc., bewirken und von diesen abgeleitet ein den jeweiligen Massedurchfluß, ein die jeweilige Viskosität und/oder ein die jeweilige Dichte des Mediums repräsentierendes Meßsignal erzeugen. Derartige In-Line-Meßgeräte mit einem Meßaufnehmer vom Vibrationstyp sowie deren Wirkungsweise sind dem Fachmann an und für sich bekannt und z.B. in der WO 2003/095950 A1 , WO 2003/095949 A1 , WO 2003/076880 A1 , der WO 2002/037063 A2 , der WO 2001/033174 A1 , der WO 2000/057141 A1 , der WO 1999/039164 A1 , der WO 1998/007009 A1 , der WO 1995/016897 A2 , der WO 1988/003261 A1 , der US 2003/0208325 A1 , der US 66 91 583 B2 , der US 66 51 513 B2 , der US 65 13 393 B1 , der US 65 05 519 B2 , der US 60 06 609 A , der US 58 69 770 A , der US 57 96 011 A , der US 56 16 868 A , der US 56 02 346 A , der US 56 02 345 A , der US 55 31 126 A , der US 54 48 921 A , der US 53 01 557 A , der US 52 53 533 A , der US 52 18 873 A , der US 50 69 074 A , der US 48 76 898 A , der US 47 33 569 A , der US 46 60 421 A , der US 45 24 610 A , der US 44 91 025 A , der US 41 87 721 A , der EP 1 291 639 A1 , der EP 1 281 938 A2 , der EP 1 001 254 A1 oder der EP 0 553 939 A2 ausführlich und detailiert beschrieben.
  • Zum Führen des Mediums umfassen die Meßaufnehmer jeweils mindestens ein in einem, beispielsweise rohr- oder kastenförmigen, Tragrahmen gehaltertes Meßrohr mit einem geraden Rohrsegment, das zum Erzeugen oben genannter Reaktionskräfte im Betrieb - angetrieben von einer elektromechanischen Erregeranordnung - vibrieren gelassen wird. Zum Erfassen, insb. einlassseitiger und auslaßseitiger, Vibrationen des Rohrsegments weisen die Meßaufnehmer ferner jeweils eine auf Bewegungen des Rohrsegments reagierende physikalisch-elektrische Sensoranordnung auf.
  • Bei Coriolis-Massedurchflußmeßgeräten beruht die Messung des Massedurchflusses eines in einer Rohrleitung strömenden Mediums beispielsweise darauf, daß das Medium durch das in Rohrleitung eingefügte und im Betrieb lateral zu einer Messrohrachse schwingende Meßrohr strömen gelassen wird, wodurch im Medium Corioliskräfte induziert werden. Diese wiederum bewirken, daß einlaßseitige und auslaßseitige Bereiche des Meßrohrs zueinander phasenverschoben schwingen. Die Größe dieser Phasenverschiebungen dient als ein Maß für den Massedurchfluß. Die Schwingungen des Meßrohrs werden daher mittels zweier entlang des Meßrohres voneinander beabstandeter Schwingungssensoren der vorgenannten Sensoranordnung erfaßt und in Schwingungsmeßsignale gewandelt, aus deren gegenseitiger Phasenverschiebung der Massedurchfluß abgleitet wird. Bereits die eingangs referierte US 41 87 721 A erwähnt ferner, daß mittels solcher In-Line-Meßgeräte auch die momentane Dichte des strömenden Mediums meßbar ist, und zwar anhand einer Frequenz wenigstens eines der von der Sensoranordnung gelieferten Schwingungsmeßsignale. Überdies wird zumeist auch eine Temperatur des Mediums in geeigneter Weise direkt gemessen, beispielsweise mittels eines am Meßrohr angeordneten Temperatursensors. Zudem können gerade Meßrohre bekanntlich, zu Torsionsschwingungen um eine im wesentlichen mit der Messrohrlängsachse parallel verlaufenden oder koinzidierenden Torsions-Schwingungsachse angeregt, bewirken, daß im hindurchgeführten Medium radiale Scherkräfte erzeugt werden, wodurch wiederum den Torsionsschwingungen signifikant Schwingungsenergie entzogen und im Medium dissipiert wird. Daraus resultierend erfolgt eine erhebliche Bedämpfung der Torsionsschwingungen des schwingenden Meßrohrs zu deren Aufrechterhaltung demzufolge dem Meßrohr zusätzlich elektrische Erregerleistung zugeführt werden muß. Abgeleitet von einer zum Aufrechterhalten der Torsionsschwingungen des Meßrohrs erforderlichen elektrischen Erregerleistung, kann in der dem Fachmann bekannten Weise mittels des Meßaufnehmers so auch eine Viskosität des Mediums zumindest nährungsweise bestimmt werden, vgl. hierzu insb. auch die US 45 24 610 A , die US 52 53 533 A , die US 60 06 609 A oder die US 66 51 513 B2 . Es kann daher im folgenden ohne weiteres vorausgesetzt werden, daß - selbst wenn nicht ausdrücklich beschrieben - mittels moderner In-Line-Meßgeräten mit einem Messaufnehmer vom Vibationstyp, insb. mittels Coriolis-Massendurchfluß-Meßgeräten, jedenfalls auch Dichte, Viskosität und/oder Temperatur des Mediums gemessen werden können, zumal diese bei der Massendurchflußmessung ohnehin zur Kompensation von Meßfehlern infolge schwankender Mediumsdichte und/oder Mediumsviskosität stets heran zu ziehen sind, vgl. hierzu insb. die bereits erwähnten US 65 13 393 B1 , US 60 06 609 A , US 56 02 346 A , WO 2002/037063 A2 , WO 1999/039164 A1 oder auch die WO 2000/036379 A1 .
  • Bei der Verwendung von In-Line-Meßgeräten mit einem Meßaufnehmer vom Vibrationstyp hat es sich jedoch, wie beispielsweise auch in der JPH10-281846 A, der WO 2003/076880 A1 , der EP 1 291 639 A1 , der US 65 05 519 B2 oder der US 45 24 610 A diskutiert, gezeigt, daß bei inhomogenen Medien, insb. zwei- oder mehrphasigen Medien, die von den Schwingungen des Meßrohrs abgeleiteten Schwingungsmeßsignale, insb. auch die erwähnte Phasenverschiebung, trotz dem Viskosität und Dichte in den einzelnen Mediumsphasen sowie auch der Massendurchfluß praktisch konstantgehalten und/oder entsprechend mitberücksichtigt werden, in erheblichem Maße Schwankungen unterliegen und so ggf. für die Messung des jeweiligen physikalischen Parameters ohne abhelfende Maßnahmen völlig unbrauchbar werden können. Solche inhomogenen Medien können beispielsweise Flüssigkeiten sein, in die, wie z.B. bei Dosier- oder Abfüllprozessen praktisch unvermeidbar, ein in der Rohrleitung vorhandenes Gas, insb. Luft, eingetragen ist oder aus denen ein gelöstes Medium, z.B. Kohlendioxid, ausgast und zur Schaumbildung führt. Als ein weitere Beispiele für solche inhomogenen Medien seien ferner auch Emulsionen sowie Naß- oder Sattdampf genannt. Als Ursachen für die mit der Messung von inhomogenen Medien mittels Messaufnehmern vom Vibrationstyp seien exemplarisch das einseitige Anlagern oder Absetzen von in Flüssigkeiten mitgeführten Gasblasen oder Feststoffpartikeln innen an der Messrohrwand und der sogenannte „Bubble-Effekt“ erwähnt, bei dem in der Flüssigkeit mitgeführte Gasblasen als Strömungskörper für quer zur Messrohrlängsachse beschleunigte Flüssigkeitsteilvolumina wirkt.
  • Während zur Verringerung der mit zwei- oder mehrphasigen Medien einhergehenden Meßfehler in der WO 2003/076880 A1 eine der eigentlichen Durchflußmessung vorausgehende Strömungs- bzw. Mediumskonditionierung vorgeschlagen ist, wird beispielsweise sowohl in der JPH10-281846 A als auch in der US 65 05 519 B2 jeweils eine, insb. auf der Auswertung von Defiziten zwischen einer hochgenau gemessenen, tatsächlichen Mediumsdichte und einer mittels Coriolis-Massedurchflußmessgeräten im Betrieb ermittelten, scheinbaren Mediumsdichte beruhende, Korrektur der auf den Schwingungsmeßsignalen beruhenden Durchflußmessung, insb. der Massendurchflußmessung, beschrieben.
  • Im besonderen werden dafür vorab trainierter, ggf. auch adaptiver Klassifikatoren für die Schwingungsmesssignale vorgeschlagen. Die Klassifikatoren können beispielsweise als Kohonen-Karte oder Neuronales Netzwerk ausgelegt sein und die Korrektur entweder anhand einiger weniger im Betrieb gemessener Parametem, insb. dem Massedurchfluß und der Dichte, sowie weiteren davon abgeleiteten Merkmalen oder auch unter Verwendung eines eine oder mehrere Schwingungsperioden einschließenden Intervalls der Schwingungsmeßsignale vornehmen. Die Verwendung eines solchen Klassifikators birgt beispielsweise den Vorteil, daß im Vergleich zu herkömmlichen Coriolis-Massedurchfluß-/ Dichtemessern am Meßaufnehmer keine oder nur sehr geringfügige Änderungen vorgenommen werden müssen, sei es am mechanischen Aufbau, an der Erregeranordnung oder der diese steuernden Betriebsschaltung, die der speziellen Anwendung besonders angepaßt sind. Allerdings besteht ein erheblicher Nachteil solcher Klassifikatoren u.a. darin, daß im Vergleich zu herkömmlichen Coriolis-Massedurchflußmeßgerätn erhebliche Änderungen im Bereich der Meßwerterzeugung vor allem hinsichtlich der verwendeten Analog-zu-Digital-Wandler und der Mikroprozessoren erforderlich sind. Wie nämlich auch in der US 6505519 B2 beschrieben, ist für eine derartige Signalauswertung beispielsweise bei der Digitalisierung der Schwingungsmeßsignale, die eine Schwingungsfrequenz von etwa 80 Hz aufweisen können, eine Abtastrate von etwa 55 kHz oder mehr für eine ausreichende Genauigkeit erforderlich. Anders gesagt, die Schwingungsmeßsignale sind mit einem Abtastverhältnis von weit über 600:1 abzutasten. Überdies fällt auch die in der digitalen Meßschaltung gespeicherte und ausgeführte Firmware entsprechend komplex aus. Ein weiterer Nachteil solcher Klassifikatoren ist auch darin zu sehen, daß sie auf die im Betrieb des Meßaufnehmers tatsächlich vorherrschenden Meßbedingungen, sei es die Einbausituation, das zu messende Medium und dessen zumeist veränderlichen Eigenschaften oder andere die Meßgenauigkeit beeinflussende Faktoren, trainiert und entsprechend validiert werden müssen. Aufgrund der hohen Komplexität des Zusammenspiels aller dieser Faktoren kann das Training und dessen Validierung abschließend zumeist nur vor Ort und für jeden Meßaufnehmer indivduell erfolgen, was wiederum einen erheblichen Aufwand bei der Inbetriebnahme des Meßaufnehmers zur Folge hat. Im übrigen hat es sich auch gezeigt, daß derartige Klassifikations-Algorithmen, einerseits aufgrund der hohen Komplexität, andererseits infolgedessen, daß zumeist ein entsprechendes physikalisch-mathematisches Modells mit technisch relevanten oder nachvollziehbaren Parameter nicht explizit vorhanden ist, Klassifikatoren eine sehr geringe Transparenz aufweisen und somit oftmals schwer vermittelbar sind. Damit einhergehend können ohne weiteres erhebliche Vorbehalte beim Kunden auftreten, wobei solche Akzeptanzprobleme beim Kunden insb. dann auftreten können, wenn es sich beim verwendeten Klassifikator zu dem um einen selbst adaptierenden, beispielsweise ein Neuronales Netzwerk, handelt.
  • Als eine weitere Möglichkeit zur Umgehung des Problems mit inhomogenen Medien wird beispielsweise bereits in der US 45 24 610 A vorgeschlagen, den Meßaufnehmer so einzubauen, daß das gerade Meßrohr im wesentlichen senkrecht verläuft und somit ein Anlagern solcher störender, insb. gasförmiger, Inhomogenitäten weitestgehend verhindert wird. Hierbei handelt es sich jedoch um eine sehr spezielle, in der industriellen Prozeßmeßtechnik nicht immer ohne weiters realisierbare Lösung. Zum einen müßte nämlich für diesen Fall die Rohrleitung, in die der Meßaufnehmer eingefügt werden soll, ggf. an diesen angepaßt werden und nicht umgekehrt, was für den Anwender einen erhöhten Mehraufwand bei der Realisierung der Messstelle bedeuten kann. Zum anderen kann es sich bei den Meßrohren, wie bereits erwähnt, auch um solche mit einer gekrümmten Rohrform handeln, so daß das Problem auch durch eine Anpassung der Einbaulage nicht immer befriedigend gelöst werden kann. Es hat sich hierbei außerdem gezeigt, daß die vorgenannten Verfälschungen des Meßsignals auch bei Verwendung eines senkrecht eingebauten, geraden Meßrohrs nicht unbedingt sicher vermieden werden können.
  • Eine Aufgabe der Erfindung besteht daher darin, ein entsprechendes In-Line-Meßgerät, insb. ein Coriolis-Massendurchflußmessgerät, anzugeben, das geeignet ist, die zu messende physikalische Meßgröße, insb. den Massendurchfluß, die Dichte und/oder die Viskosität, auch bei inhomogenen, insb. zwei- oder mehrphasigen, Medien sehr genau zu messen, und zwar möglichst mit einem Messfehlerbetrag von kleiner 10% bezogen auf die tatsächliche Meßgröße. Eine weitere Aufgabe besteht darin, ein entsprechendes Verfahren für die Erzeugung eines entsprechenden Meßwerts anzugeben.
  • Zur Lösung dieser Aufgabe besteht die Erfindung in einem In-Line-Meßgerät, insb. Coriolis-Massedurchfluß-/ Dichtemessgerät und/oder Viskositätsmeßgerät, gemäß Anspruch 1 zum Messen wenigstens einer physkalischen Meßgröße, insb. eines Massedurchflusses, einer Dichte und/oder einer Viskosität, eines in einer Rohrleitung geführten, insb. zwei-oder mehrphasigen, Mediums.
  • Ferner besteht die Erfindung in einem Verfahren zum Messen einer physikalischen Meßgröße, insb. Massedurchflusses, einer Dichte und/oder einer Viskosität, eines in einer Rohrleitung strömenden, insb. zwei- oder mehrphasigen, Mediums, gemäß Anspruch 12 mittels eines In-Line-Meßgeräts mit einem Meßaufnehmer vom Vibrationstyp, insb. eines Coriolis-Massendurchflußmeßgeräts, und einer mit dem Meßaufnehmer elektrisch gekoppelten Meßgerät-Elektronik. Ein Grundgedanke der Erfindung besteht darin, den Messaufnehmer zwecks einer Korrektur oder Kompensation allfälliger Messfehler - hervorgerufen im besonderen durch Inhomogenitäten im zu messenden Medium - in einem Dual-Mode zu betreiben, bei dem das Messrohr abwechselnd und/oder alternierend in wenigstens zwei von einander im wesentlichen unabhängigen Schwingungsmoden vibrieren gelassen wird, nämlich einem Lateral-Schwingungsmode und einem Torsions-Schwingungsmode. Anhand von während des Dual-Modebetriebes ermittelten Betriebsparametern des Messaufnehmers, insb. dem für die Aufrechterhaltung der Lateralschwingung und der Torsionsschwingung des Messrohrs jeweils erforderlichen Erregerstrom, den Frequenzen und/oder Amplituden der Schwingungen des Messrohrs etc., können so auf eine sehr einfache Weise sehr genaue und erstaunlich robuste Korrekturwerte für die eigentlichen Messwerte ermittelt werden.
  • Die Erfindung beruht dabei im besonderen auf der Erkenntnis, daß die in den Meßaufnehmer zur Aufrechterhaltung von Lateralschwingungen des Meßrohrs eingespeiste Erregerleistung in einem hohen Maße von Inhomogenitäten im zu messenden Medium, wie z.B. eingeperlten Gasblasen oder mitgeführten Feststoffpartikeln etc., beeinflußt werden kann. Im Vergleich dazu ist die in den Meßaufnehmer zur Aufrechterhaltung von Torsionsschwingungen des Meßrohrs eingespeiste Erregerleistung jedoch in einem erheblich niedrigerem Maße von solchen Inhomogenitäten abhängig, so daß im Betrieb, basierend auf dieser Erregerleistung, insb. basierend auf dem für die Aufrechterehaltung der Torsionsschwingungen tatsächlich eingespeisten Erregerstromanteil, aktuelle Referenzwerte ermittelt werden können, mit deren Hilfe ein Vergleich der in entsprechender Weise für die Lateralschwingungen ermittelten Messwerte, beispielsweise dem für die Aufrechterehaltung der Lateralschwingungen tatsächlich eingespeisten Erregerstromanteil, erfolgen kann. Anhand dieses, beispielsweise in normierender Weise oder subtraktiv durchgeführten, Vergleichs kann ein momentaner Grad der Inhomogenitäten im Medium abgeschätzt werden und davon abgleitet auf den bei der Messung begangenen Meßfehler ausreichend genau zurück geschlossen werden. Das erfindungsgemäße In-Line-Meßgerät ist daher im besonderen zum Messen einer physikalischen Meßgröße, insb. eines Massedurchflusses, einer Dichte und/oder einer Viskosität, auch eines in einer Rohrleitung strömenden zwei- oder mehrphasigen Mediums, insb. eines Flüssigkeits-Gas-Gemisches geeignet.
  • Ein Vorteil der Erfindung besteht darin, dass die zu ermittelnden Korrekturwerte über einen großen Anwendungsbereich gut reproduzierbar und auch die Bildungsvorschriften zur Bestimmung der Korrekturwerte während des Messbetriebes vergleichsweise einfach formulierbar sind. Darüberhinaus sind diese Bildungsvorschriften mit einem vergleichsweise niedrigen Aufwand vorab kalibrierbar. Ein weitere Vorteil der Erfindung ist ferner auch darin zu sehen, daß beim erfindungsgemäßen In-Line-Meßgerät im Vergleich zu einem herkömmlichen, insb. einem solchen gemäß der in der WO 2003/095950 A1 , der WO 2003/095949 A1 oder der US 45 24 610 A beschriebenen Art, lediglich bei der üblicherweise digitalen Messwerterzeugung geringfügige, im wesentlichen auf die Firmware beschränkte Änderungen vorgenommen werden müssen, während sowohl beim Meßaufnehmer wie auch bei der Erzeugung und Vorverarbeitung der Schwingungsmeßsignale keine oder nur eher geringfügige Änderungen erforderlich sind. So können beispielsweise auch bei zwei- oder mehrphasigen Medien die Schwingungsmeßsignale nach wie vor mit einem üblichen Abtastverhältnis von weit unter 100:1, insb. von etwa 10:1, abgetastet werden.
  • Die Erfindung und weitere vorteilhafte Ausgestaltungen werden nun anhand von Ausführungsbeispielen näher erläutert, die in den Figuren der Zeichnung dargestellt sind. Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen; wenn es die Übersichtlichkeit erfordert, wird auf bereits erwähnte Bezugszeichen in nachfolgenden Figuren verzichtet.
    • 1 zeigt ein in eine Rohrleitung einfügbares In-Line-Meßgerät zum Messen eines Massendurchflusses eines in der Rohrleitung geführten Fluids,
    • 2 zeigt ein Ausführungsbeispiel für einen für das Meßgerät von 1 geeigneten Meßaufnehmer vom Vibrations-Typ in einer perspektivischen Seitenansicht,
    • 3 zeigt den Meßaufnehmer von 2 geschnitten in einer Seitenansicht,
    • 4 zeigt den Meßaufnehmer von 2 in einem ersten Querschnitt,
    • 5 zeigt den Meßaufnehmer von 2 in einem zweiten Querschnitt,
    • 6 zeigt ein weiteres Ausführungsbeispiele für einen für das In-Line-Meßgerät von 1 geeigneten Meßaufnehmer vom Vibrations-Typ geschnitten in einer Seitenansicht,
    • 7 zeigt schematisch nach der Art eines Blockschaltbildes eine bevorzugte Ausgestaltung einer für das In-Line-Meßgerät von 1 geeigneten Meßgerät-Elektronik, und
    • 8, 9 zeigen graphisch mit einem In-Line-Meßgerät gemäß den 1 bis 7 experimentell ermittelte Messdaten.
  • In 1 ist perspektivisch ein In-Line-Meßgerät 1 dargestellt, das dazu geeignet ist, eine physkalische Meßgröße, z.B. einen Massendurchfluß m, eine Dichte ρ und/oder eine Viskosität η, eines in einer - hier aus Übersichtlichkeitsgründen nicht dargestellten - Rohrleitung strömenden Mediums zu erfassen und in einen diese Meßgröße momentan repräsentierenden Messwert Xx abzubilden. Medium kann dabei praktisch jeder strömungsfähige Stoff sein, beispielsweise eine Flüssigkeit, ein Gas, ein Dampf oder dergleichen.
  • Das, beispielsweise als Coriolis-Massendurchfluß-/Dichte- und/oder Viskositätsmesser ausgebildete, In-Line-Meßgerät 1 umfaßt dafür einen im Betrieb vom zu messenden Medium durchströmten Messaufnehmer 10 vom Vibrationstyp, von dem ein Ausführungsbeispiel und Ausgestaltungen in den 2 bis 6 gezeigt sind, sowie eine, wie in 2 und 7 schematisch dargestellt, mit dem Messaufnehmer 10 elektrisch verbundene Messgerät-Elektronik 50. Vorzugsweise ist die Messgerät-Elektronik 50 ferner so ausgelegt, daß sie im Betrieb des In-Line-Meßgerät 1 mit einer diesem übergeordneten Messwertverarbeitungseinheit, beispielsweise einer speicherprogrammierbaren Steuerung (SPS), einem Personalcomputer und/oder einer Workstation, via Datenübertragungssystem, beipielsweise einem Feldbussystem, Meß- und/oder andere Betriebsdaten austauschen kann. Des weiteren ist die Messgerät-Elektronik 50 so ausgelegt, dass sie von einer externen Energieversorgung, beispielsweise auch über das vorgenannte Feldbussystem, gespeist werden kann. Für den Fall, daß das Vibrations-Meßgerät für eine Ankopplung an ein Feldbus- oder ein anderes Kommunikationssystem vorgesehen ist, weist die, insb. programmierbare, Meßgerät-Elektronik 50 eine entsprechende Kommunikations-Schnittstelle für eine Datenkommunikation auf, z.B. zum Senden der Meßdaten an die bereits erwähnte speicherprogrammierbare Steuerung oder ein übergeordnetes Prozeßleitsystem, auf. Zur Unterbringung der Messgerät-Elektronik 50 ist ferner ein, insb. von außen direkt am Messaufnehmer 10 angebrachtes oder aber von diesem abgesetztes, Elektronikgehäuse 200 vorgesehen.
  • Wie bereits erwähnt, umfasst das In-Line-Meßgerät einen Meßaufnehmer vom Vibrationstyp, der im Betrieb vom zu messenden Medium durchströmt ist, und der dazu dient, in einem hindurchströmenden Medium solche mechanische Reaktionskräfte, insb. vom Massendurchfluß abhängige Corioliskräfte, von der Mediumsdichte abhängige Trägheitskräfte und/oder von der Mediumsviskosität abhängige Reibungskräfte, zu erzeugen, die meßbar, insb. sensorisch erfaßbar, auf den Meßaufnehmer zurückwirken. Abgeleitet von diesen das Medium beschreibenden Reaktionskräften können so in der dem Fachmann bekannten Weise z.B. der Massendurchfluß, die Dichte und/oder die Viskosität des Mediums gemessen werden. In den 3 und 4 ist ein Ausführungsbeispiel einer als Messaufnehmer 10 vom Vibrations-Typ gezeigt dienenden physikalisch-elektrischen Wandleranordnung schematisch dargestellt. Der mechanische Aufbau und die Funktionsweise einer derartigen Wandleranordnung ist dem Fachmann an und für sich bekannt und z.B. auch in der US 66 91 583 B1 , der WO 2003/095949 A1 oder der WO 2003/095950 A1 detailiert beschrieben.
  • Zum Führen des Mediums und zum Erzeugen besagter Reaktionskräfte umfaßt der Meßaufnehmer wenigstens ein im wesentlichen gerades Meßrohr 10 von vorgebbarem Messrohrdurchmesser, das im Betrieb zumindest zeitweise vibrieren gelassen wird und dadurch wiederholt elastisch verformt wird. Elastisches Verformen des Messrohrlumens bedeutet hier, dass eine Raumform und/oder eine Raumlage des Messrohrlumens innerhalb eines Elastizitätsbereiches des Messrohrs 10 in vorgebbarer Weise zyklisch, insb. periodisch, verändert wird, vgl. hierzu auch die US 48 01 897 A , die US 56 48 616 A , die US 57 96 011 A , die US 60 06609 A , die US 66 91 583 A , die WO 2003/095949 A1 und/oder die WO 2003/095950 A1 . Es sei an dieser Stelle darauf verwiesen, daß anstelle des im Ausführungsbeispiel gezeigten Messaufnehmers mit einem einzigen, geraden Meßrohr, der der Realisierung der Erfindung dienenende Meßaufnehmr gleichwohl aus einer Vielzahl von aus dem Stand der Technik bekannten Messaufnehmern vom Vibrationstyp ausgewählt werden kann. Im besonderen eigenen sich beispielsweise Meßaufnehmer vom Vibrationstyp mit zwei parallel vom zu messenden Medium durchflossenen, geraden Meßrohren, wie sie beispielsweise auch in der US 56 02 345 A detailiert beschrieben sind.
  • Wie in 1 gezeigt, weist der Meßaufnehmer 1 weiters ein das Meßrohr 10 sowie allfällige weitere Komponenten des Messaufnehmers (siehe auch weiter unten) umgebendes Meßaufnehmer-Gehäuse 100 auf, das diese vor schädlichen Umgebungseinflüssen schützt und/oder der allfällige Schallemissionen des Meßaufnehmers nach außen hin dämpft. Überdies dient das Meßaufnehmer-Gehäuse 100 auch dazu ein die Meßgerät-Elektronik 50 einhausendes Elektronik-Gehäuse 200 zu haltern. Hierzu ist das Meßaufnehmer-Gehäuse 100 mit einem halsartigen Übergangsstück versehen, an dem das Elektronik-Gehäuse 200 entsprechend fixiert ist, vgl. 1. Anstelle des hier gezeigten rohrförmigen, koaxial zum Messrohr verlaufenden Wandlerghäuses 100 können selbstverständlich auch andere geeignete Gehäuseformen, wie z.B. kastenförmigen Strukturen, verwendete werden.
  • Das Messrohr 10, das in der üblichen Weise einlass-seitig und auslass-seitig mit der das zu messende Medium zu- bzw. abführenden Rohrleitung kommuniziert, ist in dem eher starren, insb. biege- und verwindungssteifen, Wandlerghäuse 100 schwingfähig aufgehängt. Zum Hindurchströmenlassen des Mediums ist das Meßrohr 10 über ein in ein Einlaßende 11# einmündendes Einlaßrohrstück 11 und über ein in ein Auslaßende 12# einmündendes Auslaßrohrstück 12 an die Rohrleitung angeschlossen. Meßrohr 10, Einlaß- und Auslaßrohrstück 11, 12 sind zueinander und zur oben erwähnten Meßrohrlängsachse L möglichst fluchtend ausgerichtet und in vorteilhafter Weise einstückig ausgeführt, so daß zu deren Herstellung z.B. ein einziges rohrförmiges Halbzeug dienen kann; falls erforderlich können Meßrohr 10 und Rohrstücke 11, 12 aber auch mittels einzelner, nachträglich zusammengefügter, z.B. zusammengeschweißter, Halbzeuge hergestellt werden. Zur Herstellung des Meßrohrs 10, wie auch des Einlaß- und des Auslaßrohrstücks 11, 12 kann praktisch jedes der für solche Meßaufnehmer üblichen Materialien verwendet werden, wie z.B. Eisen-, Titan-, Zirkonium- und/oder Tantal-Legierungen, Kunststoffe oder Keramiken. Für den Fall, daß der Meßaufnehmer lösbar mit der Rohrleitung zu montieren ist, ist dem Einlaßrohrstück 11 und dem Auslaßrohrstück 12 bevorzugt jeweils ein erster bzw. zweiter Flansch 13, 14 angeformt; falls erforderlich können Ein- und Auslaßrohrstück 11, 12 aber auch direkt mit der Rohrleitung, z.B. mittels Schweißen oder Hartlötung, verbunden werden. Ferner ist, wie in den 1 schematisch dargestellt, am ein Ein- und am Auslaßrohrstück 11, 12 fixiertes, das Meßrohr 10 aufnehmendes Wandlergehäuse 100 vorgesehen, vgl. hierzu 1 und 2.
  • Zumindest zum Messen des Massendurchflusses m wird das Messrohr 10 in einem als Lateral-Schwingungsmode ausgebildeten ersten Schwingungsnutzmode angeregt, bei dem es zumindest anteilig Schwingungen, insb. Biegeschwingungen, lateral zu einer gedachten Meßrohrlängsachse L ausführt, insb. so, daß es sich, im wesentlichen auf einer natürlichen Biege-Eigenfrequenz schwingend, gemäß einer natürlichen ersten Eigenschwingungsform lateral ausbiegt. Für den Fall, daß das Medium in der angeschlossenen Rohrleitung strömt und somit der Massendurchfluß m von Null verschieden ist, werden mittels des im ersten Schwingungsnutzmode schwingenden Meßrohrs 10 im hindurchströmenden Medium Corioliskräfte induziert. Diese wiederum wirken auf das Meßrohr 10 zurück und bewirken so in der dem Fachmann bekannten Weise eine zusätzliche, sensorisch erfaßbare Verformung des Meßrohrs 10 im wesentlichen gemäß einer natürlichen zweiten Eigenschwingungsform, die der ersten Eigenschwingungsform koplanar überlagert ist. Die momentane Ausprägung der Verformung des Meßrohrs 10 ist dabei, insb. hinsichtlich ihrer Amplituden, auch vom momentanen Massendurchfluß m abhängig. Als zweite Eigenschwingungsform, dem sogenannten Coriolismode, können z.B., wie bei derartigen Meßaufnehmern üblich, anti-symmetrische Biegeschwingungsformen mit zwei Schwingungsbäuchen oder mit vier Schwingungsbäuchen dienen. Da natürliche Eigenfrequenzen solcher Lateral-Schwingungsmoden von Meßrohren bekanntlich in besonderem Maße auch von der Dichte ρ des Mediums abhängig sind, kann mittels des In-Line-Meßgerät ohne weiteres zusätzlich zum Massedurchfluß m auch die Dichte ρ gemessen werden. Zusätzlich zu den Lateral-Schwingungen wird das wenigstens eine Messrohr 10 zum Erzeugen von viskositätsabhängigen Scherkräften im strömenden Medium zumindest zeitweise in einem Torsions-Schwingungsmode betrieben. In diesem Torsions-Schwinungsmode ist das Messrohr zu Torsionschwingungen um eine im wesentlichen mit der Messrohrlängsachse L parallel verlaufenden oder koinzidierenden Torsions-Schwingungsachse angeregt, und zwar so, daß es im wesentlichen gemäß einer natürlichen Torsionsschwingungsform um seine Längsachse L verdrillt wird, vgl. hierzu z.B. auch die US 45 24 610 A , die US 52 53 533 A , die US 60 06 609 A oder die EP 1 158 289 A1 . Das Anregen der Torsionschwingungen kann hierbei sowohl alternierend zum ersten Schwingungsnutzmode und getrennt von diesem in einem zweiten Schwingungsnutzmode oder aber, zumindest bei voneinander unterscheidbaren Schwingungsfrequenzen, auch simultan zu den Lateralschwingungen im ersten Schwingungsnutzmode erfolgen. Anders gesagt, der Messaufnehmer arbeitet zumindest zeitweise in einem Dual-Modebetrieb, bei dem das wenigstens eine Messrohr 10 abwechselnd und/oder alternierend in wenigstens zwei von einander im wesentlichen unabhängigen Schwingungsmoden, nämlich dem Lateral-Schwingungsmode und dem Torsions-Schwingungsmode vibrieren gelassen wird.
  • Nach einer Ausgestaltung der Erfindung wird das Meßrohr 10 zum Erzeugen von massedurchflussabhängigen Corioliskräften im strömenden Medium zumindest zeitweise mit einer Lateralschwingungs-Frequenz fexcL angeregt, die möglichst genau einer niedrigsten natürlichen Biege-Eigenfrequenz des Meßrohrs 10 entspricht, so daß also das lateral schwingende, jedoch nicht vom Fluid durchströmte Meßrohr 10 bezüglich einer zur Meßrohrlängsachse L senkrechten Mittelachse im wesentlichen symmetrisch ausgebogen wird und dabei einen einzigen Schwingungsbauch aufweist. Diese niedrigste Biege-Eigenfrequenz kann beispielsweise bei einem als Meßrohr 10 dienenden Edelstahlrohr mit einer Nennweite von 20 mm, einer Wandstärke von etwa 1,2 mm und einer Länge von etwa 350 mm sowie den üblichen Anbauten bei etwa 850 Hz bis 900 Hz liegen.
  • Nach einer weiteren Ausgestaltung der Erfindung wird das Meßrohr 10, insb. simultan zu den Lateralschwingungen im Nutzmode, mit einer Torsionsschwingungs-Frequenz fexcT, die möglichst genau einer natürlichen Torsions-Eigenfrequenz des Meßrohrs 10 entspricht, angeregt. Eine niedrigste Torsions-Eigenfrequenz kann beispielsweise bei einem geraden Meßrohr etwa im Bereich des Doppelten der niedrigsten Biege-Eigenfrequenz liegen.
  • Wie bereits erwähnt, werden die Schwingungen des Messrohrs 11 einerseits durch Abgabe von Schwingunsenergie, insb. an das Medium, bedämpft. Andererseits aber kann dem vibrierenden Meßrohr 10 auch dadurch in erheblichem Maße Schwingungsenergie entzogen werden, daß mit diesem mechanisch gekoppelte Bauteile, wie z.B. das Wandlergehäuse 100 oder die angeschlossene Rohrleitung, ebenfalls zu Schwingungen angeregt werden. Zum Zwecke der Unterdrückung oder Vermeidung einer allfälligen Abgabe von Schwingungsenergie an die Umgebung ist daher im Meßaufnehmer ferner ein einlaßseitig und auslaßseitig am Meßrohr 10 fixierter Gegenschwinger 20 vorgesehen. Der Gegenschwinger 20 ist, wie in den 2 schematisch dargestellt, bevorzugt einstückig ausgeführt. Falls erforderlich, kann der Gegenschwinger 20 auch, wie z.B. auch in der US 59 69 265 A , der EP 0 317 340 A2 oder der WO 2000/14485 A1 gezeigt, mehrteilig zusammengesetzt oder mittels zweier separater, einlaß- bzw. auslaßseitig am Meßrohr 10 fixierter Teil-Gegenschwinger realisiert sein, vgl. 6. Der Gegenschwinger 20 dient u.a. dazu, den Meßaufnehmer für wenigstens einen vorherbestimmten, z.B. einen im Betrieb des Meßaufnehmers am häufigsten zu erwartenden oder auch kritischen Mediumsdichtewert soweit dynamisch auszubalancieren, daß im vibrierenden Meßrohr 10 allfällig erzeugte Querkräfte und/oder Biegemomente weitgehend kompensiert werden, vgl. die hierzu auch die US 66 91 583 B2 . Darüberhinaus dient der Gegenschwinger 20 für den oben beschriebenen Fall, daß das Meßrohr 10 im Betrieb auch zu Torsionsschwingungen angeregt wird, außerdem dazu, solche TorsionsMomente, die vom vorzugsweise um seine Längsachse L tordierenden einzigen Meßrohr 10 erzeugt werden, weitgehend kompensierende Gegen-Torsionsmomente zu erzeugen und somit die Umgebung des Meßaufnehmers, insb. aber die angeschlossene Rohrleitung, weitgehend frei von dynamischen Torsionsmomenten zu halten. Der Gegenschwinger 20 kann, wie in den 2 und 3 schematisch dargestellt, rohrförmig ausgeführt und beipielsweise so am Einlaßende 11# und am Auslaßende 12# mit dem Meßrohr 10 verbunden sein, daß er, wie in 3 gezeigt, im wesentlichen koaxial zum Meßrohr 10 ausgerichtet ist. Als Material für den Gegenschwinger 20 kommen praktisch dieselben Materialien in Frage, wie sie auch für das Meßrohr 10 verwendbar sind, also beispielsweise Edelstahl, Titan-Legierungen etc.
  • Der, insb. im Vergleich zum Meßrohr 10 etwas weniger torsions-und/oder biege-elastische, Gegenschwinger 20 wird im Betrieb gleichfalls schwingen gelassen, und zwar im wesentlichen gleichfrequent, jedoch außerphasig, insb. gegenphasig, zum Meßrohr 10. Dementsprechend ist der Gegenschwinger 20 mit wenigstens einer seiner Torsisons-Eigenfrequenzen möglichst genau auf jene Torsions-Schwingungsfrequenzen abgestimmt, mit der dieses im Betrieb vorwiegend schwingen gelassen wird. Darüber hinaus ist der Gegenschwinger 20 auch in wenigstens einer seiner Biege-Eigenfrequenz zu wenigstens einer Biege-Schwingungsfrequenz mit der das Messrohr 10, insb. im Nutzmode, schwingen gelassen wird möglichst gleich eingestellt und wird der Gegenschwinger 20 im Betrieb des Meßaufnehmers auch zu Lateralschwingungen, insb. Biegeschwingungen, angeregt, die im wesentlichen koplanar zu Lateralschwingungen des Meßrohrs 10, insb. den Biegeschwingungen des Nutzmodes, ausgebildet sind.
  • Nach einer Ausgestaltung der Erfindung sind dafür, wie in 3 schematisch dargestellt, im Gegenschwinger 20 eingearbeitete Nuten 201, 202 vorgesehen, die eine genaues Einstellen von dessen Torsions-Eigenfrequenzen, insb. ein Absenken der Torsions-Eigenfrequenzen durch Absenken einer Torsions-Steifigkeit des Gegenschwingers 20, auf einfache Weise ermöglichen. Obwohl die Nuten 201, 202 in der 2 oder 3 in Richtung der Längsachse L im wesentlichen gleichverteilt gezeigt sind, können sie, falls erforderlich, ohne weiteres auch in Richtung der Längsachse L ungleich verteilt angeordnet sein. Darüber hinaus kann die Massenverteilung des Gegenschwingers, wie ebenfalls in 3 schematisch dargestellt, auch mittels entsprechender Massenausgleichskörper 101, 102 korrigiert werden, die am Meßrohr 10 fixiert sind. Als Massenausgleichskörper 101, 102 können z.B. auf das Meßrohr 10 aufgeschobene Metallringe oder an diesem fixierte Metallplättchen dienen.
  • Zum Erzeugen mechanischer Schwingungen des Meßrohrs 10 umfaßt der Meßaufnehmer ferner eine, insb. elektrodynamische, Erregeranordnung 40, die mit dem Messrohr gekoppelt ist. Die Erregeranordnung 40 dient dazu, eine von der Meßgerät-Elektronik eingespeiste, elektrische Erregerleistung Pexc, z.B. mit einem geregelten Erregerstrom iexc und/oder einer geregelten Spannung, in ein auf das Meßrohr 10, z.B. pulsförmig oder harmonisch, einwirkendes und dieses elastisch verformendes Erregermoment Mexc und/oder in eine lateral auf das Messrohr 10 wirkende Erregerkraft Fexc umzuwandeln. Zur Erzielung eines möglichst hohen Wirkungsgrades und eines möglichs hohen Signal/Rausch-Verhältnisses ist die Erregerleistung Pexc möglichst genau so eingestellt, dass überwiegend die Schwingungen des Messrohrs 10 im Nutzmode aufrecht erhalten werden, und zwar möglichst genau auf einer momentanen Eigenfrequenz des vom Medium durchströmten Meßrohrs. Die Erregerkraft Fexc wie auch das Erregermoment Mexc können dabei, wie in den 4 oder 6 schematisch dargestellt, jeweils bidirektional oder aber auch unidirektional ausgebildet sein und in der dem Fachmann bekannten Weise z.B. mittels einer Strom-und/oder Spannungs-Regelschaltung, hinsichtlich ihrer Amplitude und, z.B. mittels einer Phasen-Regelschleife, hinsichtlich ihrer Frequenz eingestellt werden. Als Erregeranordnung 40 kann, wie bei solchen Meßaufnehmern vom Vibrationstyp üblich, beispielsweise eine Tauchspulenanordnung mit einer am Gegenschwinger 20 oder von innen am Wandlergehäuse 100 befestigten zylindrischen Erregerspule, die im Betrieb von einem entsprechenden Erregerstrom iexc durchflossen ist, und mit einem in die Erregerspule zumindest teilweise eintauchenden dauermagnetischen Anker, der am Meßrohr 10 fixiert ist, dienen. Ferner kann die Erregeranordnung 40 auch, wie z.B. in der US 45 24 610 A oder der WO 2003/095950 A1 gezeigt, mittels mehrer Tauchspulen oder auch mittels Elektromagneten realisiert sein.
  • Zum Detektieren der Schwingungen des Messrohrs 10 umfasst der Messaufnehmer ferner eine Sensoranordnung 50, die mittels wenigstens eines auf Vibrationen des Messrohrs 10 reagierenden ersten Schwingungsensors 51 ein diese repräsentierendes erstes, insb. analoges, Schwingungsmeß-Signal s1 erzeugt. Der Schwingungsensor 51 kann z.B. mittels eines dauermagnetischen Ankers gebildet sein, der am Messrohr 10 fixiert ist und mit einer vom Gegenschwinger 20 oder vom Wandlerghäuse gehalterten Sensorspule in Wechselwirkung steht. Als Schwingungsensor 51 sind besonders solche Sensoren geeignet, die, basierend auf dem elektrodynamischen Prinzip, eine Geschwindigkeit der Auslenkungen des Messrohrs 10 erfassen. Es können aber auch beschleunigungsmessende elektrodynamische oder aber auch wegmessende resistive oder optische Sensoren verwendet werden. Selbstverständlich können auch andere dem Fachmann bekannte und für die Detektion solcher Vibrationen geeignete Sensoren verwendet werden. Die Sensoranordnung 60 umfasst ferner einen, insb. zum ersten Schwingungsensor 51 identischen, zweiten Schwingungsensor 52, mittels dem sie ein ebenfalls Vibrationen des Messrohrs 10 repräsentierdendes zweites Schwingungsmeß-Signal s2 liefert. Die beiden Schwingungsensor 51, 52 sind bei dieser Ausgestaltung entlang des Messrohrs 10 voneinander beabstandet, insb. in einem gleichen Abstand von der Mitte des Messrohrs 10, so im Messaufnehmer 10 angeordnet, dass mittels der Sensoranordnung 50 sowohl einlass-seitige als auch auslass-seitige Vibrationen des Messrohrs 10 örtlich erfasst und in die entsprechenden Schwingungsmeß-Signale s1 bzw. s2 umgewandelt werden. Beide Schwingungsmeß-Signale s1, s2, die üblicherweise jeweils eine einer momentanen Schwingfrequenz des Messrohrs 10 entsprechende Signalfrequenz aufweisen, sind, wie in 2 gezeigt, der Messgerät-Elektronik 50 zugeführt, wo sie in der dem Fachmann bekannten Weise mittels einer entsprechenden vorverarbeitet, insb. digitalisiert, und anschließen geeignet ausgewertet werden.
  • Nach einer Ausgestaltung der Erfindung ist die Erregeranordnung 40, wie auch in 2 und 3 gezeigt, so ausgebildet und im Meßaufnehmer angeordnet, daß sie im Betrieb gleichzeitig, insb. differentiell, auf Meßrohr 10 und Gegenschwinger 20 wirkt. Bei dieser Weiterbildung der Erfindung ist die Erregeranordnung 40, wie auch in 2 gezeigt, in vorteilhafter Weise so ausgebildet und so im Meßaufnehmer angeordnet, daß sie im Betrieb gleichzeitig, insb. differentiell, auf Meßrohr 10 und Gegenschwinger 20 wirkt. Im in der 4 gezeigten Ausführungsbeispiel weist die Erregeranordnung 40 dazu wenigstens eine im Betrieb zumindest zeitweise vom Erregerstrom oder einem Erregerteilstrom durchflossene erste Erregerspule 41a auf, die an einem mit dem Meßrohr 10 verbundenen Hebel 41c fixiert ist und über diesen und einen von außen am Gegenschwinger 20 fixierten Anker 41b differentiell auf das Meßrohr 10 und den Gegenschwinger 20 einwirkt. Diese Anordnung hat u.a. auch den Vorteil, daß einerseits der Gegenschwinger 20 und somit auch das Wandlergehäuse 100 im Querschnitt klein gehalten und trotzdem die Erregerspule 41a, insb. auch bei der Montage, leicht zugänglich ist. Darüber hinaus besteht eine weiterer Vorteil dieser Ausgestaltung der Erregeranordnung 40 auch darin, daß allfällig verwendete, insb. bei Nennweiten von über 80 mm nicht mehr vemachlässigbar schwere, Spulenbecher 41d ebenfalls am Gegenschwinger 20 fixierbar sind und somit praktisch keinen Einfluß auf die Eigenfrequenzen des Meßrohrs 10 haben. Es sei jedoch an dieser Stelle darauf hingewiesen, daß falls erforderlich, die Erregerspule 41a auch vom Gegenschwinger 20 und dementsprechend der Anker 41b vom Meßrohr 10 gehaltert werden können.
  • In entsprechender Weise können auch die Schwingungssensoren 51, 52 so ausgelegt und im Meßaufnehmer angeordnet sein, daß durch sie die Vibrationen von Meßrohr 10 und Gegenschwinger 20 differentiell erfaßt werden. Im in der 5 gezeigten Ausführungsbeispiel umfaßt die Sensoranordnung 50 eine am Meßrohr 10 fixierte, hier außerhalb sämtlicher Trägheitshauptachsen der Sensoranordnung 50 angeordnete, Sensorspule 51a. Die Sensorspule 51a ist möglichst nah zu einem am Gegenschwinger 20 fixierten Anker 51b angeordnet und mit diesem magnetisch so gekoppelt, daß in der Sensorspule eine durch rotatorische und/oder laterale, ihre relative Lage und/oder ihren relativen Abstand verändernde Relativbewegungen zwischen Meßrohr 10 und Gegenschwinger 20 beinflußte, veränderliche Meßspannung induziert wird. Aufgrund einer solchen Anordnung der Sensorspule 51a können in vorteilhafter Weise gleichzeitig sowohl die oben genannten Torsionsschwingungen als auch die angeregten Biegeschwingungen erfaßt werden. Falls erforderlich können die Sensorspule 51a dazu aber auch am Gegenschwinger 20 und in entsprechender Weise der mit dieser gekoppelte Anker 51b am Meßrohr 10 fixiert sein.
  • Nach einer anderen Ausgestaltung der Erfindung sind Meßrohr 10, Gegenschwinger 20 sowie die daran befestigten Sensor- und Erregeranordnungen 40, 50 hinsichtlich ihrer Massenverteilung so aufeinander abgestimmt, daß das so gebildete, mittels des Ein- und am Auslaßrohrstücks 11, 12 aufgehängte Innenteil des Meßaufnehmers einen Massenschwerpunkt MS aufweist, der zumindest innerhalb des Meßrohrs 10, vorzugsweise aber möglichst nah an der Meßrohrlängsachse L liegt. Zudem ist das Innenteil in vorteilhafter Weise so ausgebildet, daß es eine mit dem Einlaßrohrstück 11 und dem Auslaßrohrstück 12 fluchtende und zumindest abschnittsweise innerhalb des Meßrohrs 10 liegende erste Trägheitshauptachse T1 aufweist. Aufgrund der Verlegung des Massenschwerpunktes MS des Innenteils, insb. aber auch aufgrund der vorbeschriebenen Lage der ersten Trägheitshauptachse T1 sind die beiden betriebsgemäß vom Meßrohr 10 eingenommenen und vom Gegenschwinger 20 weitgehend kompensierten Schwingungsformen, nämlich die Torsionsschwingungen und die Biegeschwingungen des Meßrohrs 10, mechanisch voneinander weitestgehend entkoppelt, vgl. hierzu auch die WO 2003/095950 A1 . Dadurch können beide Schwingungsformen, also Lateralschwingungen und/oder Torsionsschwingungen, in vorteilhafter Weise ohne weiteres voneinander getrennt angeregt werden. Sowohl die Verlegung des Massenschwerpunkts MS als auch der ersten Trägheitshauptachse T1 hin zur Meßrohrlängsachse L kann beispielsweise dadurch erheblich vereinfacht werden, daß das Innenteil, also Meßrohr 10, Gegenschwinger 20 sowie die daran befestigten Sensor- und Erregeranordnungen 50, 40, so ausgebildet und zueinander angeordnet sind, daß eine Massenverteilung des Innenteils entlang der Meßrohrlängsachse L im wesentlichen symmetrisch, zumindest aber invariant gegenüber einer gedachten Drehung um die Meßrohrlängsachse L um 180° (c2-Symmetrie), ist. Zu dem ist der - hier rohrförmig, insb. auch weitgehend axial-symmetrisch, ausgebildete - Gegenschwinger 20 im wesentlich koaxial zum Meßrohr 10 angeordnet, wodurch das Erreichen einer symmetrische Massenverteilung des Innenteils erheblich vereinfacht wird und somit auch der Massenschwerpunkt MS in einfacher Weise nah zur Meßrohrlängsachse L hin verlegt wird. Darüber hinaus sind auch die Sensor- und Erregeranordnungen 50, 40 im Ausführungbeispiel so ausgebildet und zueinander am Meßrohr 10 und ggf. am Gegenschwinger 20 angeordnet, daß ein durch sie erzeugtes Massenträgheitsmoment möglichst konzentrisch zur Meßrohrlängsachse L ausgebildet oder zumindest möglichst klein gehalten ist. Dies kann z.B. dadurch erreicht werden, daß ein gemeinsamer Massenschwerpunkt von Sensor- und Erregeranordnung 50, 40 ebenfalls möglichst nah an der Meßrohrlängsachse L liegt und/oder daß eine Gesamtmasse von Sensor- und Erregeranordnung 50, 40 möglichst klein gehalten ist.
  • Nach einer weiteren Ausgestaltung der Erfindung ist die Erregeranordnung 40 zum Zwecke der getrennten Anrregung von Torsions- und/oder Biegeschwingungen des Meßrohrs 10 so ausgebildet und an diesem und am Gegenschwinger 20 so fixiert, daß eine die Biegeschwingungen erzeugende Kraft entlang einer gedachten Kraftlinie auf das Meßrohr 10 wirkt, die außerhalb einer zur ersten Trägheitshauptachse T1 senkrechten zweiten Trägheitshauptachse T2 verläuft oder letztere in höchstens einem Punkt schneidet. Vorzugsweise ist das Innenteil so ausgestaltet, daß die zweite Trägheitshauptachse T2 im wesentlichen mit der oben erwähnten Mittelachse übereinstimmt. Im in der 4 gezeigten Ausführungsbeispiel weist die Erregeranordnung 40 dazu wenigstens eine im Betrieb zumindest zeitweise vom Erregerstrom oder einem Erregerteilstrom durchflossene erste Erregerspule 41a auf, die an einem mit dem Meßrohr 10 verbundenen Hebel 41c fixiert ist und über diesen und einen von außen am Gegenschwinger 20 fixierten Anker 41b differentiell auf das Meßrohr 10 und den Gegenschwinger 20 einwirkt. Diese Anordnung hat u.a. auch den Vorteil, daß einerseits der Gegenschwinger 20 und somit auch das Wandlergehäuse 100 im Querschnitt klein gehalten und trotzdem die Erregerspule 41a, insb. auch bei der Montage, leicht zugänglich ist. Darüber hinaus besteht eine weiterer Vorteil dieser Ausgestaltung der Erregeranordnung 40 auch darin, daß allfällig verwendete, insb. bei Nennweiten von über 80 mm nicht mehr vernachlässigbar schwere, Spulenbecher 41d ebenfalls am Gegenschwinger 20 zu fixieren sind und somit praktisch keinen Einfluß auf die Resonanzfrequenzen des Meßrohrs 10 haben. Es sei jedoch an dieser Stelle darauf hingewiesen, daß falls erforderlich, die Erregerspule 41a auch vom Gegenschwinger 20 und dementsprechend der Anker 41b vom Meßrohr 10 gehaltert werden können.
  • Nach einer weiteren Ausgestaltung der Erfindung weist die Erregeranordnung 40 wenigstens eine entlang eines Durchmessers des Meßrohrs 10 angeordnete zweite Erregerspule 42a auf die in gleicher Weise wie die Erregerspule 41a mit dem Meßrohr 10 und dem Gegenschwinger 20 gekoppelt ist. Nach einer anderen bevorzugten Ausgestaltung der Erfindung weist die Erregeranordnung zwei weitere, insgesamt also vier zumindest bezüglich der zweiten Trägheitshauptachse T2 symmetrisch angeordnete Erregerspulen 43a, 44a auf, die alle in der vorgenannten Weise im Meßaufnehmer montiert sind. Die außerhalb der zweiten Trägheitshauptachse T2 auf das Meßrohr 10 einwirkende Kraft kann mittels solcher Zwei- oder Vier-Spulen-Anordnungen in einfacher Weise z.B. dadurch erzeugt werden, daß eine der Erregerspulen, z.B. die Erregerspule 41a, eine andere Induktivität aufweist als die jeweils anderen oder daß eine der Erregerspulen, z.B. die Erregerspule 41a, im Betrieb von einem Erregerteilstrom durchflossen ist, der von einem jeweiligen Erregerteilstrom der jeweils anderen Erregerspulen verschieden ist.
  • Nach einer anderen Ausgestaltung der Erfindung umfaßt die Sensoranordnung 50, wie in 5 schematisch dargestellt, eine außerhalb der zweiten Trägheitshauptachse T2 angeordnete, am Meßrohr 10 fixierte Sensorspule 51a. Die Sensorspule 51a ist möglichst nah zu einem am Gegenschwinger 20 fixierten Anker 51b angeordnet und mit diesem magnetisch so gekoppelt, daß in der Sensorspule eine durch rotatorische und/oder laterale, ihre relative Lage und/oder ihren relativen Abstand verändernde Relativbewegungen zwischen Meßrohr 10 und Gegenschwinger 20 beinflußte, veränderliche Meßspannung induziert wird. Aufgrund der erfindungsgemäßen Anordnung der Sensorspule 51a können in vorteilhafter Weise gleichzeitig sowohl die oben genannten Torsionsschwingungen als auch die ggf. angeregten Biegeschwingungen erfaßt werden. Falls erforderlich können die Sensorspule 51a dazu aber auch am Gegenschwinger 20 und in entsprechender Weise der mit dieser gekoppelte Anker 51b am Meßrohr 10 fixiert sein.
  • Es sei an dieser Stelle ferner erwähnt, daß die Erregeranordnung 40 und die Sensoranordnung 50 in der dem Fachmann bekannten Weise in ihrem mechanischen Aufbau auch im wesentlich gleich ausgeführt sein können; somit lassen sich die vorgenannten Ausgestaltungen des mechanischen Aufbaus der Erregeranordnung 40 im wesentlichen auch auf den mechanischen Aufbau der Sensoranordnung 50 übertragen und umgekehrt.
  • Zum Vibrierenlassen des Messrohrs 10 wird die Erregeranordnung 40, wie bereits erwähnt, mittels eines gleichfalls, insb. mehrfrequent, oszillierenden Erregerstroms iexc von einstellbarer Amplitude und von einstellbarer Erregerfrequenz fexc derart gespeist, dass die Erregerspulen 26, 36 im Betrieb von diesem durchflossen sind und in entsprechender Weise die zum Bewegen der Anker 27, 37 erforderlichen Magnetfelder erzeugt werden. Der Erregerstrom iexc kann z.B. harmonisch, mehrfrequent oder auch rechteckförmig sein. Die Lateralschwingungs-Erregerfrequenz fexcL eines zum Aufrechterhalten der Lateralschwingungen des Meßrohrs 10 erforderlichen Lateral-Stromanteils iexcL vom Erregerstrom iexc kann beim im Ausführungsbeispiel gezeigten Meßaufnehmer in vorteilhafter Weise so gewählt und eingestellt sein, daß das lateral schwingende Messrohr 10 im wesentlichen in einem Biegeschwingungsgrundmode mit einem einzigen Schwingungsbauch oszilliert. Analog dazu ist auch eine Torsionsschwingungs-Erregerfrequenz fexcT eines zum Aufrechterhalten der Torsionsschwingungen des Meßrohrs 10 erforderlichen Torsions-Stromanteils iexeT vom Erregerstrom iexc in vorteilhafter Weise so gewählt und eingestellt, daß das torsional schwingende Messrohr 10 möglichst in seinem Torsionsschwingungs-Grundmode mit einem einzigen Schwingungsbauch oszilliert. Die beiden vorgenannten Stromanteile iexcL und iexcT können je nach gewählter Betriebsart beispielsweise intermittierend, also momentan jeweils als Erregerstrom iexc wirkend, oder auch simultan, also einander zum Errgerstrom iexc ergänzend, in die Errgeranordnung 40 eingespeist werden.
  • Für den oben beschriebenen Fall, daß die Lateralschwingungs-Frequenz fexcL und die Torsionsschwingungs-Frequenz fexcT, mit der das Messrohr im Betrieb schwingen gelassen wird, voneinander verschieden eingestellt sind, kann mittels des Messaufnehmers in einfacher und vorteilhafter Weise auch bei simultan angegeregten Torsions- und Biegeschwingungen, z.B. basierend auf einer Signalfilterung oder einer Frequenzanalyse, eine Separierung der einzelnen Schwingungsmoden sowohl in den Erreger- als auch in den Sensorsignalen erfolgen. Anderenfalls empfiehlt sich eine alternierende Anrregung der Lateral- bzw. der Torsionsschwingungen.
  • Zum Erzeugen und Einstellen des Erregerstroms iexc bzw. der Stromanteile iexcL, iexcT umfaßt die Meßgerät-Elektronik 50 eine entsprechende Treiberschaltung 53, die von einem die einzustellende Lateralschwingungs-Erregerfrequenz fexcL repräsentierenden Lateralschwingungs-Frequenzstellsignal yFML und von einem die einzustellende Lateralschwingungs-Amplitude des Erregerstroms iexc und/oder des Lateral-Stromanteils iexcL repräsentierenden Lateralschwingungs-Amplitudenstellsignal yAML sowie zumindest zeitweise von einem von einem die einzustellende Torsionsschwingungs-Erregerfrequenz fexcT repräsentierenden Torsionsschwingungs-Frequenzstellsignal yFMT und von einem die einzustellende Torsionsschwingungs-Amplitude des Erregerstroms iexc und/oder des Torsions-Stromanteils iexcT repräsentierenden Torsionsschwingungs-Amplitudenstellsignal yAMT gesteuert ist. Die Treiberschaltung 53 kann z.B. mittels eines spannungsgesteuerten Oszillators und eines nachgeschalteten Spannungszu-Stromwandler realisiert sein; anstelle eines analogen Oszillators kann aber z.B. auch ein numerisch gesteuerter digitaler Oszillator zum Einstellen des momentanen Erregerstroms iexc oder der Anteile iexcL, iexcT des Erregerstroms verwendet werden.
  • Zum Erzeugen des Lateralschwingungs-Amplitudenstellsignals yAML und/oder Torsionsschwingungs-Amplitudenstellsignals yAMT des kann z.B. eine in die Meßgerät-Elektronik 50 integrierte Amplitudenregelschaltung 51 dienen, die anhand momentaner Amplituden wenigstens eines der beiden Schwingunsmeßsignale s1, s2, gemessen bei der momentanen Lateralschwingungsfrequenz und/oder der momentanen Torsionsschwingungsfrequenz, sowie anhand entsprechender, konstanter oder variabler Amplitudenreferenzwerte für die Lateral- bzw. die Torsionsschwingungen WB, WT die Amplitudenstellsignale yAML, yAMT aktualisiert; ggf. können auch momentane Amplituden des Erregerstroms iexc zur Generierung des Lateralschwingungs-Amplitudenstellsignals yAML und/oder des Torsionsschwingungs-Amplitudenstellsignals yAMT hinzugezogen werden, vgl. 7. Aufbau und Wirkungsweise derartiger Amplitudenregelschaltungen sind dem Fachmann ebenfalls bekannt. Als ein Beispiel für eine solche Amplitudenregelschaltung sei außerdem auf Messumformer der Serie „PROMASS 80“ verwiesen, wie sie von der Anmelderin beispielsweise in Verbindung mit Messaufnehmern der Serie „PROMASS I“ angeboten werden. Deren Amplitudenregelschaltung ist bevorzugt so ausgeführt, daß die lateralen Schwingungen des Meßrohrs 10 auf eine konstante, also auch von der Dichte, ρ, unabhängige, Amplitude geregelt werden.
  • Die Frequenzregelschaltung 52 und die Treiberschaltung 53 können z.B. als Phasen-Regelschleife ausgebildet sein, die in der dem Fachmann bekannten Weise dazu verwendet wird, anhand einer Phasendifferenz, gemessen zwischen wenigstens einem der Schwinungsmeßsignale s1, s2 und dem einzustellenden bzw. dem momentan gemessenen Erregerstrom iexc, das Lateralschwingungs-Frequenzstellsignal yFML und/oder das Torsionsschwinguns-Frequenzstellsignal yFMT ständig auf die momentanen Eigenfrequenzen des Meßrohrs 10 abzugleichen. Der Aufbau und die Verwendung solcher Phasenregel-Schleifen zum Betreiben von Meßrohren auf einer ihrer mechanischen Eigenfrequenzen ist z.B. in der US 48 01 897 A ausführlich beschrieben. Selbstverständlich können auch andere, dem Fachmann bekannte Frequenzregelschaltungen verwendet werden, wie z.B. auch in der US 45 24 610 A oder der US 48 01 897 A vorgeschlagen sind. Ferner sei hinsichtlich einer Verwendung solcher Frequenzregelschaltungen für Meßaufnehmer vom Vibrationstyp auf die bereits erwähnten Meßumfomer der Serie „PROMASS 80“ verwiesen. Weitere als Treiberschaltung geeignete Schaltungen können beispielsweise auch der US 58 69 770 A oder auch der US 65 05 519 B2 entnommen werden.
  • Nach einer weiteren Ausgestaltung der Erfindung sind die Amplitudenregelschaltung 51 und die Frequenzregelschaltung 52, wie in 7 schematisch dargestellt, mittels eines in der Meßgerät-Elektronik 50 vorgesehenen digitalen Signalprozessors DSP und mittels in diesen entsprechend implementierter und darin ablaufender Programm-Codes realisiert. Die Programm-Codes können z.B. in einem nicht-flüchtigen Speicher EEPROM eines den Signalprozessor steuernden und/oder überwachenden Mikrocomputers 55 persistent oder aber auch permanent gespeichert sein und beim Starten des Signalprozessors DSP in einen, z.B. im Signalprozessors DSP integrierten, flüchtigen Datenspeicher RAM der Meßgerät-Elektronik 50 geladen werden. Für derartige Anwendungen geeignete Signalprozessoren sind z.B. solche vom Typ TMS320VC33, wie sie von der Firma Texas Instruments Inc. am Markt angeboten werden. Es versteht sich dabei praktisch von selbst, daß die Schwingungsmeßsignale s1, s2 für eine Verarbeitung im Signalprozessor DSP mittels entsprechender Analog-zu-digital-Wandler A/D in entsprechende Digitalsignale umzuwandeln sind, vgl. hierzu insb. die EP 0 866 319 A1 . Falls erforderlich, sind vom Signalprozessor ausgegebene Stellsignale, wie z.B. die Amplitudenstellsignale yAML, yAMT oder die Frequenzstellsignale yFML, yFMT ggf. in entsprechender Weise digital-zu-analog zu wandeln.
  • Wie in 7 dargestellt, sind die, ggf. vorab geeignet konditionierten, Schwingunsmeßsignale s1, s2 ferner einer Meßschaltung 21 der Meßgerät-Elektronik zugeführt, die dazu dient anhand wenigstens eines der Schwingunsmeßsignale s1, s2 und/oder anhand des Errgerstroms iexc den wenigstens einen Messwert Xx zu erzeugen.
  • Gemäß einer Ausgestaltung der Erfindung ist die Meßschaltung 21 zumindest anteilig als Durchflussrechner ausgebildet und dient die Meßschaltung dazu, in der dem Fachmann an und für sich bekannten Weise anhand einer zwischen den bei zumindest anteilig lateralschwingendem Messrohr 10 generierten Schwingungsmeßsignalen s1, s2 detektierten Phasendifferenz einen hier als Massendurchfluß-Meßwert dienenden Messwert Xx zu ermitteln, der den zu messenden Massenduchfluß möglichst genau repräsentiert. Als Meßschaltung 21 können hierbei in herkömmlichen Coriolis-Massedurchfluß-Meßgeräten bereits eingesetzte, insb. digitale, Meßschaltungen dienen, die den Massendurchfluß anhand der Schwingungsmeßsignale s1, s2 ermitteln, vgl. hierzu insb. die eingangs erwähnte WO 2002/37063 A2 , WO 1999/039164 A1 , die US 56 48 616 A , die US 50 69 074 A . Selbstverständlich können auch andere dem Fachmann bekannte, für Coriolis-Massedurchfluß-Meßgeräte geeignete Meßschaltungen verwendet werden, die Phasen- und/oder Zeitdifferenzen zwischen Schwingunsmeßsignalen der beschrienen Art messen und entsprechend auswerten.
  • Des weiteren kann die Meßschaltung 21 auch dazu dienen, abgleitet von einer, beispielsweise anhand wenigstens eines der Schwingungsmeßsignale s1, s2, gemessenen Schwingungsfrequenz des wenigstens einen Messrohrs 11 einen als Dichte-Meßwert verwendbaren Meßwert Xx zu generieren, der eine zu messende Dichte ρ des Mediums oder einer Mediumsphase momentan repräsentiert.
  • Infolge dessen, daß das gerade Messrohr 10, wie oben beschrieben, betriebsgemäß, simultan oder alternierend, lateral- und torsional schwingen gelassen wird, kann die Meßschaltung 21 ferner auch dazu verwendet werden, abgleitet vom Erregerstrom iexc, der bekanntlich auch als ein Maß für eine scheinbare Viskosität oder auch ein Viskositäts-Dichte-Produkt des im Messrohr 11 geführten Mediums dienen kann, einen als Viskositäts-Meßwert verwendbaren Meßwert Xx zu ermitteln, der eine Viskosität des Mediums momentan repräsentiert, vgl. hierzu auch die US 45 24 610 A oder die WO 1995/06897 A2
  • Es ist für den Fachmann dabei ohne weiteres klar, daß das In-Line-Meßgerät die einzelnen Messwerte Xx für die verschiendenen Meßgrößen x sowohl jeweils in einem gemeinsamem Messzyklus, also mit einer gleichen Aktualisierungrate, als auch mit unterschiedlichen Aktualisierungsraten ermitteln kann. Beispielweise erfordert eine hochgenaue Messung des zumeist erheblich variierenden Massedurchflusses üblicherweise eine sehr hohe Aktualisierungsrate, während die im Vergleich dazu über einen längeren Zeitraum zumeist eher wenig veränderliche Viskosität des Mediums ggf. in größeren Zeitabständen aktualisiert werden kann. Des weiteren kann ohne weiteres vorausgesetzt werden, daß aktuell ermittelte Messwerte Xx in der Messgerät-Elektronik zwischengespeichert und so für nachfolgende Verwendungen vorgehalten werden können. In vorteilhafter Weise kann die Meßschaltung 21 desweiteren auch mittels des Signalprozessor DSP realisiert sein.
  • Wie bereits eingangs erwähnt, können Inhomogenitäten und/oder die Ausbildung erster und zweiter Mediumsphasen im strömenden Medium, beispielsweise in Flüssigkeiten mitgeführte Gasblasen und/oder Feststoffpartikeln, dazu führen, daß dieser in herkömmlicher Weise unter Annahme eines einphasigen und/oder homogenen Mediums ermittelte Meßwert noch nicht ausreichend genau mit der tatsächlichen Meßgröße x, beispielsweise dem tatsächlichen Massendurchfluß m, übereinstimmt, d.h. der Messwert muß dementsprechend korrigiert werden. Dieser vorab bestimmte, vorläufig die zu messende physikalische Meßgröße x repräsentierende oder zumindest mit dieser korrespondierende Messwert, der wie bereits ausgeführt beispielsweise eine zwischen Schwingungsmeßsignalen s1, s2 gemessene Phasendifferenz Δφ oder eine gemessene Schwingungsfrequenz des Messrohrs 11 sein kann, wird daher im folgenden als ein Intialmeßwert oder auch Anfangsmesswert X'x bezeichnet. Aus diesem Anfangsmesswert X'x wiederum wird mittels der Auswerte-Elektronik 21 schließlich der die physikalische Meßgröße x ausreichend genau repräsentierende, beipielsweise als Massendurchfluß-Meßwert, als Dichte-Meßwert oder als Viskositäts-Meßwert dienende, Messwert Xx abgleitet. In Anbetracht des sehr umfangreichen und sehr detailiert dokumentierten Standes der Technik kann ohne weiteres davon ausgegangen werden, dass die Ermittlung des Anfangsmesswerts X'x, der praktisch dem in herkömmlicher Weise generierten Messwert entspricht, keinerlei Schwierigkeiten für den Fachmann darstellt, so daß für die weitere Erläuterung der Erfindung der Anfangsmesswert X'x als gegeben vorausgesetzt werden kann.
  • Bereits im Stand der Technik ist im Bezug auf die erwähnten Inhomogenitäten im Medium diskutiert worden, daß sich diese sowohl in der zwischen den beiden Schwingungsmeßsignalen s1, s2 gemessenen Phasendifferenz als auch in der Schwingungsamplitude oder der Schwingungsfrequenz jedes der beiden Schwingungsmeßsignale bzw. des Erregerstroms, also in praktisch jedem der bei Messgeräten der beschriebenen Art üblicherweise - direkt oder indirekt - gemessen Betriebsparameter, unmittelbar niederschlagen können. Dies gilt zwar im besonderen, wie auch in der WO 2003/076880 A1 oder der US 65 05 519 B2 ausgeführt, für die bei lateral schwingendem Messrohr ermittelten Betriebsparameter; es kann aber auch für jene Betriebsparameter nicht immer ausgeschlossen werden, die bei torsional schwingendem Messrohr gemessen werden, vgl. hierzu insb. die US-A 45 24 610 A
  • Weitergehende Untersuchungen seitens der Erfinder haben allerdings zu der überraschenden Erkenntnis geführt, daß zwar der momentane Erregerstrom iexc und, damit einhergehend, eine im Betrieb des Messgeräts üblicherweise ebenfalls gemessene Dämpfung der Schwingungen des Messrohrs 10 in erheblichem Maße vom Grade der Inhomogenität des zwei- oder mehrphasigen Mediums und/oder einer Konzentration einer zweiten Mediumsphase desselben abhängig ist, beispielsweise also von einer Ausprägung, einer Verteilung und/oder einer Menge von in einer zu messenden Flüssigkeit mitgeführten Gasblasen und/oder Feststoffpartikeln, dass aber sowohl für Lateral- als auch für Torsionsschwingungen - zumindest in den beiden oben erwähnten Grundmoden - ein weitgehend reproduzierbarer und somit zumindest experimentell ermittelbarer Zusammenhang zwischen dem jeweils für die Aufrechterhaltung der Lateral- bzw. Torsionsschwingung momentan erforderlichen Stromanteiles iexcL, iexcT und dem momentanen Grade der Inhomogenität des zwei- oder mehrphasigen Mediums oder auch der momentanen Konzentration einer, insb. als Störung wirkenden, zweiten Mediumsphase postuliert werden kann.
  • Überraschenderweise hat es sich ferner gezeigt, dass, trotzdem sowohl eine momentane Dämpfung der Lateral-Schwingungen als auch, wie insb. in der US 45 24 610 A oder der EP 1 291 639 A1 diskutiert, eine momentane Dämpfung der Torsions-Schwingungen in erheblichem Maße vom Grad der Inhomogenität oder von den Konzentrationen einzelner Mediumsphasen abhängig sind, durch gleichzeitige oder zumindest zeitnahe Ermittlung der momentanen Dämpfungen beider Schwingungsmoden eine erstaunlich robuste wie auch sehr gut reproduzierbare Korrektur des Zwischenwerts X'x und somit die Generierung eines sehr genauen Meßwert Xx ermöglicht werden. Weitergehende Untersuchungen haben nämlich gezeigt, daß die Dämpfung sowohl der Lateral-Schwingungen als auch der Torsions-Schwingungen zwar sehr stark von der Viskosität des zu messenden Mediums abhängig ist. Gleichwohl zeigt sich für die Dämpfung der Lateral-Schwingungen eine sehr starke Abhängigkeit vom Grad der Inhomogenitäten des im Messrohr 10 momentan geführten Mediums, während im Gegensatz dazu die Abhängigkeit der Dämpfung der Torsions-Schwingungen von Inhomogenitäten im Medium weitaus schwächer ausgeprägt ist.
  • Erfindungsgemäß wird der Messaufnehmer daher zum Zwecke der Verbesserung der Genauigkeit, mit der die physikalischen Meßgröße x, beispielsweise der Massendurchfluß m oder die Dichte ρ, ermittelt wird, zumindest zeitweise in dem oben bereits erwähnte Dual-Mode betrieben, bei dem das wenigstens eine Messrohr 10 - abwechselnd und/oder alternierend - im Lateral-Schwingungsmode und/oder im Torsions-Schwingungsmode vibrieren gelassen wird. Für die demgemäß erstrebte Korrektur des vorab ermittelten Anfangsmesswerts X'x werden im Betrieb mittels der Meßgerät-Elektronik 2 ein, insb. digitaler, erster Zwischenwert X1, der im wesentlichen mit der Dämpfung des Lateral-Schwingungsmodes korrespondiert, und eine, insb. digitaler, zweiter Zwischenwert X2, der im wesentlichen mit der vom Medium abhängigen Dämpfung des Torsions-Schwingungsmodes korrespondiert, ermittelt. Die Bestimmung des ersten Zwischenwerts X1 erfolgt dabei im wesentlichen basierend auf dem für die Aufrechterhaltung der Lateral-Schwingungen erforderlichen, insb. geregelten, Lateral-Stromanteil iexcL des Erregerstroms iexc, während für die Ermittlung des zweiten Zwischenwerts X2 im besonderen der für die Aufrechterhaltung der Torsions-Schwingungen erforderliche, insb. geregelte, Torsions-Stromanteil iexcT berücksichtigt wird.
  • Unter Verwendung der beiden Zwischenwerte X1, X2 wird von der Meßschaltung 21 im weiteren ein, insb. ebenfalls digitalen, Korrekturwert XK für den Zwischenwert X'x ermittelt. Die Korrektur des Zwischenwerts X'x anhand des Korrekturwerts XK wie auch die Generierung des Meßwerts Xx kann in der Messgerät-Elektronik beispielsweise basierend auf der mathematischen Beziehung X X = K X ( 1 + X K ) X X '
    Figure DE102004021690B4_0001
    erfolgen.
  • Nach einer Ausgestaltung der Erfindung wird der Korrekturwert XK mittels der Meßgerät-Elektronik basierend auf der mathematischen Beziehung X K = K K ( X 1 X 2 )
    Figure DE102004021690B4_0002
    bestimmt, so dass dieser praktisch ein Maß ist für eine Abweichung ΔD der im Betrieb gemessenen Dämpfungen der hauptsächlich angeregten Lateral- und der Torsionsschwingungen darstellt. Alternativ oder in Ergänzung dazu kann der Korrekturwert XK weiters auch basierend auf der mathematischen Beziehung X K = K K ' ( 1 X 2 X 1 )
    Figure DE102004021690B4_0003
    ermittelt werden.
  • Während also in Gl. (2) der Korrekturwert XK anhand einer zwischen dem Zwischenwert X1 und dem Zwischenwert X2 bestehenden Differenz ΔD bestimmt wird, wird bei der Umsetzung von Gl. (3) der Korrekturwert XK anhand eines Vergleichs des zweiten Zwischenwerts X2 mit dem ersten Zwischenwert X1 bestimmt. Insoweit stellt der Korrekturwert XK zumindest für ein zweiphasiges Medium auch ein Maß für eine momentane, relative oder absolute Konzentration einer ersten und einer zweiten Mediumsphase, insb. für Gasblasen in einer Flüssigkeit, dar. Neben der Generierung des eigentlichen Meßwerts Xx kann daher der Korrekturwert XK in vorteilhafter Weise ferner z.B. auch in eine Konzentrations-Meßwert XC umgewandelt werden, der bei einem zwei- oder mehrphasigen Medium im Messrohr einen, insb. relative, Volumen- und/oder Massenanteil einer Mediumsphase repräsentiert. Weiters kann der Korrekturwert XK auch dazu verwendet werden, den Grad der Inhomogenität des Mediums oder davon abgeleitete Meßwerte, wie z.B. einen prozentualen Luftgehalt im Medium oder einen Volumen-, Mengen- oder Massenanteil von im Medium mitgeführten Feststoff-Partikeln, z.B. vor Ort oder in einer entfernten Leitwarte visuell wahrnehmbar, zu signalisieren. Alternativ dazu oder zusätzlich, kann der Korrekturwert XK auch dazu dienen, dem Anwender, beispielsweise ausgehend von einem Vergleich mit einen vorab definierten Grenzwert, zu signalisieren, daß bei den momentanen Strömungsverhältnissen im Messrohr 10, die Meßgröße x nur noch mit erheblicher Unsicherheit und/oder großen Ungenauigkeit gemessen werden kann. Im weiteren kann der Korrekturwert XK für diesen Fall auch dazu verwendet werden, einen Signalausgang abzuschalten, der den Messwert Xx für die betroffene Meßgröße x betriebsgemäß ausgibt.
  • Weiterführende experimentelle Untersuchungen haben gezeigt, dass für einen Messaufnehmer gemäß dem gezeigten Ausführungsbeispiel die Berücksichtung der momentanen Lateral-Schwingungsfrequenz des vibrierenden Messrohrs zu einer weiteren Verbesserung der Genauigkeit des Meßwerts Xx führen kann. Darüber hinaus kann durch eine Normierung des gemäß der GI. (2) oder GI.(3) ermittelten Korrekturwerts XK auf die Quadratwurzel der momentanen Lateral-Schwingungsfrequenz erreicht werden, dass der Korrekturwert XK, zumindest für den Fall, daß eine Flüssigkeit, beispielsweise Glycerin, mit eingeperlten Gasblasen, beispielsweise Luft, gemessen werden soll, im wesentlichen proportional zum Gasanteil ist, vgl. hierzu auch 9. Daher wird gemäß einer Weiterbildung der Erfindung die GI. (2) unter Verwendung eines die momentane Lateral-Schwingungsfrequenz repräsentierenden Lateral-Schwingungsfrequenz-Meßwerts XfexcL folgendermaßen modifiziert: X K = K K ( X 1 X 2 ) X fexcL
    Figure DE102004021690B4_0004
  • Die Ermittlung des Lateral-Schwingungsfrequenz-Meßwerts kann in einfacher Weise z.B. anhand des oben erwähnten Lateralschwingungs-Frequenzstellsignals yFML erfolgen.
  • Bei der Ermittlung der beiden Zwischenwerte X1, X2 ist ferner zu beachten, daß die Dämpfung der Schwingungen des Meßrohrs 10, neben dem auf viskose Reibungen innerhalb des Mediums zurückzuführenden Dämpfungsanteil bekanntlich auch durch einen vom Medium praktisch unabhängigen Dämpfungsanteil mitbestimmt ist. Dieser Dämpfungsanteil wird von mechanischen Reibungskräften verursacht, die z.B. in der Erregeranordnung 40 und im Material des Meßrohr 10 wirken. Anders gesagt, der momentan gemessene Erregerstrom iexc repräsentiert die Gesamtheit der Reibungskräfte und/oder Reibungsmomente im Meßaufnehmer 10 einschließlich der mechanischen Reibungen im Meßaufnehmer sowei der viskosen Reibung im Medium. Bei der Ermittlung der Zwischenwert X1, X2, die, wie erwähnt, vornehmlich mit den auf viskose Reibungen im Medium zurückzuführenden Dämpfungsanteilen der Schwingungen des Messrohrs korrespondieren soll, sind die vom Medium unabhängigen, mechanischen Dämpfungsanteile entsprechend zu berücksichtigen, beispielsweise entsprechend zu separieren oder zu eleminieren.
  • Zum Ermitteln des Zwischenwerts X1 wird daher gemäß einer Ausgestaltung der Erfindung von einem den Lateral-Stromanteil iexcL momentan repräsentierenden, insb. digitalen, Lateral-Strommesswert XiexcL ein entsprechend zugeordneter Lateral-Leerstrommesswert KiexcL subtrahiert, der die im momentan angeregten Lateral-Schwingungsmode jeweils auftretenden mechanischen Reibungskräfte im Messaufnehmer bei entleertem Messrohr 10 repräsentiert. In gleicher Weise wird für die Ermittlung des Zwischenwerts X2 von einem den Torsions-Stromanteil iexcT momentan repräsentierenden, insb. digitalen, Torsions-Strommesswert XiexcT ein Torsions-Leerstrommesswert KiexcT abgezogen, der die im momentan angeregten Torsions-Schwingungsmode jeweils auftretenden mechanischen Reibungskräfte im Messaufnehmer bei entleertem Messrohr 10 repräsentiert.
  • Nach einer weiteren Ausgestaltung der Erfindung erfolgt die Ermittlung des Zwischenwerts X1, wie auch in 8 beispielshaft an experimentell für die Korrektur des Massedurchflusses ermittelten Strom messwerten XiexcL, XiexcT und Leerstrommeßwerten KiexcL, KiexcT gezeigt, anhand des Lateral-Schwingungen treibenden Lateral-Stromanteils iexcL und anhand des zugehörigen Lateral-Leerstrommeßwerts KiexcL, insb. basierend auf der mathematischen Beziehung X 1 = K 1 ( X iexcL K iexcL )
    Figure DE102004021690B4_0005
    und/oder basierend auf der mathematischen Beziehung X 1 = K 1 ' ( 1 K iexcL X iexcL )
    Figure DE102004021690B4_0006
  • Falls erforderlich, insb. bei im Betrieb erheblich variierenden und/oder von den kalibrierten Referenzwerten abweichenden Schwingungsamplituden des vibrierenden Meßrohrs, kann der Lateral-Stromanteil iexcL vorab ebenfalls auf die momentane Schwingungsamplitude der Lateral-Schwingungen des Messrohrs, beispielsweise unter Verwendung der Schwingunsmeßsignale s1, s2, normiert werden.
  • Analog dazu kann auch der Zwischenwert X2 basierend auf der mathematischen Beziehung X 2 = K 2 ( X iexcT K iexcT )
    Figure DE102004021690B4_0007
    und/oder basierend auf der mathematischen Beziehung X 2 = K 2 ' ( 1 X iexcT K iexcT )
    Figure DE102004021690B4_0008
    ermittelt werden.
  • Jeder der Leerstrommeßwerte KiexcL, KiexcT wie auch der gerätespezifischen Koeffizienten Kk, Kk', K1, K2, K1' oder K2' ist ebenfalls während einer Kalibrierung des In-Line-Meßgeräts, z.B. bei evakuiertem oder ein nur Luft führendem Meßrohr, zu bestimmen und entsprechend in der Meßgeräte-Elektronik 50, insb. normiert auf die dabei gemessenen Schwingungsamplitude, abzuspeichern oder einzustellen. Es ist für den Fachmann ohne weiteres klar, daß falls erforderlich, andere die Leerstrommeßwerte KiexcL, KiexcT beinflußende physikalische Parameter, wie z.B. eine momentane Temperatur des Meßrohrs und/oder des Mediums, bei deren Kalibrieren zu berücksichtigen sind. Zum Kalibrieren des Meßwerteaufnehmers 10 werden üblicherweise zwei oder mehrere verschiedene zwei-oder mehrphasige Medien mit variierenden, aber bekannten Strömungsparametern, wie z.B. bekannten Konzentrationen der einzelnen Mediumsphasen des Kalibriermediums, dessen Dichte ρ, Massedurchfluß m, Viskosität η und/oder Temperatur, nacheinander durch den Meßaufnehmer 10 hindurchströmen gelassen und die entsprechenden Reaktionen des Meßwerteaufnehmers 10, wie z.B. der momentane Erregerstrom iexc, die momentane Lateralschwingungs-Erregerfrequenz fexcL und/oder die momentane Torsionsschwingungs-Erregerfrequenz fexcT gemessen. Die eingestellten Strömungsparameter und die jeweils gemessenen Reaktionen der gemessene Betriebsparameter des Meßaufnehmers 10 werden in entsprechender Weise zueinander in Relation gesetzt und somit auf die entsprechenden Kalibrierkonstanten abgebildet. Beispielsweise können zur Bestimmung der Konstanten bei der Kalibriermessung für zwei Kalibrier-Medien bekannter, möglichst konstant gehaltener Viskosität und in unterschiedlicher jedoch jeweils gleichbleibender Weise ausgebildeter Inhomogenität ein Verhältnis Xx'/x und/oder Xx/x des jeweils ermittelten Zwischenwerts Xx' bzw. des jeweils ermittelten Meßwerts Xx zum dann jeweils aktuellen, tatsächlichen Wert der zu messenden Meßgröße bei bekanntem Luftanteil gebildet. Beispielsweise kann als erstes Kalibrier-Medium strömendes Wasser oder auch Öl mit eingeperlten Luftblasen und als zweites Kalibrier-Medium möglichst homogenes Wasser oder auch verwendet werden. Die dabei ermittelten Kalibrierkonstanten können dann z.B. in Form von digitalen Daten in einem Tabellenspeicher der Messgerät-Elektronik abgelegt werden; sie können aber auch als analoge Einstellwerte für entsprechende Rechenschaltungen dienen. Es sei an dieser Stelle darauf verwiesen, daß das Kalibrieren von Meßaufnehmern der beschriebenen dem Fachmann an und für sich bekannt ist oder sich zumindest aus den obigen Ausführungen ergibt und daher keiner weiteren Erläuterung bedarf. In vorteilhafter Weise können zur Ermittlung des Lateral-Strommesswert XiexcL und/oder des Torsions-Strommesswerts XiexcT das bereits erwähnten Lateralschwingungs-Amplitudenstellsignal yAML und/oder das Torsionsschwingungs-Amplitudenstellsignal yAMT verwendet werden, da diese den Errgerstrom iexc oder dessen Anteile iexcL, iexeT für die Korrektur ausreichend genau repräsentieren.
  • Gemäß einer weiteren Ausgestaltung der Erfindung wird, für den bereits mehrfach erwähnten Fall, das die zu erfassende Meßgröße x einer Viskosität oder auch einer Fluidität entspricht und dementsprechend der Messwert Xx als Viskositäts-Meßwert dient, auch der Anfangsmeßwert Xx anhand des die Erregeranordnung 40 bei zumindest anteilig torsionsschwingendem Messrohr treibenden Erregerstroms iexc, insb. anhand des dem Aufrechterhalten der Torsionsschwingungen des Meßrohrs 10 dienenden Torsions-Stromanteils iexeT ermittelt. Unter Berücksichtigung des bereits in der US-A 45 24 610 beschriebenen Zusammenhangs: η i excT ,
    Figure DE102004021690B4_0009
    demgemäß der Torsions-Stromanteil iexcT reduziert um den oben erwähnten Torsions-Leerstrommesswert KiexcT zumindest bei konstanter Dichte, ρ, und weitgehend homogenen Medium sehr gut mit der Qudratwurzel der tatsächlichen Viskosität, η, korreliert ist, wird in entsprechender Weise für die Ermittlung des Anfangsmeßwerts Xx' zunächst intern der Meßgerät-Elektronik ein Quadratwert XΔiexcT 2 des vom Erregerstrom iexc abgeleiteten, um den Torsions-Leerstrommesswert KiexcT reduzierten Torsions-Strommesswerts XiexcT gebildet. Eingedenk dessen, daß, wie auch in der US 45 24 610 A ausgeführt, vom Stromquadrat eigentlich die Information über das Produkt aus Dichte und Viskosität geliefert wird, ist bei der Ermittlung des Anfangsmeßwert Xx' in der vorbeschriebenen Weise außerdem die tatsächliche Dichte, die beispielsweise vorab ebenfalls mittels des In-Line-Meßgeräts ermittel werden kann, zu berücksichtigen.
  • Nach einer weiteren Ausgestaltung der Erfindung wird das Quadrat XiexcT 2 des Torsions-Strommesswerts XiexcT zur Bildung des Anfangsmeßwerts Xη außerdem mittels einer einfachen numerischen Division auf einen Amplituden-Meßwert XsT normiert, der eine betriebsbedingt ggf. variierende Signalamplitude wenigstens eines der Schwingungsmeßsignale s1, s2 bei 5 torsionsschwingendem Messrohr momentan repräsentiert. Es hat sich nämlich ferner gezeigt, daß für derartige Viskositäts-Meßgeräte mit einem solchen Meßaufnehmer vom Vibrationstyp, insb. auch bei konstant geregelter Schwingungsamplitude und/oder bei simultaner Anregung von Lateral- und Torsions-Schwingungen, ein Verhältnis iexc/θ des Erregerstroms iexc zu einer praktisch nicht direkt meßbaren Geschwindigkeit θ einer die inneren Reibungen und somit auch die Reibungskräfte im Medium verursachenden Bewegung eine genauere Schätzung für die bereits erwähnte, den Auslenkungen des Meßrohrs 10 entgegenwirkenden Dämpfung ist. Daher ist zur weiteren Erhöhung der Genauigkeit des Meßwerts Xx, insb. aber auch zur Verringerung von dessen Empfindlichkeit auf im Betrieb ggf. schwankende Schwingungsamplituden des vibrierenden Meßrohrs 10, nach ferner vorgesehen, daß für die Ermittlung des Anfangsmeßwerts Xx der Torsions-Strommesswert XiexcT zunächst auf den Amplituden-Meßwert XsT normiert wird, der die oben genannten Geschwindigkeit θ ausreichend genau repärsentiert. Anders gesagt es wird ein normierter Torsions-Strommesswert X'iexcT gemäß folgender Vorschrift gebildet: X iexcT ' = X iexcT X sT
    Figure DE102004021690B4_0010
  • Der Amplituden-Meßwert Xs1 wird, basierend auf der Erkenntnis, daß die die viskose Reibung im Medium verursachenden Bewegung, sehr stark mit der mittels des Sensors 51 oder auch mit der mittels des Sensors 52 örtlich erfaßten Bewegung des vibrierenden Meßrohrs 10 korrespondiert, bevorzugt mittels der Meßgerät-Elektronik 50, z.B. mittels interner Amplituden-Meßschaltung, vom wenigstens einen, ggf. bereits digitalisierten, Sensorsignal s1 abgeleitet. Es sei an dieser Stelle nochmals darauf hingewiesen, daß das Sensorsignal s1 bevorzugt proportional zu einer Geschwindigkeit einer, insb. lateralen, Auslenkungsbewegung des vibrierenden Meßrohrs 10; das Sensorsignal s1 kann aber z.B. auch proportional zu einer auf das vibrierende Meßrohr 10 wirkenden Beschleunigung oder zu einem vom vibrierenden Meßrohr 10 zurückgelegten Weg sein. Für den Fall, daß das Sensorsignal s1 im obigen Sinne geschwindigkeitsproportional ausgelegt ist, ist dies selbstverständlich entsprechend bei der Ermittlung des Anfangsmesswerts zu berücksichtigen.
  • Die vorgenannten, dem Erzeugen des Meßwertes Xx dienenden Funktionen, symbolisiert durch die Gl. (1) bis (10), können zumindest teilweise mittels des Signalprozessors DSP oder z.B. auch mittels des oben erwähnten Mikrocomputers 55 realisiert sein. Das Erstellen und Implementieren von entsprechenden Algorithmen, die mit den vorbeschriebenen Gleichungen korrespondierenden oder die die Funktionsweise der Amplitudenregelschaltung 51 bzw. der Frequenzregelschaltung 52 nachbilden, sowie deren Übersetzung in in solchen Signalprozessoren ausführbare Programm-Codes ist dem Fachmann an und für sich geläufig und bedarf daher - jedenfalls in Kenntnis der vorliegenden Erfindung - keiner detailierteren Erläuterung. Selbstverständlich können vorgenannte Gleichungen auch ohne weiteres ganz oder teilweise mittels entsprechender diskret aufgebauter analoger und/oder digitaler Rechenschaltungen in der Meßgerät-Elektronik 50 dargestellt werden.
  • Nach einer Weiterbildung der Erfindung wird zur Bestimmung des momentan geeigneten Korrekturwerts XK im Betrieb ausgehend von den Zwischenwerten X1, X2 dadurch praktisch direkt ermittelt, dass in der Meßgerät-Elektronik eine eindeutige Beziehung zwischen einer aktuellen Konstellationen der beiden Zwischenwerte X1, X2 und dem dazu passenden Korrekturwerts XK abgebildet, insb. einprogrammiert, ist. Hierzu weist die Meßgerät-Elektronik 2 ferner einen Tabellenspeicher auf, in dem ein Satz vorab, beispielsweise bei der Kalibrierung des Coriolis-Masseduchfluß-Meßgeräts, ermittelter digitaler Korrekturwerte XK,i abgelegt ist. Auf diese Korrekturwerte XK,i wird von der Messschaltung über eine mittels der momentan gültigen Zwischenwerte X1, X2 ermittelte Speicheradresse direkt zugegriffen. Der Korrekturwert XK kann z.B. dadurch in einfacher Weise ermittelt werden, daß eine Kombination der momentan ermittelten Zwischenwerten X1, X2, beispielsweise die oben erwähnte Dämpfungsdifferenz, mit entsprechenden im Tabellenspeicher eingetragenen Vorgabewerten für diese Kombination verglichen und daraufhin derjenige Korrekturwert XK,i ausgelesen, also von der Auswerte-Elektronik 2 für die weitere Berechnung verwendet wird, der mit dem der mommentanen Konstellation am nähesten kommenden Vorgabewert korrespondiert. Als Tabellenspeicher kann ein programmierbarer Festwertspeicher, also ein FPGA (field programmable gate array), ein EPROM oder ein EEPROM, dienen. Die Verwendung eines solchen Tabellenspeicher hat u.a. den Vorteil, daß der Korrekturwert XK nach der Berechnung der Zwischenwerte X1, X2 zur Laufzeit sehr rasch zur Verfügung steht. Zu dem können die in den Tabellenspeicher eingetragenen Korrekturwerte XK,i anhand von wenigen Kalibriermessungen vorab sehr genau, z.B. basierend auf den Gin. (2), (3) und/oder (4) und unter Anwendung der Methode der kleinsten Fehlerquadrate, ermittelt werden.
  • Wie sich aus den voranstehenden Ausführung ohne weiters erkennen lässt, kann eine Korrektur des Anfangsmesswerts X'x einerseits unter Verwendung weniger, sehr einfach zu bestimmender Korrekturfaktoren vorgenommen werden. Andererseits kann die Korrektur unter Verwendung der beiden Zwischenwerte X1, X2 mit einem Rechenaufwand durchgeführt werden, der im Vergleich zu den aus dem Stand der Technik bekannten, eher komplex ausgebildeten Rechenverfahren sehr gering ausfällt. Ein weiterer Vorteil der Erfindung ist ferner auch darin zu sehen, dass zumindest einige der vorbeschriebenen Korrekturfaktoren ohne weiteres von den beispielsweise mittels herkömmlicher Coriolis-Massedurchflußmeßgeräten ermittelter Strömungsparametern, insb. der gemessenen Dichte und/oder dem - hier vorläufig - gemessenen Massendurchfluß, und/oder von den im Betrieb von Coriolis-Massedurchflußmeßgeräten üblicherweise direkt gemessenen Betriebsparametern, insb. den gemessenen Schwingungsamplituden, Schwingungsfrequenzen und/oder dem Erregerstrom, selbst abgleitet und somit praktisch ohne deutliche Erhöhung des schaltungs- und meßtechnischen Aufwands generiert werden können.

Claims (13)

  1. In-Line-Meßgerät, insb. Coriolis-Massedurchfluß-/ Dichtemessgerät und/oder Viskositätsmeßgerät, zum Messen wenigstens einer physikalischen Meßgröße x, insb. eines Massedurchflusses, m, einer Dichte, ρ, und/oder einer Viskosität, η, eines in einer Rohrleitung geführten, insb. zwei- oder mehrphasigen, Mediums, welches In-Line-Meßgerät einen Meßaufnehmer (1) vom Vibrationstyp und eine mit dem Meßaufnehmer elektrisch gekoppelte Meßgerät-Elektronik (2) umfaßt, - wobei der Meßaufnehmer (1) aufweist: - mindestens ein, insb. im wesentlichen gerades, dem Führen des zu messenden Mediums dienendes Meßrohr (10), das dafür ausgestaltet ist, in den Verlauf der Rohrleitung eingesetzt zu werden und mit der angeschlossenen Rohrleitung zu kommunizieren, -- eine auf das Meßrohr (10) einwirkende Erregeranordnung (40) zum Vibrierenlassen des wenigstens einen Meßrohrs (10), --- die das Meßrohr (10) im Betrieb zumindest zeitweise und/oder zumindest anteilig in Lateralschwingungen, insb. Biegeschwingungen, versetzt, und --- die das Messrohr (10) im Betrieb zumindest zeitweise und/oder zumindest anteilig in, insb. mit den Lateralschwingungen alternierende oder diesen zeitweise überlagerte, Torsionsschwingungen um eine gedachte, mit dem Meßrohr (10) im wesentlichen fluchtende, insb. als eine Trägheitshauptachse des Messrohrs (10) ausgebildete, Messrohrlängsachse versetzt, sowie -- eine Sensoranordnung (50) zum Erfassen von Vibrationen des wenigstens einen Meßrohrs (10), die wenigstens ein Schwingungen des Meßrohrs (10) repräsentierendes Schwingungsmeßsignal (s1, s2) liefert, - wobei die Meßgerät-Elektronik (2) zumindest zeitweise einen die Erregeranordnung (40) treibenden Erregerstrom (iexc) liefert, - wobei die Meßgerät-Elektronik (2) ferner -- einen ersten Zwischenwert (X1), der --- mit einem dem Aufrechterhalten der Lateralschwingungen des Meßrohrs (10) dienenden Lateral-Stromanteil (iexcL) des Erregerstroms (iexc) und/oder --- mit einer Dämpfung der Lateralschwingungen des Messrohrs (10) korrespondiert, sowie -- einen zweiten Zwischenwert (X2), der --- mit einem dem Aufrechterhalten der Torsionsschwingungen des Meßrohrs (10) dienenden Torsions-Stromanteil (iexcT) des Erregerstroms (iexc) und/oder --- mit einer Dämpfung der Torsionsschwingungen des Messrohrs (10) korrespondiert, ermittelt und - wobei die Meßgerät-Elektronik (2) -- mittels des wenigstens einen Schwingungsmeßsignals (s1, s2) und/oder mittels des Erregerstroms (iexc) sowie -- unter Verwendung des ersten und des zweiten Zwischenwerts (X1, X2) zumindest zeitweise wenigstens einen Meßwert (Xx) generiert, der die wenigstens eine zu messende physikalische Meßgröße x, insb. den Massedurchfluß , m, die Dichte, p oder die Viskosität, η, des Mediums, repräsentiert, - dadurch gekennzeichnet, daß die Meßgerät-Elektronik (2) einen von dem wenigstens einen Schwingungsmeßsignal (s1, s2) abgeleiteten und/oder vom Erregerstrom (iexc) abgeleiteten Anfangsmesswert (X'x), der mit der wenigstens einen zu messenden Meßgröße x zumindest näherungsweise korrespondiert, und anhand des ersten und des zweiten Zwischenwerts (X1, X2) einen Korrekturwert (XK) für den Anfangsmesswert (X'x) ermittelt, - und daß die Meßgerät-Elektronik (2) den Meßwert (Xx) mittels des Anfangsmesswerts (X'x) und des Korrekturwerts (XK) generiert.
  2. In-Line-Meßgerät nach Anspruch 1, bei dem das Meßrohr (10), angetrieben von der Erregeranordnung (40), die Torsionsschwingungen mit einer Meßrohr-Torsisonsschwingfrequenz ausführt, die verschieden eingestellt ist von einer Meßrohr-Biegeschwingfrequenz, mit der das Messrohr (10), angetrieben von der Erregeranordnung (40), die Lateralschwingungen ausführt.
  3. In-Line-Meßgerät nach einem der vorherigen Ansprüche, - bei dem das Messrohr (10) mit der angeschlossenen Rohrleitung über ein in ein Einlaßende (11#) mündendes Einlaßrohrstück (11) und über ein in ein Auslaßende (12#) mündendes Auslaßrohrstück (12) kommuniziert, und - bei dem der Meßaufnehmer einen am Einlaßende (11#) und am Auslaßende (12#) des Messrohrs (10) fixierten, insb. auch mit der Erregeranordnung (40) mechanisch gekoppelten, Gegenschwinger (20) umfasst, der im Betrieb zumindest zeitweise, insb. gegenphasig zum Messrohr (10), vibriert.
  4. In-Line-Meßgerät nach dem vorherigen Anspruch, bei dem die Meßgerät-Elektronik (2) den Korrekturwert (XK) anhand eines Vergleichs des ersten Zwischenwerts (X1) mit dem zweiten Zwischenwert (X2) und/oder anhand einer zwischen dem ersten Zwischenwert (X1) und dem zweiten Zwischenwert (X2) bestehenden Differenz ermittelt.
  5. In-Line-Meßgerät nach einem der vorherigen Ansprüche, bei dem die Meßgerät-Elektronik (2) den ersten und/oder den zweiten Zwischenwert (X1, X2) auch unter Verwendung des wenigstens einen Schwingungsmeßsignals (s1, s2) erzeugt.
  6. In-Line-Meßgerät nach einem der Ansprüche 1 bis 5, - bei dem der wenigstens eine Messwert (Xx) eine Viskosität, η, des im Messrohr (10) strömenden Mediums repräsentiert, und - bei dem die Meßgerät-Elektronik (2) auch den Anfangsmesswert (X'x) anhand des die Erregeranordnung (40) treibenden Erregerstroms (iexc) und/oder des Stromanteils des Erregerstroms (iexcL, iexcT) ermittelt.
  7. In-Line-Meßgerät nach einem der Ansprüche 1 bis 5, - bei dem der wenigstens eine Messwert (Xx) eine Dichte, ρ, des im Messrohr (10) strömenden Mediums repräsentiert, und - bei dem die Messgerät-Elektronik den Anfangsmesswert (X'x) unter Verwendung des wenigstens einen Schwingungsmeßsignals (s1, s2) und/oder des Erregerstroms (iexc) in der Weise ermittelt, dass dieser mit der zu messenden Dichte, ρ, und/oder mit einer Schwingungsfrequenz des wenigstens einen Schwingungsmeßsignals (s1, s2) korrespondiert.
  8. In-Line-Meßgerät nach einem der Ansprüche 1 bis 5, bei dem die Meßgerät-Elektronik (2) anhand des ersten und des zweiten Zwischenwerts (X1, X2) zumindest zeitweise einen Konzentrations-Meßwert (Xc) ermittelt, der bei einem zwei- oder mehrphasigen Medium im Messrohr (10) einen, insb. relativen Volumen- und/oder Massenanteil einer Mediumsphase repräsentiert.
  9. In-Line-Meßgerät nach einem der Ansprüche 1 bis 5, bei dem die Sensoranordnung (50) - wenigstens ein erstes Schwingungsmeßsignal (s1), das zumindest anteilig einlaßseitige Lateralschwingungen, insb. Biegeschwingungen, des Meßrohrs (10) repräsentiert, und - wenigstens ein zweites Schwingungsmeßsignal (s2), das zumindest anteilig auslaßseitige Lateralschwingungen, insb. Biegeschwingungen, des Meßrohrs (10) repräsentiert, liefert.
  10. In-Line-Meßgerät nach dem vorherigen Anspruch, - bei dem der wenigstens eine Messwert (Xx) einen Massedurchfluß, m, des im Messrohr (10) strömenden Mediums repräsentiert, und - bei dem die Messgerät-Elektronik den Anfangsmesswert (X'x) unter Verwendung des ersten Schwingungsmeßsignals (s1) und des zweiten Schwingungsmeßsignals (s2) in der Weise ermittelt, dass dieser mit dem zu messenden Massedurchfluß, m, und/oder mit einer Phasendifferenz, Δφ, zwischen den beiden Schwingungsmeßsignalen (s1, s2) korrespondiert.
  11. Verwendung eines In-Line-Meßgerät nach einem der vorherigen Ansprüche zum Messen einer physikalischen Meßgröße, insb. eines Massedurchflusses, einer Dichte und/oder einer Viskosität, eines in einer Rohrleitung strömenden zwei- oder mehrphasigen Mediums, insb. eines Flüssigkeits-Gas-Gemisches.
  12. Verfahren zum Messen einer physikalischen Meßgröße x, insb. eines Massedurchflusses, einer Dichte und/oder einer Viskosität, eines in einer Rohrleitung strömenden, insb. zwei- oder mehrphasigen, Mediums, mittels eines In-Line-Meßgeräts mit einem Meßaufnehmer (1) vom Vibrationstyp, insb. eines Coriolis-Massendurchflußmeßgeräts, und einer mit dem Meßaufnehmer (1) elektrisch gekoppelten Meßgerät-Elektronik (2), welches Verfahren folgende Schritte umfasst: - Strömenlassen des zu messenden Mediums durch wenigstens ein mit der Rohrleitung kommunizierendes Messrohr (10) des Meßaufnehmers (1) und Einspeisen eines Erregerstroms (iexc) in eine mit dem das Medium führenden Meßrohr (10) mechanisch gekoppelten Erregeranordnung (40) zum Bewirken von mechanischen Schwingungen des Meßrohrs (10), - Bewirken von Lateralschwingungen, insb. Biegeschwingungen, des Meßrohrs (10) und Bewirken von, insb. den Lateralschwingungen überlagerten, Torsionsschwingungen des Meßrohrs (10), - Erfassen von Vibrationen des Meßrohrs (10) und Erzeugen wenigstens eines Schwingungen des Messrohrs (10) repräsentierenden Schwingungsmeßsignals (s1, s2), - Ermitteln eines vom Erregerstrom (iexc) abgeleiteten ersten Zwischenwerts (X1), der -- mit einem dem Aufrechterhalten der Lateralschwingungen des Meßrohrs (10) dienenden Lateral-Stromanteil (iexcL) des Erregerstroms (iexc) und/oder -- mit einer Dämpfung der Lateralschwingungen des Messrohrs (10) korrespondiert, - Ermitteln eines vom Erregerstrom (iexc) abgeleiteten zweiten Zwischenwerts (X2), der --- mit einem dem Aufrechterhalten der Torsionsschwingungen des Meßrohrs (10) dienenden Torsions-Stromanteil (iexcT) des Erregerstroms (iexc) und/oder --- mit einer Dämpfung der Torsionsschwingungen des Messrohrs (10) korrespondiert, und - Verwenden des wenigstens einen Schwingungsmeßsignals (s1, s2) und/oder des Erregerstroms (iexc) sowie des ersten und des zweiten Zwischenwerts (X1, X2) zum Erzeugen eines die zu messende physikalische Meßgröße, x, repräsentierenden Meßwerts (Xx); - wobei der Schritt des Erzeugens des Meßwerts (Xx) folgende Schritte umfasst: - Entwickeln eines mit der zu messenden physikalischen Meßgröße, x, zumindest näherungsweise korrespondierenden Anfangsmesswerts (X'x) unter Verwendung des wenigstens einen Schwingungsmeßsignals (s1, s2) und/oder des Erregerstroms (iexc), - Erzeugen eines Korrekturwertes (XK) für den Anfangswert (X'x) mittels des ersten und des zweiten Zwischenwerts (X1, X2), sowie - Korrigieren des Anfangsmesswerts (X'x) mittels des Korrekturwertes (XK) zum Erzeugen des Meßwerts (Xx).
  13. Verfahren nach dem vorherigen Anspruch, bei dem der Schritt des Erzeugens des Korrekturwertes (XK) für den Anfangsmesswert (X'x) folgende Schritte umfasst: - Vergleichen des ersten Zwischenwerts (X1) mit dem zweiten Zwischenwert (X2) zum Ermitteln einer zwischen den beiden Zwischenwerten (X1, X2) bestehenden Differenz und - Ermitteln eines Konzentrations-Meßwerts (XC), der bei einem zwei- oder mehrphasigen Medium im Messrohr (10) einen, insb. relativen, Volumen- und/oder Massenanteil einer Mediumsphase repräsentiert, unter Berücksichtigung der zwischen den beiden Zwischenwerten (X1, X2) bestehenden Differenz.
DE102004021690.8A 2004-03-19 2004-04-30 In-Line-Meßgerät mit einem Messaufnehmer vom Vibrationstyp Expired - Lifetime DE102004021690B4 (de)

Priority Applications (16)

Application Number Priority Date Filing Date Title
DE102004021690.8A DE102004021690B4 (de) 2004-04-30 2004-04-30 In-Line-Meßgerät mit einem Messaufnehmer vom Vibrationstyp
RU2006136905/28A RU2359236C2 (ru) 2004-03-19 2005-03-16 Встроенный измерительный прибор, применение встроенного прибора для измерения физического параметра среды и способ измерения фактического параметра среды
CA2559701A CA2559701C (en) 2004-03-19 2005-03-16 Coriolis mass flow measuring device
CA2559564A CA2559564C (en) 2004-03-19 2005-03-16 In-line measuring device
JP2007503344A JP4531807B2 (ja) 2004-03-19 2005-03-16 工程内測定装置
EP05717067.2A EP1725840B1 (de) 2004-03-19 2005-03-16 In-line-messgerät
EP05717065.6A EP1725839B1 (de) 2004-03-19 2005-03-16 Coriolis-massedurchfluss-messgerät
JP2007503343A JP4703640B2 (ja) 2004-03-19 2005-03-16 コリオリ式質量流量測定装置
RU2006136903/28A RU2339916C2 (ru) 2004-03-19 2005-03-16 Кориолисов массовый расходомер, способ измерения массового расхода протекающей в трубопроводе среды, применение массового расходомера и способа измерения массового расхода протекающей в трубопроводе среды
PCT/EP2005/051200 WO2005090926A2 (de) 2004-03-19 2005-03-16 In-line-messgerät
DK05717065.6T DK1725839T3 (en) 2004-03-19 2005-03-16 Coriolisbaseret mass flow meter
PCT/EP2005/051198 WO2005095901A2 (de) 2004-03-19 2005-03-16 Coriolis-massedurchfluss-messgerät
US11/084,507 US7040181B2 (en) 2004-03-19 2005-03-21 Coriolis mass measuring device
US11/084,527 US7284449B2 (en) 2004-03-19 2005-03-21 In-line measuring device
US11/384,369 US7357039B2 (en) 2004-03-19 2006-03-21 Coriolis mass measuring device
US11/589,836 US7296484B2 (en) 2004-03-19 2006-10-31 In-line measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004021690.8A DE102004021690B4 (de) 2004-04-30 2004-04-30 In-Line-Meßgerät mit einem Messaufnehmer vom Vibrationstyp

Publications (2)

Publication Number Publication Date
DE102004021690A1 DE102004021690A1 (de) 2005-11-24
DE102004021690B4 true DE102004021690B4 (de) 2021-05-27

Family

ID=35219975

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102004021690.8A Expired - Lifetime DE102004021690B4 (de) 2004-03-19 2004-04-30 In-Line-Meßgerät mit einem Messaufnehmer vom Vibrationstyp

Country Status (1)

Country Link
DE (1) DE102004021690B4 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101336364B (zh) * 2005-12-27 2011-04-13 恩德斯+豪斯流量技术股份有限公司 在线测量设备和用于补偿在线测量设备中的测量误差的方法
US7360452B2 (en) 2005-12-27 2008-04-22 Endress + Hauser Flowtec Ag In-line measuring devices and method for compensation measurement errors in in-line measuring devices
US7360453B2 (en) 2005-12-27 2008-04-22 Endress + Hauser Flowtec Ag In-line measuring devices and method for compensation measurement errors in in-line measuring devices
DE102006017676B3 (de) * 2006-04-12 2007-09-27 Krohne Meßtechnik GmbH & Co KG Verfahren zum Betrieb eines Coriolis-Massendurchflußmeßgeräts
DE102008050115A1 (de) * 2008-10-06 2010-04-08 Endress + Hauser Flowtec Ag In-Line-Meßgerät
DE102008050116A1 (de) * 2008-10-06 2010-04-08 Endress + Hauser Flowtec Ag In-Line-Meßgerät
DE102008050113A1 (de) 2008-10-06 2010-04-08 Endress + Hauser Flowtec Ag In-Line-Meßgerät
DE102010035341B4 (de) * 2010-08-24 2013-07-04 Krohne Ag Verfahren zur Bestimmung der Viskosität eines Mediums mit einem Coriolis-Massedurchflussmessgerät
DE102017116515A1 (de) 2017-07-21 2019-01-24 Endress + Hauser Flowtec Ag Vorrichtung zur Messung von Viskositäten
DE102019114174A1 (de) * 2019-05-27 2020-12-03 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102021123415A1 (de) * 2021-09-09 2023-03-09 Endress + Hauser Flowtec Ag Messaufnehmer zum Messen eines Massedurchflusses

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524610A (en) * 1983-09-02 1985-06-25 National Metal And Refining Company, Ltd. In-line vibratory viscometer-densitometer
US5448921A (en) * 1991-02-05 1995-09-12 Direct Measurement Corporation Coriolis mass flow rate meter
DE10020606A1 (de) * 2000-04-27 2001-10-31 Flowtec Ag Vibrations-Meßgerät und Verfahren zum Messen einer Viskosität eines Fluids
EP1154254A1 (de) * 2000-05-12 2001-11-14 Endress + Hauser Flowtec AG Vibrations-Messgerät und Verfahren zum Messen einer Viskosität eines Fluids
EP1281938A2 (de) * 1998-12-11 2003-02-05 Endress + Hauser Flowtec AG Coriolis Massedurchfluss-/Dichtemesser
EP1158289B1 (de) * 2000-04-27 2003-06-25 Endress + Hauser Flowtec AG Vibrations-Messgerät und Verfahren zum Messen einer Viskosität eines Fluids
DE10220827A1 (de) * 2002-05-08 2003-11-20 Flowtec Ag Messwandler vom Vibrationstyp
DE10235322A1 (de) * 2002-08-01 2004-02-12 Endress + Hauser Flowtec Ag, Reinach Meßwandler vom Vibrationstyp

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524610A (en) * 1983-09-02 1985-06-25 National Metal And Refining Company, Ltd. In-line vibratory viscometer-densitometer
US5448921A (en) * 1991-02-05 1995-09-12 Direct Measurement Corporation Coriolis mass flow rate meter
EP1281938A2 (de) * 1998-12-11 2003-02-05 Endress + Hauser Flowtec AG Coriolis Massedurchfluss-/Dichtemesser
EP1055102B1 (de) * 1998-12-11 2003-03-26 Endress + Hauser Flowtec AG Coriolis-massedurchfluss-/dichtemesser
DE10020606A1 (de) * 2000-04-27 2001-10-31 Flowtec Ag Vibrations-Meßgerät und Verfahren zum Messen einer Viskosität eines Fluids
EP1158289B1 (de) * 2000-04-27 2003-06-25 Endress + Hauser Flowtec AG Vibrations-Messgerät und Verfahren zum Messen einer Viskosität eines Fluids
EP1154254A1 (de) * 2000-05-12 2001-11-14 Endress + Hauser Flowtec AG Vibrations-Messgerät und Verfahren zum Messen einer Viskosität eines Fluids
DE10220827A1 (de) * 2002-05-08 2003-11-20 Flowtec Ag Messwandler vom Vibrationstyp
DE10235322A1 (de) * 2002-08-01 2004-02-12 Endress + Hauser Flowtec Ag, Reinach Meßwandler vom Vibrationstyp

Also Published As

Publication number Publication date
DE102004021690A1 (de) 2005-11-24

Similar Documents

Publication Publication Date Title
EP1725840B1 (de) In-line-messgerät
EP1938052B1 (de) In-line-messgerät und verfahren zum überwachen von veränderungen einer rohrwand
DE102004014029A1 (de) Coriolis-Massedurchfluß-Meßgerät
EP1931949B1 (de) Verfahren zum messen eines in einer rohrleitung strömenden mediums sowie messsystem dafür
EP2519805B1 (de) MEßSYSTEM MIT EINEM MEßWANDLER VOM VIBRATIONSTYP UND VERFAHREN ZUM MESSEN EINER DRUCKDIFFERENZ
EP2606319B1 (de) MEßSYSTEM MIT EINEM MEßWANDLER VOM VIBRATIONSTYP
EP3080560A1 (de) DICHTE-MEßGERÄT
EP2638367A1 (de) Messsystem mit einem messwandler vom vibrationstyp
EP2519806B1 (de) Mess-system mit einem messwandler vom vibrationstyp
WO2011061009A1 (de) Messsystem mit einer zwei parallel durchströmte messrohre aufweisenden rohranordnung sowie verfahren zu deren überwachung
EP2406592A2 (de) Messsystem mit einem messwandler vom vibrationstyp
EP1291639B1 (de) Viskositäts-Messgerät
DE10358663B4 (de) Coriolis-Massedurchfluß-Meßgerät
DE102004021690B4 (de) In-Line-Meßgerät mit einem Messaufnehmer vom Vibrationstyp
DE102008050113A1 (de) In-Line-Meßgerät
DE102008050116A1 (de) In-Line-Meßgerät
EP2519804B1 (de) Mess-system mit einem messwandler vom vibrationstyp
DE102010000759A1 (de) Meßsystem mit einem Meßwandler vom Vibrationstyp
DE102004007889A1 (de) Coriolis-Massedurchfluß-Meßgerät
EP1692467A2 (de) Coriolis-massedurchfluss-messgerät
DE102010000761A1 (de) Meßsystem mit einem Meßwandler vom Vibrationstyp

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8110 Request for examination paragraph 44
R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R082 Change of representative

Representative=s name: HAHN, CHRISTIAN, DIPL.-PHYS. DR.RER.NAT., DE