JP4530179B2 - Photodiode, ultraviolet sensor including the same, and method for manufacturing photodiode - Google Patents

Photodiode, ultraviolet sensor including the same, and method for manufacturing photodiode Download PDF

Info

Publication number
JP4530179B2
JP4530179B2 JP2008011906A JP2008011906A JP4530179B2 JP 4530179 B2 JP4530179 B2 JP 4530179B2 JP 2008011906 A JP2008011906 A JP 2008011906A JP 2008011906 A JP2008011906 A JP 2008011906A JP 4530179 B2 JP4530179 B2 JP 4530179B2
Authority
JP
Japan
Prior art keywords
diffusion layer
photodiode
type
silicon
silicon semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008011906A
Other languages
Japanese (ja)
Other versions
JP2009176834A (en
Inventor
隆志 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Oki Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Semiconductor Co Ltd filed Critical Oki Semiconductor Co Ltd
Priority to JP2008011906A priority Critical patent/JP4530179B2/en
Priority to US12/318,832 priority patent/US8283743B2/en
Publication of JP2009176834A publication Critical patent/JP2009176834A/en
Application granted granted Critical
Publication of JP4530179B2 publication Critical patent/JP4530179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

本発明は、紫外線を含む光を受けて電流を発生させるフォトダイオードおよびそれを備えた紫外線センサ、並びにフォトダイオードの製造方法に関する。   The present invention relates to a photodiode that generates light by receiving light including ultraviolet rays, an ultraviolet sensor including the photodiode, and a method for manufacturing the photodiode.

従来の紫外線センサは、P型シリコン基板に形成した2つのN型領域のそれぞれの表層にP型拡散層を形成すると共に、P型シリコン基板とそれぞれのN型領域の界面を含む領域に、N型領域を挟んでP型拡散層に対向するN型拡散層を形成し、それぞれのP型拡散層の深さを変更して2つの縦型PN接合形式のフォトダイオードを形成し、P型拡散層の深さの相違によりP型拡散層下のPN接合へ到達する紫外線量を変化させて、浅いP型拡散層を有するフォトダイオードの光電流から、深いP型拡散層を有するフォトダイオードの光電流を減じて可視光領域の光電流を相殺し、紫外線領域の光の強度を検出する紫外線センサを形成している(例えば、特許文献1参照。)。
特開2007−67331号公報(段落0025−段落0035、第2図、第3図)
In the conventional ultraviolet sensor, a P-type diffusion layer is formed on each surface layer of two N-type regions formed on a P-type silicon substrate, and an N-type region is formed in a region including an interface between the P-type silicon substrate and each N-type region. An N-type diffusion layer facing the P-type diffusion layer is formed across the mold region, and two vertical PN junction type photodiodes are formed by changing the depth of each P-type diffusion layer. The amount of ultraviolet rays reaching the PN junction under the P-type diffusion layer is changed depending on the depth of the layer, and the light of the photodiode having the deep P-type diffusion layer is changed from the photocurrent of the photodiode having the shallow P-type diffusion layer. An ultraviolet sensor that detects the intensity of light in the ultraviolet region by reducing the current to cancel the photocurrent in the visible light region is formed (see, for example, Patent Document 1).
JP 2007-67331 A (paragraph 0025-paragraph 0035, FIGS. 2 and 3)

紫外線は、長波紫外線(UV−A波:波長約320〜400nm)と、中波紫外線(UV−B波:波長約280〜320nm)と、短波紫外線(UV−C波:波長約280nm以下)とに分類され、地上に達する紫外線の90%以上はUV−A波で構成され、残りがUV−B波とされており、UV−C波はオゾン層で吸収されて地上に達することはないとされている。   Ultraviolet rays include long wave ultraviolet rays (UV-A wave: wavelength of about 320 to 400 nm), medium wave ultraviolet rays (UV-B wave: wavelength of about 280 to 320 nm), and short wave ultraviolet rays (UV-C wave: wavelength of about 280 nm or less). More than 90% of the ultraviolet rays reaching the ground are composed of UV-A waves, and the rest are UV-B waves, and UV-C waves are not absorbed by the ozone layer and reach the ground. Has been.

また、紫外線の波長領域によって人体や環境に与える影響が異なり、特にUV−B波は、地上に到達する紫外線量は少量であっても皮膚を炎症させ、皮膚ガンを誘発する虞があるとされており、UV−B波を分離して検出することが可能な紫外線センサの開発が望まれている。
しかしながら、上述した従来の技術においては、波長400nm以下の紫外線領域の紫外線の総量は検出できるものの、波長領域を分離して検出することはできないという問題がある。
In addition, the influence on the human body and the environment differs depending on the wavelength region of ultraviolet rays. In particular, UV-B waves are said to cause inflammation of the skin and induce skin cancer even if the amount of ultraviolet rays reaching the ground is small. Therefore, it is desired to develop an ultraviolet sensor capable of separately detecting UV-B waves.
However, the above-described conventional technique has a problem that although the total amount of ultraviolet rays in the ultraviolet region having a wavelength of 400 nm or less can be detected, the wavelength region cannot be detected separately.

また、上述した従来の技術においては、P型拡散層の深さを変更して、2つのフォトダイオードから出力される光電流の紫外線量を変化させ、演算によりこれらの差を求めて紫外線領域の光の強度を検出しているため、P型拡散層を形成する工程で、P型拡散層の深さにバラツキが生ずると、P型拡散層に吸収される紫外線量にバラツキが生じ、紫外線領域の光の強度を検出する紫外線センサの品質を安定させることが難しくなるという問題がある。   Further, in the conventional technique described above, the depth of the P-type diffusion layer is changed to change the amount of ultraviolet light of the photocurrent output from the two photodiodes, and the difference between them is calculated to obtain the difference in the ultraviolet region. Since the intensity of light is detected, if the depth of the P-type diffusion layer varies in the step of forming the P-type diffusion layer, the amount of ultraviolet light absorbed by the P-type diffusion layer varies, and the ultraviolet region There is a problem that it is difficult to stabilize the quality of the ultraviolet sensor that detects the intensity of the light.

本発明は、上記の問題点を解決するためになされたもので、紫外線領域の光の強度を安定して検出する手段を提供することを目的とする。
また、UV−B波の波長領域の紫外線量を分離して検出する手段を提供することを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to provide means for stably detecting the intensity of light in the ultraviolet region.
It is another object of the present invention to provide means for separately detecting the amount of ultraviolet rays in the wavelength region of the UV-B wave.

本発明は、上記課題を解決するために、シリコン半導体層に形成された、P型の不純物を高濃度に拡散させたP型高濃度拡散層と、N型の不純物を高濃度に拡散させたN型高濃度拡散層とを、前記シリコン半導体層に、P型およびN型のいずれか一方の型の不純物を低濃度に拡散させて形成された低濃度拡散層を挟んで対向配置した横型PN接合形式のフォトダイオードにおいて、前記シリコン半導体層上に層間絶縁膜を形成すると共に、前記低濃度拡散層の、前記層間絶縁膜との界面に隣接する原子列に、シリコンと水素の共有結合を形成したことを特徴とする。   In order to solve the above problems, the present invention has a P-type high-concentration diffusion layer formed in a silicon semiconductor layer in which a P-type impurity is diffused in a high concentration and an N-type impurity is diffused in a high concentration. A lateral PN in which an N-type high-concentration diffusion layer is disposed opposite to the silicon semiconductor layer with a low-concentration diffusion layer formed by diffusing one of P-type and N-type impurities at a low concentration. In the junction type photodiode, an interlayer insulating film is formed on the silicon semiconductor layer, and a covalent bond of silicon and hydrogen is formed in an atomic column adjacent to the interface with the interlayer insulating film of the low concentration diffusion layer It is characterized by that.

また、前記フォトダイオードの低濃度拡散層が形成されるシリコン半導体層は、3nm以上、36nm以下の範囲の厚さを有することを特徴とする。   The silicon semiconductor layer on which the low-concentration diffusion layer of the photodiode is formed has a thickness in the range of 3 nm to 36 nm.

これにより、本発明は、層間絶縁膜側から入射した光が、層間絶縁膜との界面に形成されたシリコンと水素の共有結合(Si−H結合)を通過するときに、シリコン半導体層の厚さに関らず、その結合エネルギでUV−A波の波長領域の紫外線を消失させることができ、Si−H結合を除いて同じ構成とされているフォトダイオードと組合せることによって、演算によりUV−A波の波長領域のみの紫外線量を求めることができ、地上に到達する紫外線の大部分を占めるUV−A波の波長領域の紫外線量を安定して検出することができる紫外線センサを得ることができるという効果が得られる。   As a result, the present invention allows the thickness of the silicon semiconductor layer when light incident from the interlayer insulating film side passes through a covalent bond (Si-H bond) between silicon and hydrogen formed at the interface with the interlayer insulating film. Regardless of this, UV light in the wavelength region of the UV-A wave can be eliminated by the binding energy, and combined with a photodiode having the same configuration except for the Si-H bond, the UV is calculated by calculation. -To obtain an ultraviolet sensor that can determine the amount of ultraviolet rays only in the wavelength region of the A wave and stably detect the amount of ultraviolet rays in the wavelength region of the UV-A wave that occupies most of the ultraviolet rays that reach the ground. The effect of being able to be obtained.

また、低濃度拡散層が形成されるシリコン半導体層が、3nm以上、36nm以下の範囲の厚とされているので、Si−H結合の結合エネルギでUV−A波の波長領域の紫外線がカットし、透過した可視光はシリコン半導体層の厚さによりカットすることができ、UV−B波の波長領域のみの紫外線量を単独で、選択的に検出することができるフォトダイオードを得ることができるという効果が得られる。   Further, since the silicon semiconductor layer on which the low concentration diffusion layer is formed has a thickness in the range of 3 nm or more and 36 nm or less, the ultraviolet energy in the wavelength region of the UV-A wave is cut by the binding energy of the Si-H bond. The transmitted visible light can be cut by the thickness of the silicon semiconductor layer, and a photodiode capable of selectively detecting the amount of ultraviolet light only in the wavelength region of the UV-B wave can be obtained. An effect is obtained.

以下に、図面を参照して本発明によるフォトダイオードおよびその製造方法の実施例について説明する。   Embodiments of a photodiode and a manufacturing method thereof according to the present invention will be described below with reference to the drawings.

図1は実施例のフォトダイオードの上面を示す説明図、図2は実施例のフォトダイオードの断面を示す説明図、図3は実施例の紫外線センサの側面を示す説明図、図4は実施例のフォトダイオードのシリコン半導体層と層間絶縁膜との界面近傍のシリコン原子の配列を示す説明図、図5、図6は実施例のフォトダイオードの製造方法を示す説明図である。
なお、図2は、図1のA−A断面線に沿った断面図である。また図1は、図2に示すシリコン半導体層より上方の層を取り除いた状態で示してある。
1 is an explanatory view showing the upper surface of the photodiode of the embodiment, FIG. 2 is an explanatory view showing the cross section of the photodiode of the embodiment, FIG. 3 is an explanatory view showing the side of the ultraviolet sensor of the embodiment, and FIG. FIG. 5 and FIG. 6 are explanatory views showing a method of manufacturing the photodiode of the embodiment. FIG. 5 and FIG.
2 is a cross-sectional view taken along the line AA in FIG. FIG. 1 shows a state in which a layer above the silicon semiconductor layer shown in FIG. 2 is removed.

図1において、1はフォトダイオードであり、図示しないシリコン(Si)からなるシリコン基板上に、酸化シリコン(SiO)からなる絶縁層としての埋込み酸化膜3を挟んで薄い単結晶シリコンからなるシリコン半導体層4を形成したSOI構造の半導体ウェハのシリコン半導体層4に形成された横型PN接合形式のフォトダイオードである。
本実施例のシリコン半導体層4上には、フォトダイオード1を形成するためのダイオード形成領域6が設定され、このダイオード形成領域6の周囲を矩形の枠状に囲う領域には、素子分離層9を形成するための素子分離領域10が設定されている(図5、図6参照)。
In FIG. 1, reference numeral 1 denotes a photodiode, which is a silicon substrate made of thin single crystal silicon with a buried oxide film 3 as an insulating layer made of silicon oxide (SiO 2 ) sandwiched between a silicon substrate made of silicon (Si) (not shown). This is a lateral PN junction type photodiode formed on the silicon semiconductor layer 4 of the SOI structure semiconductor wafer on which the semiconductor layer 4 is formed.
A diode forming region 6 for forming the photodiode 1 is set on the silicon semiconductor layer 4 of the present embodiment, and an element isolation layer 9 is provided in a region surrounding the diode forming region 6 in a rectangular frame shape. An element isolation region 10 is formed for forming (see FIGS. 5 and 6).

素子分離層9は、素子分離領域10のシリコン半導体層4に、酸化シリコン等の絶縁材料で埋込み酸化膜3に達した状態で形成されており、ダイオード形成領域6の間を電気的に絶縁分離する機能を有している。
なお、本説明においては、図1等に示すように、素子分離層9は区別のために網掛けを付して示す。
The element isolation layer 9 is formed in the silicon semiconductor layer 4 in the element isolation region 10 in a state of reaching the buried oxide film 3 with an insulating material such as silicon oxide, and the diode formation region 6 is electrically isolated and isolated. It has a function to do.
In this description, as shown in FIG. 1 and the like, the element isolation layer 9 is shaded for distinction.

本実施例のフォトダイオード1は、シリコン半導体層4に設定されたダイオード形成領域6に形成される。
12はP型高濃度拡散層としてのP+拡散層であり、ダイオード形成領域6のシリコン半導体層4に、ボロン(B)等のP型不純物を比較的高濃度に拡散させて形成された拡散層であって、図1に示すように、素子分離層9の内側の一の辺に接する峰部12aと、峰部12aから一の辺に対向する素子分離層9の内側の他の辺に向けて延在する複数の櫛歯部12bとで形成された櫛型に形成される。
The photodiode 1 of this embodiment is formed in the diode formation region 6 set in the silicon semiconductor layer 4.
Reference numeral 12 denotes a P + diffusion layer as a P-type high-concentration diffusion layer, which is formed by diffusing P-type impurities such as boron (B) at a relatively high concentration in the silicon semiconductor layer 4 in the diode formation region 6. As shown in FIG. 1, the peak portion 12a in contact with one side inside the element isolation layer 9 and the other side inside the element isolation layer 9 facing the one side from the peak portion 12a. And a plurality of comb teeth 12b extending in a comb shape.

本実施例のP+拡散層12は、峰部12aから2本の櫛歯部12bを延在させて「π」字状に形成されている。
14はN型高濃度拡散層としてのN+拡散層であり、ダイオード形成領域6のシリコン半導体層4に、P型高濃度拡散層と逆の型、つまりリン(P)や砒素(As)等のN型不純物を比較的高濃度に拡散させて形成された拡散層であって、図1に示すように、素子分離層9の内側の他の辺に接する峰部14aと、峰部14aから対向する一の辺に向けて延在する複数の櫛歯部14bとで形成された櫛型に形成される。
The P + diffusion layer 12 of the present embodiment is formed in a “π” shape by extending two comb teeth portions 12b from the peak portion 12a.
Reference numeral 14 denotes an N + diffusion layer serving as an N-type high-concentration diffusion layer. The silicon semiconductor layer 4 in the diode formation region 6 has a type opposite to that of the P-type high-concentration diffusion layer, that is, phosphorus (P), arsenic (As), or the like. A diffusion layer formed by diffusing an N-type impurity at a relatively high concentration, as shown in FIG. 1, a ridge portion 14 a in contact with the other side inside the element isolation layer 9, and opposed to the ridge portion 14 a It is formed in a comb shape formed with a plurality of comb teeth portions 14b extending toward one side.

本実施例のN+拡散層14は、峰部14aの両端部と中央部から3本の櫛歯部14bを延在させて「E」字状に形成されている。
15は低濃度拡散層としてのP−拡散層であり、ダイオード形成領域6に、互いに離間して櫛歯部12b、14bを噛合わせて対向配置されたP+拡散層12とN+拡散層14とにそれぞれ接するシリコン半導体層4に、P型不純物を比較的低濃度に拡散させて形成された拡散層であって、ここに形成される空乏層に吸収された紫外線により電子−正孔対が発生する部位である。
The N + diffusion layer 14 of the present embodiment is formed in an “E” shape by extending three comb teeth portions 14b from both ends and the center of the peak portion 14a.
Reference numeral 15 denotes a P− diffusion layer as a low concentration diffusion layer. The P + diffusion layer 12 and the N + diffusion layer 14 which are arranged opposite to each other with the comb-tooth portions 12b and 14b meshed with each other in the diode forming region 6 A diffusion layer formed by diffusing P-type impurities at a relatively low concentration in each of the silicon semiconductor layers 4 that are in contact with each other, and electron-hole pairs are generated by ultraviolet rays absorbed in the depletion layer formed here. It is a part.

17は層間絶縁膜であり、シリコン半導体層4上に形成された、酸化シリコンやNSG(Nondoped Silica Glass)等のUV−A波およびUV−B波の波長領域の紫外線および可視光、つまりUV−B波以上の波長領域の光を透過させる透過性を有する絶縁材料(本実施例では、酸化シリコン)からなる4000nm程度の厚さの絶縁膜である。   Reference numeral 17 denotes an interlayer insulating film, which is formed on the silicon semiconductor layer 4 and has ultraviolet and visible light in the wavelength region of UV-A waves and UV-B waves such as silicon oxide and NSG (Nondoped Silica Glass), that is, UV- This is an insulating film having a thickness of about 4000 nm made of a transparent insulating material (silicon oxide in this embodiment) that transmits light in a wavelength region of B waves or more.

18はコンタクトホールであり、層間絶縁膜17上の、フォトダイオード1のコンタクトプラグ19の形成領域に形成された、層間絶縁膜17を貫通してP+拡散層12およびN+拡散層14に至る貫通穴であって、これらのコンタクトホール18の内部に、アルミニウム(Al)やタングステン(W)、チタン(Ti)等の導電材料を埋め込んでコンタクトプラグ19が形成される。   Reference numeral 18 denotes a contact hole which is formed in the formation region of the contact plug 19 of the photodiode 1 on the interlayer insulating film 17 and penetrates the interlayer insulating film 17 to reach the P + diffusion layer 12 and the N + diffusion layer 14. The contact plugs 19 are formed by burying a conductive material such as aluminum (Al), tungsten (W), or titanium (Ti) in the contact holes 18.

20は配線であり、層間絶縁膜17上に、コンタクトプラグ19と同様の導電材料で形成された配線層をエッチングして形成された回路配線であって、図1に2点鎖線で示すように、受光する太陽光を妨げないために、P−拡散層15上を通過しないように配置されており、P+拡散層12およびN+拡散層14と、それぞれコンタクトプラグ19を介して電気的に接続している。   Reference numeral 20 denotes a wiring, which is a circuit wiring formed by etching a wiring layer formed of a conductive material similar to that of the contact plug 19 on the interlayer insulating film 17, as shown by a two-dot chain line in FIG. In order not to interfere with the received sunlight, it is arranged so as not to pass over the P− diffusion layer 15 and is electrically connected to the P + diffusion layer 12 and the N + diffusion layer 14 via contact plugs 19 respectively. ing.

22はパッシベーション膜であり、層間絶縁膜17上に形成された窒化シリコン(Si)からなるUV−B波以上の波長領域の光を透過させる膜厚300nm程度の保護膜であって、フォトダイオード1や配線20等を外部の湿度等から保護する機能を有している。
本実施例のシリコン半導体層4に形成されたP−拡散層15と層間絶縁膜17との界面24には、図4に示すように、シリコン半導体層4の界面24に隣接するシリコン(Si)の原子列25のダングリングボンド26(未結合手)が水素(H)により終端されて、シリコンと水素の共有結合(Si−H結合という。)が形成されおり、UV−A波の波長領域の紫外線をカットして、UV−B波以下および可視光の波長領域の光を透過させるフィルタ(UV−Aフィルタ27という。図2等にハッチングを付して示す。)として機能する。
Reference numeral 22 denotes a passivation film, which is a protective film having a film thickness of about 300 nm, which is made of silicon nitride (Si 3 N 4 ) formed on the interlayer insulating film 17 and transmits light in a wavelength region of UV-B or more. It has a function of protecting the photodiode 1, the wiring 20, and the like from external humidity and the like.
As shown in FIG. 4, silicon (Si) adjacent to the interface 24 of the silicon semiconductor layer 4 is formed at the interface 24 between the P− diffusion layer 15 and the interlayer insulating film 17 formed in the silicon semiconductor layer 4 of this embodiment. The dangling bonds 26 (unbonded hands) of the atomic sequence 25 of the silicon atoms are terminated with hydrogen (H) to form a covalent bond between silicon and hydrogen (referred to as Si—H bond), and the wavelength region of the UV-A wave The filter functions as a filter (referred to as a UV-A filter 27; hatched in FIG. 2) that transmits light in the wavelength range of UV-B waves and below and visible light.

このSi−H結合の結合エネルギは、3.1〜3.5eVであり、UV−A波の波長領域に含まれる約350〜400nmの波長のエネルギに相当するため、Si−H結合がUV−A波のエネルギにより切断されるときに前記の波長領域のエネルギが吸収されて、UV−A波の波長領域の紫外線が消失するので、本実施例のSi−H結合で形成されたUV−Aフィルタ27は、UV−A波のみが不透過となる(図7参照)。   The bond energy of this Si—H bond is 3.1 to 3.5 eV, which corresponds to energy of a wavelength of about 350 to 400 nm included in the wavelength region of the UV-A wave. When cut by the energy of the A wave, the energy in the wavelength region is absorbed and the ultraviolet light in the wavelength region of the UV-A wave disappears. Therefore, the UV-A formed by the Si—H bond of this embodiment. The filter 27 does not transmit only UV-A waves (see FIG. 7).

図3において、30は紫外線センサであり、上記のUV−Aフィルタ27を有するフォトダイオード1を複数形成した半導体ウェハを個片に分割したフォトチップ31aと、UV−Aフィルタ27を除いてフォトダイオード1と同じ構成を有するフォトダイオードを備えたフォトチップ31bとを備えている。
33は封止層であり、シリコーン樹脂やエポキシ樹脂等の、UV−B波以上の波長領域の光を透過させる紫外線透過型封止樹脂を加熱、硬化させて形成された保護層であって、フォトチップ31a、31b等を外部の湿度等から保護する機能を有している。
In FIG. 3, reference numeral 30 denotes an ultraviolet sensor, and a photo chip 31 a obtained by dividing a semiconductor wafer on which a plurality of photodiodes 1 having the above-described UV-A filter 27 are formed, and a photodiode except for the UV-A filter 27. 1 and a photo chip 31b including a photodiode having the same configuration as that of FIG.
33 is a sealing layer, which is a protective layer formed by heating and curing an ultraviolet transmissive sealing resin that transmits light in the wavelength region of UV-B wave or more, such as silicone resin or epoxy resin, It has a function of protecting the photochips 31a and 31b from external humidity and the like.

本実施例の紫外線透過型封止樹脂としては、湿度や紫外線等に対する耐候性に優れたシリコーン樹脂が用いられる。
本実施例の紫外線センサ30は、複数の外部端子34を形成したセラミックス基板35に、フォトチップ31a、31b並列に配置してそれぞれを銀ペースト等で接合し、ワイヤボンディングにより、端子穴36に露出している配線20と外部端子34とをワイヤ37で電気的に接続し、セラミックス基板35上のフォトチップ31a、31bを覆うシリコーン樹脂からなる封止層33で封止して形成される。
As the ultraviolet transmissive sealing resin of the present embodiment, a silicone resin having excellent weather resistance against humidity, ultraviolet rays and the like is used.
The ultraviolet sensor 30 of this embodiment is arranged in parallel with photo chips 31a and 31b on a ceramic substrate 35 on which a plurality of external terminals 34 are formed, and each is joined with silver paste or the like, and exposed to the terminal hole 36 by wire bonding. The wiring 20 and the external terminal 34 are electrically connected by a wire 37 and sealed by a sealing layer 33 made of a silicone resin that covers the photochips 31 a and 31 b on the ceramic substrate 35.

図5において、40はレジストマスクであり、フォトリソグラフィによりシリコン半導体層4上に塗布されたポジ型またはネガ型のレジストを露光および現像処理して形成されたマスク部材であって、本実施例のエッチングやイオン注入におけるマスクとして機能する。
本実施例のシリコン半導体層4の厚さは、P+拡散層12およびN+拡散層14のシート抵抗の増大を抑制するために、40nm以上、100nm以下の範囲の厚さ(本実施例では、50nm)に形成される。
In FIG. 5, reference numeral 40 denotes a resist mask, which is a mask member formed by exposing and developing a positive or negative resist applied on the silicon semiconductor layer 4 by photolithography. It functions as a mask for etching and ion implantation.
The thickness of the silicon semiconductor layer 4 of this example is 40 nm or more and 100 nm or less in order to suppress an increase in sheet resistance of the P + diffusion layer 12 and the N + diffusion layer 14 (in this example, 50 nm). ).

以下に、図5、図6に、Pで示す工程に従って、本実施例のフォトダイオードの製造方法について説明する。
本実施例で用いる半導体ウェハのシリコン半導体層4は、SIMOX(Separation by Implanted Oxygen)法により埋込み酸化膜3上に薄いシリコン層を残して形成されたSOI構造の半導体ウェハ、または埋込み酸化膜3上に薄いシリコン層を貼り付けて形成されたSOI構造の半導体ウェハの埋込み酸化膜3上の薄いシリコン層に熱酸化法により犠牲酸化膜を形成し、これをウェットエッチングにより除去して、50nmの厚さに形成されている。
A method for manufacturing the photodiode of this example will be described below in accordance with the process indicated by P in FIGS.
The silicon semiconductor layer 4 of the semiconductor wafer used in this embodiment is an SOI structure semiconductor wafer formed by leaving a thin silicon layer on the buried oxide film 3 by a SIMOX (Separation by Implanted Oxygen) method, or on the buried oxide film 3. A sacrificial oxide film is formed on the thin silicon layer on the buried oxide film 3 of the SOI structure semiconductor wafer formed by sticking a thin silicon layer to the silicon oxide layer by thermal oxidation, and this is removed by wet etching to a thickness of 50 nm. Is formed.

P1(図5)、上記の50nmの膜厚のシリコン半導体層4が形成された半導体ウェハのシリコン半導体層4の素子分離領域10に、LOCOS(Local Oxidation Of Silicon)法により、埋込み酸化膜3に達する酸化シリコンからなる素子分離層9を形成する。
そして、ダイオード形成領域6のシリコン半導体層4に、P型不純物イオンを低濃度に注入して、P型低濃度注入層を形成し、フォトリソグラフィによりダイオード形成領域6のN+拡散層14の形成領域(図1に示す「E」字状の部位)を露出させたレジストマスク40(不図示)を形成し、露出しているシリコン半導体層4にN型不純物イオンを高濃度に注入して、N型高濃度注入層を形成する。
P1 (FIG. 5), the buried oxide film 3 is formed on the element isolation region 10 of the silicon semiconductor layer 4 of the semiconductor wafer on which the 50 nm-thickness silicon semiconductor layer 4 is formed by the LOCOS (Local Oxidation Of Silicon) method. An element isolation layer 9 made of reaching silicon oxide is formed.
Then, P-type impurity ions are implanted at a low concentration into the silicon semiconductor layer 4 in the diode formation region 6 to form a P-type low concentration implantation layer, and the N + diffusion layer 14 formation region in the diode formation region 6 is formed by photolithography. A resist mask 40 (not shown) exposing the (E-shaped portion shown in FIG. 1) is formed, and N-type impurity ions are implanted into the exposed silicon semiconductor layer 4 at a high concentration. A mold high concentration injection layer is formed.

前記のレジストマスク40の除去後に、フォトリソグラフィによりダイオード形成領域6のP+拡散層12の形成領域(図1に示す「π」字状の部位)を露出させたレジストマスク40(不図示)を形成し、露出しているシリコン半導体層4にP型不純物イオンを高濃度に注入して、P型高濃度注入層を形成する。
前記のレジストマスク40の除去後に、熱処理により、各拡散層の形成領域に形成された各注入層に注入された不純物を活性化して、各拡散層に所定の型の不純物を所定の濃度で拡散させ、ダイオード形成領域6に、P+拡散層12、N+拡散層14およびP−拡散層15を形成し、シリコン半導体層4に、横型PN接合形式のフォトダイオード1が複数形成されたSOI構造の半導体ウェハを準備する。
After removing the resist mask 40, a resist mask 40 (not shown) is formed by exposing the P + diffusion layer 12 formation region ("π" -shaped portion shown in FIG. 1) in the diode formation region 6 by photolithography. Then, P-type impurity ions are implanted at a high concentration into the exposed silicon semiconductor layer 4 to form a P-type high concentration implantation layer.
After removing the resist mask 40, the impurities implanted in the respective implantation layers formed in the formation regions of the respective diffusion layers are activated by heat treatment, and a predetermined type of impurity is diffused in each diffusion layer at a predetermined concentration. Then, a P + diffusion layer 12, an N + diffusion layer 14 and a P− diffusion layer 15 are formed in the diode formation region 6, and a plurality of lateral PN junction type photodiodes 1 are formed in the silicon semiconductor layer 4. Prepare the wafer.

P2(図5)、準備された半導体ウェハのシリコン半導体層4上の全面に、CVD(Chemical Vapor Deposition)法により酸化シリコンを堆積し、その上面を平坦化処理して、層間絶縁膜17を形成する。
P3(図5)、層間絶縁膜17の形成後に、半導体ウェハを熱処理装置に投入し、水素雰囲気中での熱処理により、半導体ウェハの温度を上げて、シリコン半導体層4に形成されたP−拡散層15と、層間絶縁膜17との界面24に隣接するシリコンの原子列25のダングリングボンド26を、水素(H)により終端してSi−H結合を形成する。
P2 (FIG. 5), silicon oxide is deposited on the entire surface of the prepared semiconductor wafer on the silicon semiconductor layer 4 by CVD (Chemical Vapor Deposition), and the upper surface thereof is planarized to form an interlayer insulating film 17 To do.
P3 (FIG. 5), after the formation of the interlayer insulating film 17, the semiconductor wafer is put into a heat treatment apparatus, the temperature of the semiconductor wafer is raised by heat treatment in a hydrogen atmosphere, and P-diffusion formed in the silicon semiconductor layer 4 A dangling bond 26 of the silicon atomic row 25 adjacent to the interface 24 between the layer 15 and the interlayer insulating film 17 is terminated with hydrogen (H) to form a Si—H bond.

この場合の水素雰囲気中での熱処理は、例えば、ガス雰囲気として、窒素(N2)90%、水素(H2)10%の混合ガス雰囲気を用い、250℃以上、350℃以下の範囲の温度で、30分間の熱処理を行えばよい。
これにより、P−拡散層15の層間絶縁膜17との界面24に接する領域に、本実施例のUV−A波の波長領域の紫外線をカットするUV−Aフィルタ27が形成される。
In this case, the heat treatment in the hydrogen atmosphere is, for example, a mixed gas atmosphere of 90% nitrogen (N2) and 10% hydrogen (H2) as the gas atmosphere at a temperature in the range of 250 ° C. to 350 ° C. What is necessary is just to heat-process for 30 minutes.
As a result, a UV-A filter 27 that cuts off ultraviolet rays in the wavelength region of the UV-A wave of this embodiment is formed in the region of the P-diffusion layer 15 in contact with the interface 24 with the interlayer insulating film 17.

P4(図5)、UV−Aフィルタ27の形成後に、フォトリソグラフィにより層間絶縁膜17上に、フォトダイオード1のP+拡散層12およびN+拡散層14上のコンタクトホール18の形成領域の層間絶縁膜17を露出させた開口を有するレジストマスク40を形成し、これをマスクとして、酸化シリコンを選択的にエッチングする異方性エッチングにより層間絶縁膜17を貫通してP+拡散層12およびN+拡散層14に達するコンタクトホール18を形成する。   After the formation of P4 (FIG. 5) and the UV-A filter 27, the interlayer insulating film in the formation region of the contact hole 18 on the P + diffusion layer 12 and the N + diffusion layer 14 of the photodiode 1 is formed on the interlayer insulating film 17 by photolithography. A resist mask 40 having an opening exposing 17 is formed, and using this as a mask, the P + diffusion layer 12 and the N + diffusion layer 14 penetrate through the interlayer insulating film 17 by anisotropic etching that selectively etches silicon oxide. A contact hole 18 is formed.

P5(図6)、工程P4で形成したレジストマスク40を除去し、スパッタ法等によりコンタクトホール18内に導電材料を埋め込んでコンタクトプラグ19を形成すると共に、層間絶縁膜17上にコンタクトプラグ19と同じ導電材料で配線20を形成するための配線層を形成し、フォトリソグラフィにより配線層上に、配線20の形成領域を覆うレジストマスク40(不図示)を形成し、これをマスクとして配線層をエッチングしてコンタクトプラグ19に電気的に接続する配線20を形成し、前記のレジストマスク40を除去する。   P5 (FIG. 6), the resist mask 40 formed in step P4 is removed, and a contact plug 19 is formed by embedding a conductive material in the contact hole 18 by sputtering or the like. A wiring layer for forming the wiring 20 is formed of the same conductive material, and a resist mask 40 (not shown) that covers the formation region of the wiring 20 is formed on the wiring layer by photolithography, and the wiring layer is formed using this as a mask. The wiring 20 electrically connected to the contact plug 19 is formed by etching, and the resist mask 40 is removed.

P6(図6)、CVD法により、フォトダイオード1上の層間絶縁膜17および配線20上に、窒化シリコンからなるパッシベーション膜22を形成する。
その後に、フォトリソグラフィにより配線20上の端子穴36の形成領域のパッシベーション膜22を露出させた開口を有するレジストマスク40(不図示)を形成し、異方性エッチングによりパッシベーション膜22をエッチングして端子穴36を形成する。
P6 (FIG. 6), a passivation film 22 made of silicon nitride is formed on the interlayer insulating film 17 and the wiring 20 on the photodiode 1 by the CVD method.
After that, a resist mask 40 (not shown) having an opening exposing the passivation film 22 in the formation region of the terminal hole 36 on the wiring 20 is formed by photolithography, and the passivation film 22 is etched by anisotropic etching. A terminal hole 36 is formed.

そして、半導体ウェハを個片に分割して、UV−Aフィルタ27を形成したフォトダイオード1を備えたフォトチップ31aを形成する。
一方、工程P3を省略した工程により、シリコン半導体層4を同じ厚さに形成した半導体ウェハに、UV−Aフィルタ27を除いて同様に形成されたフォトダイオードを複数形成し、これを個片に分割して、UV−Aフィルタ27が形成されていないフォトチップ31bを形成する。
Then, the semiconductor wafer is divided into individual pieces, and a photo chip 31 a including the photodiode 1 on which the UV-A filter 27 is formed is formed.
On the other hand, a plurality of photodiodes formed in a similar manner except for the UV-A filter 27 are formed on a semiconductor wafer in which the silicon semiconductor layer 4 is formed in the same thickness by the process in which the process P3 is omitted, and these are formed into individual pieces. The photo chip 31b in which the UV-A filter 27 is not formed is divided.

これらのフォトチップ31a、31bは、図3に示すように、セラミックス基板35上に並列に配置されて、それぞれ銀ペースト等で接合され、ワイヤボンディングにより、端子穴36に露出している配線20と、外部端子34とをワイヤ37で電気的に接続して型枠に収納した後に、ポッティングによりシリコーン樹脂を注入し、加熱、硬化させてフォトチップ31a、31b等を覆う封止層33を形成し、型枠から取外して、本実施例の紫外線センサ30を形成する。   As shown in FIG. 3, these photochips 31a and 31b are arranged in parallel on a ceramic substrate 35, joined with silver paste or the like, respectively, and the wiring 20 exposed in the terminal holes 36 by wire bonding. After electrically connecting the external terminal 34 with the wire 37 and storing it in the mold, a silicone resin is injected by potting, and heated and cured to form a sealing layer 33 that covers the photochips 31a, 31b, etc. Then, the ultraviolet sensor 30 of this embodiment is formed by removing from the mold.

上記のフォトチップ31bは、UV−Aフィルタ27が形成されていないフォトダイオード1を備えているので、UV−A波およびUV−B波の波長領域の紫外線および可視光を透過させる層間絶縁膜17、パッシベーション膜22および紫外線透過型樹脂からなる封止層33を透過した光が照射されると、シリコンの禁制帯幅が約1.1eVであるので、図7に実線で示すように、約1100nm未満の波長領域の全てに分光感度を有する特性になる。   Since the photo chip 31b includes the photodiode 1 in which the UV-A filter 27 is not formed, the interlayer insulating film 17 that transmits ultraviolet light and visible light in the wavelength region of the UV-A wave and the UV-B wave is transmitted. When light transmitted through the passivation film 22 and the sealing layer 33 made of an ultraviolet transmissive resin is irradiated, the forbidden band width of silicon is about 1.1 eV, and therefore, as shown by a solid line in FIG. It becomes the characteristic which has spectral sensitivity in all the wavelength regions below.

また、フォトチップ31bに形成されたフォトダイオードのP−拡散層15の層間絶縁膜17との界面24に、Si−H結合で形成されたUV−Aフィルタ27を有するフォトダイオード1を備えたフォトチップ31aは、層間絶縁膜17側から入射した光が、層間絶縁膜17との界面24に形成されたUV−Aフィルタ27を通過するときに、そのSi−H結合の結合エネルギでUV−A波の波長領域の紫外線を消失させるので、シリコン半導体層の厚さに関らず、UV−A波のみをカットすることができ、図7に破線で示すように、層間絶縁膜17等を透過した光が照射されると、フォトチップ31bの分光感度の中で、UV−A波の波長領域のみの紫外線がカットされた分光感度を有する特性になる。   Further, a photo diode provided with a photodiode 1 having a UV-A filter 27 formed by Si—H bonding at an interface 24 between the P-diffusion layer 15 of the photodiode formed on the photo chip 31 b and the interlayer insulating film 17. When the light incident from the side of the interlayer insulating film 17 passes through the UV-A filter 27 formed at the interface 24 with the interlayer insulating film 17, the chip 31 a uses the binding energy of the Si—H bond for UV-A. Since ultraviolet rays in the wave wavelength region are eliminated, only the UV-A wave can be cut regardless of the thickness of the silicon semiconductor layer, and transmitted through the interlayer insulating film 17 and the like as shown by a broken line in FIG. When the irradiated light is irradiated, the spectral sensitivity of the photochip 31b has a spectral sensitivity in which only ultraviolet rays in the wavelength region of the UV-A wave are cut.

この場合に、上記工程P3において、他の部位、例えばP−拡散層15と埋込み酸化膜3との界面にSi−H結合が形成されたとしても、光は層間絶縁膜17の側から照射され、P−拡散層15を通過した後の光が、埋込み酸化膜3との界面に形成されたSi−H結合に作用するので、フォトダイオード1からの出力に影響が生ずることはない。
このように、UV−Aフィルタ27を除けば、同じ構成とされているフォトチップ31bが検出したUV−A波、UV−B波および可視光の波長領域の出力から、フォトチップ31aが検出したUV−A波の波長領域のみがカットされた出力を減算すれば、UV−A波の波長領域の紫外線量を求めることができ、地上に到達する紫外線の大部分を占めるUV−A波の波長領域の紫外線量を安定して検出することができる。
In this case, even if a Si—H bond is formed in another part, for example, the interface between the P− diffusion layer 15 and the buried oxide film 3 in the step P3, the light is irradiated from the interlayer insulating film 17 side. The light after passing through the P− diffusion layer 15 acts on the Si—H bond formed at the interface with the buried oxide film 3, so that the output from the photodiode 1 is not affected.
Thus, except for the UV-A filter 27, the photochip 31a detects from the output in the wavelength region of the UV-A wave, UV-B wave and visible light detected by the photochip 31b having the same configuration. If the output from which only the wavelength region of the UV-A wave is cut is subtracted, the amount of ultraviolet rays in the wavelength region of the UV-A wave can be obtained, and the wavelength of the UV-A wave that occupies most of the ultraviolet rays reaching the ground. The amount of ultraviolet rays in the region can be detected stably.

なお、本実施例のフォトチップ31a、31bに形成された横型PN接合方式のフォトダイオード1等に吸収される光の分光感度のバラツキは、シリコン半導体層4の膜厚に依存して生ずるので、UV−A波の波長領域を除く領域の分光感度に、別の半導体ウェハに形成されたシリコン半導体層4の厚さのバラツキに起因する差が存在する場合には、フォトチップ31bの出力に可視光領域の出力を相殺する倍率を乗じた後に、前記の減算を行うとよい。このようにすれば、紫外線量をより正確に検出することが可能になる。   Note that the variation in spectral sensitivity of light absorbed by the lateral PN junction type photodiode 1 formed on the photochips 31a and 31b of this embodiment depends on the film thickness of the silicon semiconductor layer 4. When there is a difference due to the variation in the thickness of the silicon semiconductor layer 4 formed on another semiconductor wafer in the spectral sensitivity of the region other than the wavelength region of the UV-A wave, it is visible in the output of the photochip 31b. It is preferable to perform the subtraction after multiplying the magnification that cancels the output of the light region. In this way, it becomes possible to detect the amount of ultraviolet rays more accurately.

また、本実施例では、フォトダイオード1は、SOI構造の半導体ウェハのシリコン半導体層4に形成するとして説明したが、本実施例のUV−Aフィルタ27を形成したフォトダイオード1は、層間絶縁膜17との界面24に形成されたSi−H結合を光が通過するときにその結合エネルギでUV−A波の波長領域の紫外線を消失させるので、シリコン半導体層4の厚さは、どのような厚さであってもよく、例えばシリコンからなるバルク基板であってもよい。このようにすれば、シリコン半導体層4の厚さを厚くして、厚さに起因する分光感度のバラツキを更に低減することができると共に、バルク基板で形成されたUV−Aフィルタ27が形成されていないフォトダイオードと組合せれば、前記と同様の紫外線センサを得ることができる。   In the present embodiment, the photodiode 1 is described as being formed on the silicon semiconductor layer 4 of the SOI structure semiconductor wafer. However, the photodiode 1 on which the UV-A filter 27 of the present embodiment is formed is an interlayer insulating film. When the light passes through the Si—H bond formed at the interface 24 with the light source 17, the ultraviolet energy in the wavelength region of the UV-A wave is lost by the binding energy. The thickness may be, for example, a bulk substrate made of silicon. In this way, the thickness of the silicon semiconductor layer 4 can be increased to further reduce the variation in spectral sensitivity due to the thickness, and the UV-A filter 27 formed of a bulk substrate is formed. When combined with a non-photodiode, an ultraviolet sensor similar to the above can be obtained.

更に、本実施例では、P−拡散層15は、P+拡散層12およびN+拡散層14と同じ厚さのシリコン半導体層4に形成するとして説明したが、図8に示すように、P−拡散層15を形成するシリコン半導体層4の厚さを、出願人が特願2007−311080等において提案した、3nm以上、36nm以下の範囲の厚さ(例えば、35nm)の薄いシリコン半導体層4としてもよい。   Furthermore, in the present embodiment, the P− diffusion layer 15 is described as being formed in the silicon semiconductor layer 4 having the same thickness as the P + diffusion layer 12 and the N + diffusion layer 14, but as shown in FIG. The thickness of the silicon semiconductor layer 4 forming the layer 15 may be the thin silicon semiconductor layer 4 having a thickness in the range of 3 nm to 36 nm (for example, 35 nm) proposed by the applicant in Japanese Patent Application No. 2007-311080. Good.

このようにすれば、薄いシリコン半導体層4に形成されたP−拡散層15は、可視光以上(波長400nm以上)の波長領域の光に反応することがなくなり、層間絶縁膜17側から入射した光は、層間絶縁膜17との界面24に形成されたUV−Aフィルタ27を通過するときに、そのSi−H結合の結合エネルギでUV−A波の波長領域の紫外線がカットされ、透過した可視光はシリコン半導体層4の厚さによりカットされるので、図9に示すように、UV−B波の波長領域の紫外線量のみを単独で検出することができるフォトダイオード1を形成することが可能になる。   In this way, the P-diffusion layer 15 formed in the thin silicon semiconductor layer 4 does not react to light in a wavelength region of visible light or more (wavelength of 400 nm or more), and is incident from the interlayer insulating film 17 side. When the light passes through the UV-A filter 27 formed at the interface 24 with the interlayer insulating film 17, UV light in the wavelength region of the UV-A wave is cut and transmitted by the binding energy of the Si-H bond. Since visible light is cut by the thickness of the silicon semiconductor layer 4, as shown in FIG. 9, it is possible to form a photodiode 1 that can detect only the amount of ultraviolet light in the wavelength region of the UV-B wave alone. It becomes possible.

この場合に、フォトダイオード1のP−拡散層15を形成する薄いシリコン半導体層4は、ダイオード形成領域6に、図1に示す「π」字状のP+拡散層12と、「E」字状のN+拡散層14とに挟まれたP−拡散層15を形成する領域として薄膜化領域を設定しておき、上記工程P1における各拡散層を形成するための熱処理を終えた後に、シリコン半導体層4上の全面にフォトリソグラフィにより、薄膜化領域のシリコン半導体層4を露出させたレジストマスク40(不図示)を形成し、これをマスクとして、異方性エッチングにより、露出しているシリコン半導体層4をエッチングして、薄膜化領域のシリコン半導体層4を薄膜化領域7に設定されたシリコン半導体層4の厚さ(35nm)に薄膜化するとよい。   In this case, the thin silicon semiconductor layer 4 forming the P − diffusion layer 15 of the photodiode 1 is formed in the diode formation region 6 with the “π” -shaped P + diffusion layer 12 shown in FIG. A thinned region is set as a region for forming the P− diffusion layer 15 sandwiched between the N + diffusion layer 14 and after the heat treatment for forming each diffusion layer in the step P1, the silicon semiconductor layer is formed. A resist mask 40 (not shown) in which the silicon semiconductor layer 4 in the thinned region is exposed is formed on the entire surface of the silicon substrate 4 by photolithography, and the exposed silicon semiconductor layer is formed by anisotropic etching using the resist mask 40 as a mask. 4 is etched to reduce the thickness of the silicon semiconductor layer 4 in the thinned region to the thickness (35 nm) of the silicon semiconductor layer 4 set in the thinned region 7.

このようにして、薄膜化されたP−拡散層15を形成し、その後に工程P2以降の工程を行えば、図8に示すフォトダイオード1を形成することができる。
以上説明したように、本実施例では、シリコン半導体層に形成されたP+拡散層とN+拡散層とを、P−拡散層を挟んで対向配置したフォトダイオードのP−拡散層の、層間絶縁膜との界面に隣接する原子列に、Si−H結合で形成されたUV−Aフィルタを形成するようにしたことによって、層間絶縁膜側から入射した光が、層間絶縁膜との界面に形成されたSi−H結合を通過するときに、シリコン半導体層の厚さに関らず、その結合エネルギでUV−A波の波長領域の紫外線を消失させることができ、UV−Aフィルタを除いて同じ構成とされているフォトダイオードと組合せることによって、演算によりUV−A波の波長領域のみの紫外線量を求めることができ、地上に到達する紫外線の大部分を占めるUV−A波の波長領域の紫外線量を安定して検出することができる紫外線センサを得ることができる。
If the thin P-diffusion layer 15 is formed in this way and then the processes after the process P2 are performed, the photodiode 1 shown in FIG. 8 can be formed.
As described above, in this embodiment, the interlayer insulating film of the P− diffusion layer of the photodiode in which the P + diffusion layer and the N + diffusion layer formed in the silicon semiconductor layer are opposed to each other with the P− diffusion layer interposed therebetween. By forming a UV-A filter formed of Si-H bonds in an atomic row adjacent to the interface with the light, incident light from the interlayer insulating film side is formed at the interface with the interlayer insulating film. Irrespective of the thickness of the silicon semiconductor layer when passing through the Si-H bond, UV light in the wavelength region of the UV-A wave can be eliminated by the bond energy, and the same except for the UV-A filter. By combining with the configured photodiode, it is possible to calculate the amount of ultraviolet rays only in the wavelength region of the UV-A wave by calculation, and in the wavelength region of the UV-A wave that occupies most of the ultraviolet rays reaching the ground. ultraviolet Amounts can be obtained an ultraviolet sensor which can be stably detected.

また、フォトダイオード1のP−拡散層15を形成するシリコン半導体層4の厚さを3nm以上、36nm以下の範囲の厚さとしたことによって、Si−H結合の結合エネルギでUV−A波の波長領域の紫外線がカットし、透過した可視光はシリコン半導体層の厚さによりカットすることができ、UV−B波の波長領域のみの紫外線量を単独で、選択的に検出することができるフォトダイオードを得ることができる。   Further, the thickness of the silicon semiconductor layer 4 forming the P-diffusion layer 15 of the photodiode 1 is set to a thickness in the range of 3 nm or more and 36 nm or less, so that the wavelength of the UV-A wave with the binding energy of the Si-H bond. Photodiode capable of selectively detecting the amount of ultraviolet light only in the wavelength region of the UV-B wave by cutting the ultraviolet light in the region and cutting the transmitted visible light depending on the thickness of the silicon semiconductor layer. Can be obtained.

なお、上記実施例においては、紫外線センサの2つのフォトダイオードは、セラミックス基板上に並列に配置するとして説明したが、これらを並列に配置する必要はなく、セラミックス基板上に配置されていればよい。
また、上記実施例においては、低濃度拡散層は、P型不純物を拡散させて形成するとして説明したが、N型の不純物を比較的低濃度に拡散させて形成しても、上記と同様の効果を得ることができる。
In the above-described embodiment, the two photodiodes of the ultraviolet sensor have been described as being arranged in parallel on the ceramic substrate. However, it is not necessary to arrange them in parallel, as long as they are arranged on the ceramic substrate. .
In the above embodiments, the low-concentration diffusion layer has been described as being formed by diffusing P-type impurities. However, even if an N-type impurity is formed by diffusing at a relatively low concentration, the same as described above. An effect can be obtained.

更に、上記実施例においては、P+拡散層は「π」字状、N+拡散層は「E」字状であるとして説明したが、それぞれの形状を逆にしてもよく、櫛歯部の数を更に多くしてもよい。
更に、上記実施例においては、P+拡散層およびN+拡散層には、櫛歯部を複数設け、これらを噛合わせて配置するとして説明したが、櫛歯部を設けずに、峰部のみを低濃度拡散層を挟んで対向配置するようにしてもよい。
Further, in the above embodiment, the P + diffusion layer is described as “π” -shaped, and the N + diffusion layer is described as “E” -shaped. However, the respective shapes may be reversed, and the number of comb-tooth portions may be changed. You may increase more.
Further, in the above-described embodiment, the P + diffusion layer and the N + diffusion layer are described as being provided with a plurality of comb teeth portions and meshed with each other. However, only the peak portions are reduced without providing the comb teeth portions. You may make it arrange | position opposingly on both sides of a density | concentration diffusion layer.

更に、上記実施例においては、半導体ウェハは、シリコン基板に絶縁層としての埋込み酸化膜を挟んで形成されたシリコン半導体層を有するSOI構造の半導体ウェハ、またはバルク基板からなる半導体ウェハであるとして説明したが、半導体ウェハは前記に限らず、絶縁層としてのサファイア基板上にシリコン半導体層を形成したSOS(Silicon On Sapphire)構造の半導体ウェハや、絶縁層としてのクオーツ基板上にシリコン半導体層を形成したSOQ(Silicon On Quartz)構造の半導体ウェハ等であってもよい。   Further, in the above embodiment, the semiconductor wafer is described as being an SOI structure semiconductor wafer having a silicon semiconductor layer formed with a buried oxide film as an insulating layer sandwiched between silicon substrates, or a semiconductor wafer made of a bulk substrate. However, the semiconductor wafer is not limited to the above, and a semiconductor wafer having an SOS (silicon on sapphire) structure in which a silicon semiconductor layer is formed on a sapphire substrate as an insulating layer, or a silicon semiconductor layer is formed on a quartz substrate as an insulating layer. It may be a semiconductor wafer having a SOQ (Silicon On Quartz) structure.

実施例のフォトダイオードの上面を示す説明図Explanatory drawing which shows the upper surface of the photodiode of an Example 実施例のフォトダイオードの断面を示す説明図Explanatory drawing which shows the cross section of the photodiode of an Example 実施例の紫外線センサの側面を示す説明図Explanatory drawing which shows the side surface of the ultraviolet sensor of an Example 実施例のフォトダイオードのシリコン半導体層と層間絶縁膜との界面近傍のシリコン原子の配列を示す説明図Explanatory drawing which shows the arrangement | sequence of the silicon atom of the interface vicinity of the silicon-semiconductor layer of the photodiode of an Example, and an interlayer insulation film 実施例のフォトダイオードの製造方法を示す説明図Explanatory drawing which shows the manufacturing method of the photodiode of an Example. 実施例のフォトダイオードの製造方法を示す説明図Explanatory drawing which shows the manufacturing method of the photodiode of an Example. 実施例の2つのフォトチップの分光感度を示すグラフThe graph which shows the spectral sensitivity of two photochips of an Example 実施例の他の態様のフォトダイオードの断面を示す説明図Explanatory drawing which shows the cross section of the photodiode of the other aspect of an Example. 図8のフォトダイオードの分光感度を示すグラフGraph showing the spectral sensitivity of the photodiode of FIG.

符号の説明Explanation of symbols

1 フォトダイオード
3 埋込み酸化膜
4 シリコン半導体層
6 ダイオード形成領域
9 素子分離層
10 素子分離領域
12 P+拡散層
12a、14a 峰部
12b、14b 櫛歯部
14 N+拡散層
15 P−拡散層
17 層間絶縁膜
18 コンタクトホール
19 コンタクトプラグ
20 配線
22 パッシベーション膜
24 界面
25 原子列
26 ダングリングボンド
27 UV−Aフィルタ
30 紫外線センサ
31a、31b フォトチップ
33 封止層
34 外部端子
35 セラミックス基板
36 端子穴
37 ワイヤ
40 レジストマスク
DESCRIPTION OF SYMBOLS 1 Photodiode 3 Embedded oxide film 4 Silicon semiconductor layer 6 Diode formation area 9 Element isolation layer 10 Element isolation area 12 P + diffusion layer 12a, 14a Peak part 12b, 14b Comb tooth part 14 N + diffusion layer 15 P- diffusion layer 17 Interlayer insulation Film 18 Contact hole 19 Contact plug 20 Wiring 22 Passivation film 24 Interface 25 Atomic array 26 Dangling bond 27 UV-A filter 30 UV sensor 31a, 31b Photo chip 33 Sealing layer 34 External terminal 35 Ceramic substrate 36 Terminal hole 37 Wire 40 Resist mask

Claims (5)

シリコン半導体層に形成された、P型の不純物を高濃度に拡散させたP型高濃度拡散層と、N型の不純物を高濃度に拡散させたN型高濃度拡散層とを、前記シリコン半導体層に、P型およびN型のいずれか一方の型の不純物を低濃度に拡散させて形成された低濃度拡散層を挟んで対向配置した横型PN接合形式のフォトダイオードにおいて、
前記シリコン半導体層上に層間絶縁膜を形成すると共に、前記低濃度拡散層の、前記層間絶縁膜との界面に隣接する原子列に、シリコンと水素の共有結合を形成したことを特徴とするフォトダイオード。
The silicon semiconductor includes a P-type high concentration diffusion layer formed by diffusing P-type impurities in a high concentration and an N-type high concentration diffusion layer formed by diffusing N-type impurities in a high concentration. In a lateral PN junction type photodiode in which a low-concentration diffusion layer formed by diffusing one of P-type and N-type impurities in a low concentration is sandwiched between layers,
An interlayer insulating film is formed on the silicon semiconductor layer, and a covalent bond of silicon and hydrogen is formed in an atomic column adjacent to the interface with the interlayer insulating film of the low-concentration diffusion layer. diode.
請求項1において、
前記低濃度拡散層が形成されるシリコン半導体層は、3nm以上、36nm以下の範囲の厚さを有することを特徴とするフォトダイオード。
In claim 1,
The silicon semiconductor layer in which the low concentration diffusion layer is formed has a thickness in the range of 3 nm to 36 nm.
シリコン半導体層に形成された、P型の不純物を高濃度に拡散させたP型高濃度拡散層と、N型の不純物を高濃度に拡散させたN型高濃度拡散層とを、前記シリコン半導体層に、P型およびN型のいずれか一方の型の不純物を低濃度に拡散させて形成された低濃度拡散層を挟んで対向配置した横型PN接合形式の2つのフォトダイオードを備え、
前記それぞれのフォトダイオードのシリコン半導体層上に層間絶縁膜を形成すると共に、一方の前記フォトダイオードの低濃度拡散層の、前記層間絶縁膜との界面に隣接する原子列に、シリコンと水素の共有結合を形成したことを特徴とする紫外線センサ。
The silicon semiconductor includes a P-type high concentration diffusion layer formed by diffusing P-type impurities in a high concentration and an N-type high concentration diffusion layer formed by diffusing N-type impurities in a high concentration. In the layer, two photodiodes of a lateral PN junction type arranged so as to face each other with a low-concentration diffusion layer formed by diffusing either one of P-type and N-type impurities at a low concentration,
An interlayer insulating film is formed on the silicon semiconductor layer of each photodiode, and silicon and hydrogen are shared in an atomic column adjacent to the interface with the interlayer insulating film of the low concentration diffusion layer of one of the photodiodes. An ultraviolet sensor characterized by forming a bond.
シリコン半導体層に形成された、P型の不純物を高濃度に拡散させたP型高濃度拡散層と、N型の不純物を高濃度に拡散させたN型高濃度拡散層とを、前記シリコン半導体層に、P型およびN型のいずれか一方の型の不純物を低濃度に拡散させて形成された低濃度拡散層を挟んで対向配置した横型PN接合形式のフォトダイオードを形成した半導体ウェハを準備する工程と、
前記シリコン半導体層上に層間絶縁膜を形成する工程と、
水素雰囲気中の熱処理により、前記低濃度拡散層の、前記層間絶縁膜との界面に隣接する原子列に、シリコンと水素の共有結合を形成する工程と、を備えることを特徴とするフォトダイオードの製造方法。
The silicon semiconductor includes a P-type high concentration diffusion layer formed by diffusing P-type impurities in a high concentration and an N-type high concentration diffusion layer formed by diffusing N-type impurities in a high concentration. A semiconductor wafer is prepared in which a lateral PN junction type photodiode is disposed in which a low-concentration diffusion layer formed by diffusing one of P-type and N-type impurities at a low concentration is sandwiched between layers. And a process of
Forming an interlayer insulating film on the silicon semiconductor layer;
Forming a covalent bond between silicon and hydrogen in an atomic column adjacent to the interface between the low-concentration diffusion layer and the interlayer insulating film by heat treatment in a hydrogen atmosphere. Production method.
請求項4において、
前記低濃度拡散層が形成されるシリコン半導体層は、3nm以上、36nm以下の範囲の厚さを有することを特徴とするフォトダイオードの製造方法。
In claim 4,
The method for manufacturing a photodiode, wherein the silicon semiconductor layer on which the low concentration diffusion layer is formed has a thickness in a range of 3 nm to 36 nm.
JP2008011906A 2008-01-22 2008-01-22 Photodiode, ultraviolet sensor including the same, and method for manufacturing photodiode Active JP4530179B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008011906A JP4530179B2 (en) 2008-01-22 2008-01-22 Photodiode, ultraviolet sensor including the same, and method for manufacturing photodiode
US12/318,832 US8283743B2 (en) 2008-01-22 2009-01-09 Photodiode, ultraviolet sensor having the photodiode, and method of producing the photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008011906A JP4530179B2 (en) 2008-01-22 2008-01-22 Photodiode, ultraviolet sensor including the same, and method for manufacturing photodiode

Publications (2)

Publication Number Publication Date
JP2009176834A JP2009176834A (en) 2009-08-06
JP4530179B2 true JP4530179B2 (en) 2010-08-25

Family

ID=40875795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008011906A Active JP4530179B2 (en) 2008-01-22 2008-01-22 Photodiode, ultraviolet sensor including the same, and method for manufacturing photodiode

Country Status (2)

Country Link
US (1) US8283743B2 (en)
JP (1) JP4530179B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4574667B2 (en) * 2007-11-30 2010-11-04 Okiセミコンダクタ株式会社 Photodiode manufacturing method and photodiode formed using the same
KR101088204B1 (en) * 2008-11-11 2011-11-30 주식회사 동부하이텍 Image sensor and method for manufacturign thesame
WO2011023922A1 (en) * 2009-08-28 2011-03-03 X-Fab Semiconductor Foundries Ag Improved pn junctions and methods
GB0915501D0 (en) * 2009-09-04 2009-10-07 Univ Warwick Organic photosensitive optoelectronic devices
RU2639990C2 (en) * 2013-03-15 2017-12-25 МТПВ Пауэ Корпорейшн Method and device for multi-module devices without mechanical isolation
US10546963B2 (en) 2014-12-01 2020-01-28 Luxtera, Inc. Method and system for germanium-on-silicon photodetectors without germanium layer contacts
JP6886307B2 (en) * 2017-02-15 2021-06-16 エイブリック株式会社 Optical sensor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232531A (en) * 1989-03-07 1990-09-14 Hamamatsu Photonics Kk Photodetector device
JPH02240531A (en) * 1989-03-14 1990-09-25 Hamamatsu Photonics Kk Photodetector
JPH10509806A (en) * 1994-08-12 1998-09-22 ブラント・エイ・ペインター,ザ・サード Optoelectronic coupler
JP2002314117A (en) * 2001-04-09 2002-10-25 Seiko Epson Corp Lateral semiconductor photodetector of pin structure
JP2006147661A (en) * 2004-11-16 2006-06-08 Matsushita Electric Ind Co Ltd Photo detector and its manufacturing method, and camera
JP2007081190A (en) * 2005-09-15 2007-03-29 Sanyo Electric Co Ltd Field effect transistor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2461359A1 (en) * 1979-07-06 1981-01-30 Commissariat Energie Atomique METHOD AND APPARATUS FOR HYDROGENATION OF SEMICONDUCTOR DEVICES
US5955776A (en) * 1996-12-04 1999-09-21 Ball Semiconductor, Inc. Spherical shaped semiconductor integrated circuit
US6452669B1 (en) * 1998-08-31 2002-09-17 Digital Optics Corp. Transmission detection for vertical cavity surface emitting laser power monitor and system
JP2001326199A (en) * 2000-05-17 2001-11-22 Hitachi Ltd Manufacturing method of semiconductor integrated circuit device
JP4869509B2 (en) * 2001-07-17 2012-02-08 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP4241228B2 (en) * 2003-07-11 2009-03-18 キヤノン株式会社 Imaging device
US20050012829A1 (en) * 2003-07-17 2005-01-20 Atsushi Tashiro Resolution selector for image capturing system
KR100669270B1 (en) * 2003-08-25 2007-01-16 도시바 마쯔시따 디스플레이 테크놀로지 컴퍼니, 리미티드 Display device and photoelectric conversion device
KR100606900B1 (en) * 2004-12-21 2006-08-01 동부일렉트로닉스 주식회사 CMOS image sensor and method for fabricating the same
JP2007053537A (en) * 2005-08-17 2007-03-01 Pentax Corp Imaging apparatus
JP2007067331A (en) 2005-09-02 2007-03-15 Matsushita Electric Works Ltd Ultraviolet sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232531A (en) * 1989-03-07 1990-09-14 Hamamatsu Photonics Kk Photodetector device
JPH02240531A (en) * 1989-03-14 1990-09-25 Hamamatsu Photonics Kk Photodetector
JPH10509806A (en) * 1994-08-12 1998-09-22 ブラント・エイ・ペインター,ザ・サード Optoelectronic coupler
JP2002314117A (en) * 2001-04-09 2002-10-25 Seiko Epson Corp Lateral semiconductor photodetector of pin structure
JP2006147661A (en) * 2004-11-16 2006-06-08 Matsushita Electric Ind Co Ltd Photo detector and its manufacturing method, and camera
JP2007081190A (en) * 2005-09-15 2007-03-29 Sanyo Electric Co Ltd Field effect transistor

Also Published As

Publication number Publication date
US20090184388A1 (en) 2009-07-23
US8283743B2 (en) 2012-10-09
JP2009176834A (en) 2009-08-06

Similar Documents

Publication Publication Date Title
JP4530180B2 (en) Ultraviolet sensor and manufacturing method thereof
US8044484B2 (en) Ultraviolet detecting device and manufacturing method thereof, and ultraviolet quantity measuring apparatus
JP4530179B2 (en) Photodiode, ultraviolet sensor including the same, and method for manufacturing photodiode
KR101486286B1 (en) Photodiode and photo ic using the same
JP4302751B2 (en) Semiconductor optical sensor
JP4232814B2 (en) Photodiode and photo IC provided with the same
JP4574667B2 (en) Photodiode manufacturing method and photodiode formed using the same
KR101450342B1 (en) Semiconductor device, light measuring apparatus, light detecting apparatus, and method for manufacturing the semiconductor device
US10559607B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2009170615A (en) Optical sensor, and photo ic with the same
US7709920B2 (en) Photodiode arrangement
US7935934B2 (en) Photosensor and photo IC equipped with same
JP2008147606A (en) Photodiode
JP2010232509A (en) Optical semiconductor, and method of manufacturing optical semiconductor
US20170287954A1 (en) Semiconductor device and semiconductor device manufacturing method
JP2018163968A (en) Semiconductor device with ultraviolet radiation light receiving element and manufacturing method of the same
JP2009278037A (en) Photocurrent estimation method and screening method of semiconductor uv sensor using same
JP2011138942A (en) Semiconductor element and method of fabricating semiconductor element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4530179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350