JP4528173B2 - Residue recovery method in high temperature and high pressure treatment equipment for organic waste - Google Patents

Residue recovery method in high temperature and high pressure treatment equipment for organic waste Download PDF

Info

Publication number
JP4528173B2
JP4528173B2 JP2005078315A JP2005078315A JP4528173B2 JP 4528173 B2 JP4528173 B2 JP 4528173B2 JP 2005078315 A JP2005078315 A JP 2005078315A JP 2005078315 A JP2005078315 A JP 2005078315A JP 4528173 B2 JP4528173 B2 JP 4528173B2
Authority
JP
Japan
Prior art keywords
valve
residue
pressure
drain tank
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005078315A
Other languages
Japanese (ja)
Other versions
JP2006255620A (en
Inventor
統一郎 佐々木
耕太郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2005078315A priority Critical patent/JP4528173B2/en
Publication of JP2006255620A publication Critical patent/JP2006255620A/en
Application granted granted Critical
Publication of JP4528173B2 publication Critical patent/JP4528173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、有機性廃棄物を臨界温度以上、臨界温度以下の反応器において酸化分解する高温高圧処理装置における残渣回収方法に関するものである。   The present invention relates to a residue recovery method in a high-temperature and high-pressure treatment apparatus that oxidatively decomposes organic waste in a reactor having a critical temperature that is not lower than the critical temperature.

現在、有機性廃棄物の処理方法としては焼却が主流であるが、焼却を行うためにはある程度大きなプラントを必要とするため、大量の廃棄物が排出されない地域では焼却は適していない。そこで焼却に替わる処理技術として、有機性廃棄物の高温高圧処理の開発が進められている。   At present, incineration is the main method for treating organic waste. However, incineration is not suitable in areas where a large amount of waste is not discharged because a large plant is required for incineration. Therefore, development of high-temperature and high-pressure treatment of organic waste is being promoted as a treatment technique to replace incineration.

高温高圧処理の代表的な技術として、超臨界処理がある。超臨界処理は374℃以上、22MPa以上の超臨界水を酸化処理の反応場として利用する技術である。この技術では有機性廃棄物を例えば22〜25MPa、温度600〜650℃で酸化処理するが、反応器内に有機性廃棄物を送り込むポンプの吐出圧を25MPa以上としなければならないため、固形分濃度が10%以上の有機性廃棄物を処理することは困難である。このほか、反応条件が過酷であるために装置の腐食等の問題があるほか、酸化剤である酸素や空気の昇圧にも多くのコストが必要となるなどの課題が残されている。   A typical technique for high-temperature and high-pressure processing is supercritical processing. Supercritical processing is a technique that uses supercritical water at 374 ° C. or higher and 22 MPa or higher as a reaction field for oxidation treatment. In this technique, organic waste is oxidized at a temperature of, for example, 22 to 25 MPa and a temperature of 600 to 650 ° C. However, since the discharge pressure of the pump for feeding the organic waste into the reactor must be 25 MPa or more, the solid content concentration However, it is difficult to treat 10% or more organic waste. In addition to this, there are problems such as corrosion of the apparatus due to severe reaction conditions, and a large amount of cost for pressurization of oxygen and air as oxidants.

高温高圧処理の他の技術として、湿式酸化処理がある。この湿式酸化処理は温度、圧力ともに臨界点以下の液相条件にて有機物を酸化処理する技術である。しかしこの処理は酸化の度合いに問題があり、特に窒素がこの条件下でアンモニアに転換され、このアンモニアをほとんど分解できないため、アンモニアが排水中に排出されてしまうという問題がある。   There is a wet oxidation process as another technique of the high temperature and high pressure process. This wet oxidation treatment is a technique for oxidizing organic substances under liquid phase conditions that are below the critical point for both temperature and pressure. However, this treatment has a problem in the degree of oxidation, and in particular, nitrogen is converted into ammonia under these conditions, and this ammonia can hardly be decomposed, so that ammonia is discharged into the waste water.

このほか、臨界温度以上、臨界圧力以下の条件下で有機物を酸化分解処理する技術も提案されている。この技術は、特許文献1に示されるように水流れを利用して有機物を反応場に移動させ、例えば10MPa、600℃で酸化分解させる。しかしこの特許文献1に示される方法では水流れを利用するために固形分濃度が低い廃棄物を処理することしかできず、装置容積に対して処理可能な固形分が小さいという難点がある。   In addition, a technique for oxidizing and decomposing organic substances under a condition of a critical temperature or higher and a critical pressure or lower has been proposed. In this technique, as shown in Patent Document 1, an organic substance is moved to a reaction field using a water flow, and is oxidatively decomposed at, for example, 10 MPa and 600 ° C. However, in the method disclosed in Patent Document 1, wastes having a low solid content concentration can only be processed in order to use the water flow, and there is a problem that the solid content that can be processed is small relative to the volume of the apparatus.

そこで本発明者は、臨界温度以上、臨界圧力以下の条件下で固形分濃度が高い(10%以上)有機物を酸化分解処理する技術を開発中である。この技術においては有機性廃棄物が予熱器により加熱され、反応器により酸化分解されて無機化される。反応器内部の固形分濃度が高いために反応熱を利用して自燃する。また反応器は残渣と排ガスを分離して排出し、排ガスは予熱器の熱源として利用される。残渣は粉末状の無機分である。   Therefore, the present inventor is developing a technique for oxidatively decomposing an organic substance having a high solid content concentration (10% or more) under conditions of a critical temperature or higher and a critical pressure or lower. In this technique, organic waste is heated by a preheater, oxidized and decomposed by a reactor, and mineralized. Because of the high solid content in the reactor, it burns itself using the heat of reaction. The reactor separates and discharges the residue and exhaust gas, and the exhaust gas is used as a heat source for the preheater. The residue is a powdered inorganic content.

反応器には二重バルブを備えた垂直な残渣排出ラインが設けられ、先ず反応器に近い第1バルブを開いて残渣を下方の第2バルブの位置まで落下させ、次に第1バルブを閉じたうえで第2バルブを開いて残渣を系外に排出させ回収するようになっている。ところが残渣は反応器から残渣排出ラインに単なる重力落下により移行する構造であるため、上記の残渣回収方法では残渣排出ライン(特に第1バルブの上方及び第2バルブの下方)で残渣が閉塞することがあり、固形分濃度が高い有機性廃棄物を酸化分解処理する技術を実用化するうえで妨げとなっていた。
特開平10−137774号公報
The reactor is provided with a vertical residue discharge line with a double valve, first opening the first valve close to the reactor to drop the residue to the position of the second valve below, then closing the first valve In addition, the second valve is opened, and the residue is discharged out of the system and collected. However, since the residue moves from the reactor to the residue discharge line by mere gravity drop, the residue is blocked in the residue discharge line (particularly above the first valve and below the second valve) in the above-described residue recovery method. This has hindered the practical application of the technology for oxidative decomposition treatment of organic waste having a high solid content concentration.
Japanese Patent Laid-Open No. 10-137774

従って本発明の目的は、臨界温度以上、臨界圧力以下の条件下で固形分濃度が高い有機物を酸化分解処理する反応器から、残渣を閉塞させることなく排出することができる残渣回収方法を提供することである。   Accordingly, an object of the present invention is to provide a residue recovery method capable of discharging a residue having a high solid content under oxidative decomposition under a condition of a critical temperature or higher and a critical pressure or lower without clogging the residue. That is.

上記の課題を解決するためになされた本発明は、有機性廃棄物を臨界温度以上、臨界圧力以下の反応器により酸化分解し、残渣を第1バルブ、第2バルブ、第1ドレンタンク、第3バルブ、第2ドレンタンクを直列に備えた残渣排出ラインを経由して回収する方法であって、第2バルブの下方に反応器内圧を導くラインの第4バルブを開いた状態で、第2ドレンタンクを反応器内圧よりも低い所定圧力まで昇圧し、第1バルブを閉、第2バルブを開として第4バルブを閉じて第1バルブから第3バルブまでの領域を反応器内圧とし、次に第3バルブを開として差圧を利用して第1バルブ以下の残渣を第1ドレンタンク及び第2ドレンタンクに回収し、次に第1バルブを開、第2バルブを閉として第1バルブより上の領域に反応器内圧を作用させて残渣を第2バルブまで移動させたうえ、第1バルブを閉、第2バルブを開として残渣を第1ドレンタンク及び第2ドレンタンクに回収することを特徴とするものである。 In order to solve the above problems, the present invention is directed to oxidatively decomposing organic waste by a reactor having a critical temperature or higher and a critical pressure or lower, and the residue is first valve, second valve, first drain tank, first drain, This is a method of recovering via a residue discharge line equipped with a 3-valve and a second drain tank in series, and in a state where the fourth valve of the line leading the reactor internal pressure is opened below the second valve, The drain tank is increased to a predetermined pressure lower than the reactor internal pressure, the first valve is closed, the second valve is opened, the fourth valve is closed, and the region from the first valve to the third valve is used as the reactor internal pressure. The third valve is opened and the residue below the first valve is collected in the first drain tank and the second drain tank using the differential pressure, and then the first valve is opened and the second valve is closed. Reactor pressure is applied to the upper region After moving the residue to a second valve Te, the first valve closed, it is characterized in that recovering the residue second valve is opened to the first drain tank and the second drain tank.

なお、何れの発明においても第2ドレンタンクの昇圧を不活性ガスにより行うことが好ましく、第1バルブ以下の領域を反応器内圧まで昇圧したうえ、第4バルブを開いて全体を反応器内圧に復帰させる工程を付加することが好ましい。   In any of the inventions, it is preferable to increase the pressure of the second drain tank with an inert gas. The area below the first valve is increased to the reactor internal pressure, and the fourth valve is opened to bring the entire pressure to the reactor internal pressure. It is preferable to add a step of returning.

本発明によれば、反応器に直結された残渣排出ラインの内部に差圧を発生させ、残渣排出ライン中に堆積した残渣をドレンタンクに排出させる。従って、固形分濃度が高い有機物を酸化分解処理する反応器から、残渣を閉塞させることなく排出することができる。しかもその場合にも反応器の内部圧力はほとんど変動せず、反応系に外乱を与えることがない。   According to the present invention, a differential pressure is generated inside the residue discharge line directly connected to the reactor, and the residue accumulated in the residue discharge line is discharged to the drain tank. Therefore, it is possible to discharge the organic matter having a high solid content concentration from the reactor for oxidative decomposition treatment without clogging the residue. In this case, the internal pressure of the reactor hardly fluctuates and the reaction system is not disturbed.

図1は装置構成を示す概念図であり、1は予熱器、2,3は反応器である。例えば下水汚泥などの有機性廃棄物は固形分濃度が10%以上のスラリーの状態でスラリー注入器4によって加圧され、予熱器1に注入される。反応器2,3の温度は臨界温度である374℃以上(600℃以下)に維持されており、予熱器1は有機性廃棄物をこの温度まで予熱したうえ反応器2に送り込む。また予熱器1及び反応器2,3の内部圧力は臨界圧力以下の4〜10MPaの範囲にあるが、これらの機器は内部で連通しているため全て同一圧力であり、この圧力を本明細書では「反応器内圧」と呼ぶ。なお本発明において反応器は単一であってもよい。   FIG. 1 is a conceptual diagram showing an apparatus configuration, wherein 1 is a preheater, and 2 and 3 are reactors. For example, organic waste such as sewage sludge is pressurized by the slurry injector 4 in a slurry state with a solid content concentration of 10% or more and injected into the preheater 1. The temperature of the reactors 2 and 3 is maintained at a critical temperature of 374 ° C. or higher (600 ° C. or lower), and the preheater 1 preheats the organic waste to this temperature and sends it to the reactor 2. The internal pressures of the preheater 1 and the reactors 2 and 3 are in the range of 4 to 10 MPa below the critical pressure, but these devices are all in the same pressure because they communicate with each other. This is called “reactor internal pressure”. In the present invention, a single reactor may be used.

有機性廃棄物は反応器2、3の内部を送り羽根5,6により進行しながら、臨界温度以上、臨界圧力以下の反応場において酸化分解され、炭酸ガス、窒素ガス等の排ガスと、無機質の残渣となる。酸化分解のために酸素が予熱器1及び反応器2,3の内部に供給される。   The organic waste proceeds inside the reactors 2 and 3 by the feed blades 5 and 6 and is oxidatively decomposed in a reaction field of a critical temperature or higher and a critical pressure or lower, exhaust gas such as carbon dioxide gas, nitrogen gas, etc. It becomes a residue. Oxygen is supplied into the preheater 1 and the reactors 2 and 3 for oxidative decomposition.

反応器3の後端部の下面には、垂直な残渣排出ラインが直結されている。残渣排出ラインは、第1バルブ11、第2バルブ12、第1ドレンタンク13、第3バルブ14、第2ドレンタンク15を直列に備えたものである。また予熱器1と第2バルブ12の下方とを連通し、残渣排出ラインに反応器内圧を導くライン7があり、このライン7に第4バルブ16が設けられている。残渣排出ラインのうちライン7の接続点よりも下方側は反応器内圧を利用して残渣の閉塞を防止し易いが、上方側はこれまでは堆積した残渣を除去しにくかった部位である。   A vertical residue discharge line is directly connected to the lower surface of the rear end portion of the reactor 3. The residue discharge line includes a first valve 11, a second valve 12, a first drain tank 13, a third valve 14, and a second drain tank 15 in series. In addition, there is a line 7 that communicates the preheater 1 with the lower part of the second valve 12 and guides the reactor internal pressure to the residue discharge line. A fourth valve 16 is provided in this line 7. Of the residue discharge line, the portion below the connection point of the line 7 is easy to prevent clogging of the residue using the internal pressure of the reactor, whereas the portion above the portion is the portion where it has been difficult to remove the accumulated residue.

以下に図2〜図9を参照しつつ、本発明の工程を説明する。なお、ここでは反応器内圧を4MPaと仮定して説明する。また図2以下における四角枠は、圧力が同一である範囲を表示するためのものである。バルブは開を○、閉を●で表示した。   Hereinafter, the steps of the present invention will be described with reference to FIGS. Here, description will be made assuming that the internal pressure of the reactor is 4 MPa. Further, the square frames in FIG. 2 and subsequent figures are for displaying a range where the pressure is the same. Valves are indicated by open circles and closed circles.

まず図2は通常運転中の状態を示す図であり、第3バルブ14が閉、第4バルブ16が開の状態にあり、第2ドレンタンク15の内圧は0MPaである。残渣排出ラインの内圧はライン7の第4バルブ16が開であるため反応器内圧である4MPaに保たれており、二重バルブを構成する第1バルブ11と第2バルブ12とを交互に開閉することによって、残渣を第1ドレンタンク13に落下させている。この残渣排出は重力落下によるもので、閉塞発生の可能性のあることは前記したとおりである。   First, FIG. 2 is a diagram showing a state during normal operation, in which the third valve 14 is closed and the fourth valve 16 is open, and the internal pressure of the second drain tank 15 is 0 MPa. The internal pressure of the residue discharge line is kept at 4 MPa, which is the internal pressure of the reactor because the fourth valve 16 of the line 7 is open, and the first valve 11 and the second valve 12 constituting the double valve are alternately opened and closed. As a result, the residue is dropped into the first drain tank 13. This residue discharge is caused by gravity drop, and as described above, there is a possibility of occurrence of clogging.

残渣回収の工程は図3以下に示すとおりである。最初に、図3に示すように第2ドレンタンク15を反応器内圧よりも低い所定圧力まで昇圧する。昇圧はアルゴンガスのような不活性ガスを用いて行い、例えば3MPaまで昇圧する。窒素ガスを使用するとアンモニアが生成されるおそれがあるので好ましくない。反応器内圧との圧力差が小さすぎると残渣の排出が十分に行われず、反応器内圧との圧力差が大きすぎると反応系への影響が拡大するので、0.5〜1.5MPa程度の圧力差が適当である。そして第1バルブ11を閉、第2バルブ12を開とする。   The steps of collecting the residue are as shown in FIG. First, as shown in FIG. 3, the second drain tank 15 is increased to a predetermined pressure lower than the reactor internal pressure. The pressure is increased using an inert gas such as argon gas, and the pressure is increased to 3 MPa, for example. Use of nitrogen gas is not preferable because ammonia may be generated. If the pressure difference with the reactor internal pressure is too small, the residue will not be discharged sufficiently, and if the pressure difference with the reactor internal pressure is too large, the influence on the reaction system will increase, so that the pressure is about 0.5 to 1.5 MPa. The pressure difference is appropriate. Then, the first valve 11 is closed and the second valve 12 is opened.

次に図4のようにライン7の第4バルブ16を閉じる。このとき第1バルブ11から第3バルブ12までの領域は反応器内圧である4MPa、第3バルブ12よりも下方部分は3MPaである。この状態から次に、図5のように第3バルブ14を開とする。この瞬間、上記の圧力差によって第1バルブ11以下の残渣は下方に移動し、第1ドレンタンク13及び第2ドレンタンク15に回収される。なお第3バルブ14を開としたため、第1バルブ11以下の領域の圧力は反応器内圧と前期所定圧力との中間の、例えば3.5MPaとなる。   Next, the fourth valve 16 in the line 7 is closed as shown in FIG. At this time, the region from the first valve 11 to the third valve 12 is 4 MPa which is the reactor internal pressure, and the portion below the third valve 12 is 3 MPa. Next, the third valve 14 is opened as shown in FIG. At this moment, the residue below the first valve 11 moves downward due to the pressure difference and is collected in the first drain tank 13 and the second drain tank 15. Since the third valve 14 is opened, the pressure in the area below the first valve 11 is intermediate between the reactor internal pressure and the predetermined pressure in the previous period, for example, 3.5 MPa.

次に、図6のように第1バルブ11と第2バルブ12とを共に閉とし、第1バルブ11と第2バルブ12との間の領域を3.5MPaとする。このとき第1バルブ11の上部は反応器内圧である4MPa、第1バルブ11の下部は3.5MPaとなっており、圧力差が形成されている。この状態で、図7のように第1バルブ11を開とすると、その瞬間に上記の圧力差により反応器6からの高圧ガスが残渣排出ラインに向かって流れ、第1バルブ11の上下に堆積した残渣を第2バルブ12まで移動させる。   Next, as shown in FIG. 6, both the first valve 11 and the second valve 12 are closed, and the area between the first valve 11 and the second valve 12 is set to 3.5 MPa. At this time, the upper part of the first valve 11 is 4 MPa which is the internal pressure of the reactor, and the lower part of the first valve 11 is 3.5 MPa, so that a pressure difference is formed. In this state, when the first valve 11 is opened as shown in FIG. 7, the high pressure gas from the reactor 6 flows toward the residue discharge line due to the pressure difference at that moment, and accumulates on the top and bottom of the first valve 11. The residue is moved to the second valve 12.

次に図8のように第1バルブ11を閉、第2バルブ12を開とし、第2バルブ12上まで移動してきた残渣を第1ドレンタンク13及び第2ドレンタンク15に回収する。なお、図6から図8までの工程は数回繰り返してもよい。第1バルブ11が開かれるときには必ず第2バルブ12が閉じているので、反応系に圧力変動が生じることはない。   Next, as shown in FIG. 8, the first valve 11 is closed and the second valve 12 is opened, and the residue that has moved up to the second valve 12 is collected in the first drain tank 13 and the second drain tank 15. 6 to 8 may be repeated several times. Since the second valve 12 is always closed when the first valve 11 is opened, no pressure fluctuation occurs in the reaction system.

このようにして残渣回収が終了したのち、図9に示すように第1バルブ11以下の領域を不活性ガスにより反応器内圧である4MPaまで昇圧する。そしてライン7の第4バルブ16を開とし、通常運転に復帰する。なお、第1ドレンタンク13及び第2ドレンタンク15に回収された残渣は第2バルブ12及び第4バルブ16を閉として適宜取り出される。   After the residue recovery is completed in this way, as shown in FIG. 9, the area below the first valve 11 is increased to 4 MPa, which is the reactor internal pressure, by an inert gas. And the 4th valve 16 of line 7 is opened, and it returns to normal operation. The residue collected in the first drain tank 13 and the second drain tank 15 is appropriately taken out with the second valve 12 and the fourth valve 16 closed.

上記したように、本発明によればバルブ操作により残渣排出ラインの内部に適度の差圧を発生させ、この差圧を利用して残渣排出ライン中に堆積した残渣をドレンタンクに排出させることができる。特に従来は閉塞しやすかった第1バルブ11の上部の残渣についても、確実に排出させることができる。しかもその場合にも反応系に外乱を与えることがない利点がある。なお、反応系から排出される水蒸気により残渣排出ライン内部の残渣が湿潤すると、閉塞が促進される。このため残渣排出ラインの外周にヒータを設けて加熱し、湿潤を防止することが好ましい。   As described above, according to the present invention, an appropriate differential pressure is generated inside the residue discharge line by operating the valve, and the residue accumulated in the residue discharge line can be discharged to the drain tank using this differential pressure. it can. In particular, the residue on the upper portion of the first valve 11 that has been easily blocked can be reliably discharged. Moreover, even in that case, there is an advantage that the reaction system is not disturbed. In addition, when the residue inside a residue discharge line gets wet with the water vapor | steam discharged | emitted from a reaction system, obstruction | occlusion is accelerated | stimulated. For this reason, it is preferable to prevent the wetting by providing a heater on the outer periphery of the residue discharge line.

装置構成を示す概念図である。It is a conceptual diagram which shows an apparatus structure. 通常運転中のバルブ開閉状態を示す説明図である。It is explanatory drawing which shows the valve opening / closing state during normal driving | operation. 第2ドレンタンクを所定圧力まで昇圧した状態を示す説明図である。It is explanatory drawing which shows the state which pressure-rised the 2nd drain tank to predetermined pressure. 第4バルブを閉じた状態を示す説明図である。It is explanatory drawing which shows the state which closed the 4th valve | bulb. 第3バルブを開いた状態を示す説明図である。It is explanatory drawing which shows the state which opened the 3rd valve | bulb. 第1バルブと第2バルブを閉じた状態を示す説明図である。It is explanatory drawing which shows the state which closed the 1st valve | bulb and the 2nd valve | bulb. 第1バルブを開いた状態を示す説明図である。It is explanatory drawing which shows the state which opened the 1st valve | bulb. 第1バルブを閉じ、第2バルブを開いた状態を示す説明図である。It is explanatory drawing which shows the state which closed the 1st valve and opened the 2nd valve. 第4バルブを開いた状態を示す説明図である。It is explanatory drawing which shows the state which opened the 4th valve | bulb.

符号の説明Explanation of symbols

1 1は予熱器
2 反応器
3 反応器
4 スラリー注入器
5 送り羽根
6 送り羽根
7 反応器内圧を導くライン
11 第1バルブ
12 第2バルブ
13 第1ドレンタンク
14 第3バルブ
15 第2ドレンタンク
16 第4バルブ
DESCRIPTION OF SYMBOLS 1 1 Preheater 2 Reactor 3 Reactor 4 Slurry injector 5 Feed blade 6 Feed blade 7 Line 11 which guides reactor internal pressure 11 1st valve 12 2nd valve 13 1st drain tank 14 3rd valve 15 2nd drain tank 16 4th valve

Claims (3)

有機性廃棄物を臨界温度以上、臨界圧力以下の反応器により酸化分解した残渣を、第1バルブ、第2バルブ、第1ドレンタンク、第3バルブ、第2ドレンタンクを直列に備えた残渣排出ラインを経由して回収する方法であって、第2バルブの下方に反応器内圧を導くラインの第4バルブを開いた状態で、第2ドレンタンクを反応器内圧よりも低い所定圧力まで昇圧し、第1バルブを閉、第2バルブを開として第4バルブを閉じて第1バルブから第3バルブまでの領域を反応器内圧とし、次に第3バルブを開として差圧を利用して第1バルブ以下の残渣を第1ドレンタンク及び第2ドレンタンクに回収し、次に第1バルブを開、第2バルブを閉として第1バルブより上の領域に反応器内圧を作用させて残渣を第2バルブまで移動させたうえ、第1バルブを閉、第2バルブを開として残渣を第1ドレンタンク及び第2ドレンタンクに回収することを特徴とする有機性廃棄物の高温高圧処理装置における残渣回収方法。   Residue from organic waste oxidatively decomposed by a reactor at a critical temperature or higher and a critical pressure or lower is discharged from the first valve, second valve, first drain tank, third valve, and second drain tank in series. In this method, the second drain tank is raised to a predetermined pressure lower than the reactor internal pressure with the fourth valve of the line leading the reactor internal pressure below the second valve open. The first valve is closed, the second valve is opened, the fourth valve is closed, the region from the first valve to the third valve is used as the reactor internal pressure, and then the third valve is opened and the differential pressure is used. Residues of 1 valve or less are collected in the first drain tank and the second drain tank, then the first valve is opened, the second valve is closed, and the internal pressure of the reactor is applied to the region above the first valve to remove the residue. After moving to the second valve, Closing the valve, the residue recovery method at high pressure treatment apparatus of organic waste and recovering the residue second valve is opened to the first drain tank and the second drain tank. 第2ドレンタンクの昇圧を不活性ガスにより行うことを特徴とする請求項1記載の有機性廃棄物の高温高圧処理装置における残渣回収方法。 The method for recovering residues in a high-temperature and high-pressure treatment apparatus for organic waste according to claim 1, wherein the second drain tank is pressurized with an inert gas. 第1バルブ以下の領域を反応器内圧まで昇圧したうえ、第4バルブを開いて全体を反応器内圧に復帰させる工程を付加することを特徴とする請求項1記載の有機性廃棄物の高温高圧処理装置における残渣回収方法。
2. The high-temperature and high-pressure of organic waste according to claim 1, further comprising the step of increasing the region below the first valve to the reactor internal pressure and opening the fourth valve to restore the whole to the reactor internal pressure. Residue collection method in processing equipment.
JP2005078315A 2005-03-18 2005-03-18 Residue recovery method in high temperature and high pressure treatment equipment for organic waste Active JP4528173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005078315A JP4528173B2 (en) 2005-03-18 2005-03-18 Residue recovery method in high temperature and high pressure treatment equipment for organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005078315A JP4528173B2 (en) 2005-03-18 2005-03-18 Residue recovery method in high temperature and high pressure treatment equipment for organic waste

Publications (2)

Publication Number Publication Date
JP2006255620A JP2006255620A (en) 2006-09-28
JP4528173B2 true JP4528173B2 (en) 2010-08-18

Family

ID=37095406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005078315A Active JP4528173B2 (en) 2005-03-18 2005-03-18 Residue recovery method in high temperature and high pressure treatment equipment for organic waste

Country Status (1)

Country Link
JP (1) JP4528173B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555765A (en) * 1978-06-30 1980-01-16 Kawasaki Heavy Ind Ltd Method and apparatus for throwing-in and discharging of solid granular substance for high pressure system
JPH11290874A (en) * 1998-04-14 1999-10-26 Ishikawajima Harima Heavy Ind Co Ltd Supercritical hydrothermal reaction treatment of organic substance and treating plant therefor
JP2000033355A (en) * 1998-07-21 2000-02-02 Hitachi Plant Eng & Constr Co Ltd Treatment of organic waste using high-temperature and high-pressure steam
JP2002028613A (en) * 2000-07-19 2002-01-29 Tokyokoki Seizosho Ltd High temperature high pressure submerged oxidation decomposition device
JP2003136095A (en) * 2001-11-05 2003-05-13 Toshiba Corp Organic matter treatment system and method for discharging residual solid from the system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555765A (en) * 1978-06-30 1980-01-16 Kawasaki Heavy Ind Ltd Method and apparatus for throwing-in and discharging of solid granular substance for high pressure system
JPH11290874A (en) * 1998-04-14 1999-10-26 Ishikawajima Harima Heavy Ind Co Ltd Supercritical hydrothermal reaction treatment of organic substance and treating plant therefor
JP2000033355A (en) * 1998-07-21 2000-02-02 Hitachi Plant Eng & Constr Co Ltd Treatment of organic waste using high-temperature and high-pressure steam
JP2002028613A (en) * 2000-07-19 2002-01-29 Tokyokoki Seizosho Ltd High temperature high pressure submerged oxidation decomposition device
JP2003136095A (en) * 2001-11-05 2003-05-13 Toshiba Corp Organic matter treatment system and method for discharging residual solid from the system

Also Published As

Publication number Publication date
JP2006255620A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP2726293B2 (en) Solid body separation method and apparatus in wet oxidation type process
US6709602B2 (en) Process for hydrothermal treatment of materials
US20110180381A1 (en) Plasma method for disposing of waste material, and apparatus therefor
JP4703227B2 (en) Wastewater treatment method
JP4528173B2 (en) Residue recovery method in high temperature and high pressure treatment equipment for organic waste
US20100257860A1 (en) Air Vent in Main Steam Duct of Steam Turbine
JP2002273494A (en) Method of treating organic solid containing inorganic salt, particularly sewer sludge
JP4355246B2 (en) High temperature and high pressure treatment equipment for organic waste
JP4763789B2 (en) Treatment method of waste generated from terephthalic acid process
JP4716771B2 (en) Sludge treatment apparatus and sludge treatment method using the same
CN113474305B (en) Aqueous effluent treatment system
JP2003136095A (en) Organic matter treatment system and method for discharging residual solid from the system
JP4977043B2 (en) Ion exchange resin processing apparatus and method
JP2005246153A (en) High temperature/high pressure treatment method for organic waste
JP2012055831A (en) Method for treating waste liquid
JP4355243B2 (en) High temperature and high pressure treatment equipment for organic waste
TWI777854B (en) Hydrothermal treatment apparatus and hydrothermal treatment system
JP2001149767A5 (en)
JP2004057925A (en) Hydrothermal reactor and hydrothermal reaction device
Bridle et al. Critical factors for sludge pyrolysis in Australia
FR2718981A1 (en) Installation for the treatment of heterogeneous waste by wet oxidation implemented using an autoclave.
JP2005152806A (en) Wastewater treatment method
JP2007117944A (en) Method for purifying contaminated soil using supercritical co2
FR2820417A1 (en) DISSOLUTION AND DECONTAMINATION PROCESS
JP3710675B2 (en) Method and apparatus for treating nitrogen atom-containing organic matter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080516

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4528173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250