JP4763789B2 - Treatment method of waste generated from terephthalic acid process - Google Patents

Treatment method of waste generated from terephthalic acid process Download PDF

Info

Publication number
JP4763789B2
JP4763789B2 JP2008529916A JP2008529916A JP4763789B2 JP 4763789 B2 JP4763789 B2 JP 4763789B2 JP 2008529916 A JP2008529916 A JP 2008529916A JP 2008529916 A JP2008529916 A JP 2008529916A JP 4763789 B2 JP4763789 B2 JP 4763789B2
Authority
JP
Japan
Prior art keywords
terephthalic acid
water
production process
acid production
waste generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008529916A
Other languages
Japanese (ja)
Other versions
JP2009506888A (en
Inventor
ジュー フィ ハン
ヨン ホ シン
ション フェイ ド
キ ド ハン
チャン モ ジョン
ヒュン ジン キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanwha Chemical Corp
Original Assignee
Hanwha Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanwha Chemical Corp filed Critical Hanwha Chemical Corp
Publication of JP2009506888A publication Critical patent/JP2009506888A/en
Application granted granted Critical
Publication of JP4763789B2 publication Critical patent/JP4763789B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4023Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper
    • B01J31/403Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/50Liquid treating or treating in liquid phase, e.g. dissolved or suspended using organic liquids
    • B01J38/52Liquid treating or treating in liquid phase, e.g. dissolved or suspended using organic liquids oxygen-containing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/68Liquid treating or treating in liquid phase, e.g. dissolved or suspended including substantial dissolution or chemical precipitation of a catalyst component in the ultimate reconstitution of the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Processing Of Solid Wastes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、テレフタル酸(Terephthalic Acid)製造工程から発生する廃棄物の処理方法
に関する。より具体的に、本発明は、廃棄物を水および腐食防止剤と混合し、加圧および加熱させて液体状態を維持させ、酸化剤と反応させて有機物を分解し、例えばコバルト、マンガンなどの触媒も円滑に回収することができる、テレフタル酸製造工程から発生する廃棄物の処理方法に関する。
The present invention relates to a method for treating waste generated from a production process of terephthalic acid. More specifically, the invention mixes waste with water and corrosion inhibitors, pressurizes and heats to maintain a liquid state, reacts with an oxidant to decompose organic matter, such as cobalt, manganese, etc. The present invention relates to a method for treating waste generated from a terephthalic acid production process, in which a catalyst can also be recovered smoothly.

一般に、テレフタル酸は、p−キシレン、例えばコバルト、マンガンなどの遷移金属を用いて部分的に酸化反応させて製造される。この過程で所望の製品であるテレフタル酸以外に安息香酸(Benzoic Acid)、p−トルアルデヒド(p-tolualdehyde)、p−トルイル酸(p-toluic acid)、4−カルボキシベンズアルデヒド(4-carboxybenzaldehyde)、4−ヒドロキシメチルベンゾ酸(4-hydroxymetnyl benzoic acid)などの副反応物質が生成される。テレフタル酸合成反応の後、製品としてのテレフタル酸と溶媒としての酢酸を回収すると、前記副反応有機物、触媒としてのコバルト、マンガン、および助触媒としての臭化水素酸(HBr)などを含んだ廃棄物が発生する。   In general, terephthalic acid is produced by partial oxidation using p-xylene, for example, a transition metal such as cobalt or manganese. In addition to the desired product terephthalic acid in this process, benzoic acid, p-tolualdehyde, p-toluic acid, 4-carboxybenzaldehyde, By-products such as 4-hydroxymetnyl benzoic acid are produced. After terephthalic acid synthesis reaction, when terephthalic acid as product and acetic acid as solvent are recovered, waste containing the side reaction organic matter, cobalt, manganese as catalyst, hydrobromic acid (HBr) as cocatalyst, etc. Things are generated.

テレフタル酸を製造する過程で副産物として生成される有機性廃棄物には、芳香族化合物が多量含まれており、常温で固体状態なので、廃棄物から高価なコバルト、マンガン触媒を回収することが非常に難しい。テレフタル酸製造工程で発生する廃棄物は、溶媒である酢酸を回収すると、常温では流動性のない固体に近い状態となるため、処理に困難さが多い。このような廃棄物を処理する技術として活用されることが焼却法である。廃棄物を焼却すると、コバルトとマンガンなどの触媒成分は、焼却残灰と共に排出され、この残灰から触媒金属成分を回収する技術が開発された(米国特許第4,786,621号、同第4,876,386号)。ところが、固体状態のような廃棄物を連続的に焼却炉に注入することが非常に難しい作業なので、溶媒である酢酸を回収しながら発生する有機性廃棄物を可燃性オイルと混合して注入することにより、焼却炉注入ノズルが詰まる問題を解決した技術(韓国特許第0371231号、日本特許第63040157号)などを使用する。ところが、このような焼却技術は触媒金属を焼却灰から回収する手続きが非常に難しく、回収過程で新しい廃棄物と廃水が発生するという問題があり、一部の触媒粒子は焼却の際に微細粒子なので、排ガスと共に外部へ排出されて回収が不可能になり、大気汚染防止設備などの追加環境汚染防止設備が必要となる。   Organic waste produced as a by-product in the production of terephthalic acid contains a large amount of aromatic compounds and is in a solid state at room temperature, so it is very important to recover expensive cobalt and manganese catalysts from waste It is difficult. The waste generated in the terephthalic acid production process is almost difficult to process because the acetic acid as a solvent is recovered and becomes a solid state that does not flow at room temperature. The incineration method is used as a technology for treating such waste. When the waste is incinerated, catalyst components such as cobalt and manganese are discharged together with the incineration residual ash, and a technique for recovering the catalytic metal component from the residual ash has been developed (US Pat. No. 4,786,621, No. 1). 4,876,386). However, it is very difficult to continuously inject solid waste into the incinerator, so organic waste generated while collecting acetic acid as solvent is mixed with flammable oil and injected. Therefore, a technique (Korean Patent No. 0371231, Japanese Patent No. 6304157) that solves the problem of clogging the incinerator injection nozzle is used. However, such incineration technology is very difficult to recover the catalyst metal from the incineration ash, and there is a problem that new waste and waste water are generated in the recovery process. Some catalyst particles are fine particles during incineration. Therefore, it is discharged together with the exhaust gas and cannot be recovered, and additional environmental pollution prevention equipment such as air pollution prevention equipment is required.

テレフタル酸工程で発生した廃棄物から触媒を回収する他の技術としては、エチレン工程で発生する廃アルカリ水溶液によってテレフタル酸工程廃棄物のpHを7.5以下に1次中和した後、苛性ソーダ水溶液によってpH8.5〜9.0に調整した後、ポリアクリルアミドを添加してコバルトおよびマンガンと結合させて析出させた後、回収する方法である(中国特許第1117163号)。この技術は、エチレン工程から発生する廃水をリサイクルしながら触媒も回収するといる利点があるが、テレフタル酸工程からの廃棄物成分の大部分を占める安息香酸、テレフタル酸、トルイル酸などの有機物を化学的に分解せず、全て廃水として排出するため、高濃度の有機性廃水が多量排出されるという問題が発生する。このように触媒回収過程で発生する高濃度の有機性廃水は、化学的酸素要求量が数十万ppmに達するほどに有機物の含量が多いため、生物学的に廃水を処理することが非常に難しく、これを処理するための廃水処理施設は膨大な面積を占める。   Another technique for recovering the catalyst from waste generated in the terephthalic acid process is to first neutralize the pH of the terephthalic acid process waste to 7.5 or lower with a waste alkaline aqueous solution generated in the ethylene process, and then to an aqueous caustic soda solution. After adjusting the pH to 8.5 to 9.0 by adding polyacrylamide, it is combined with cobalt and manganese and precipitated, and then recovered (Chinese Patent No. 1117163). This technology has the advantage of collecting the catalyst while recycling the wastewater generated from the ethylene process, but chemicals such as benzoic acid, terephthalic acid, and toluic acid, which account for the majority of the waste components from the terephthalic acid process, are chemically treated. However, since it is not decomposed and discharged as waste water, a problem arises that a large amount of organic waste water with high concentration is discharged. In this way, organic wastewater with a high concentration generated during the catalyst recovery process has a high organic content so that the chemical oxygen demand reaches several hundred thousand ppm, so it is very difficult to treat wastewater biologically. It is difficult, and wastewater treatment facilities for treating this occupy a huge area.

本発明者らは、従来のテレフタル酸製造工程から発生する廃棄物を処理する焼却処理方法の問題を解決するための研究を行った結果、前記廃棄物を水および腐食防止剤と均一に混合し、加圧および加熱して液体状態に維持させながら有機物を分解すると共に、触媒の回収効率も増加させることができる方法を見出し、これに基づいて本発明を完成した。   As a result of research to solve the problem of the incineration treatment method for treating the waste generated from the conventional terephthalic acid production process, the present inventors uniformly mixed the waste with water and a corrosion inhibitor. The present inventors have found a method capable of decomposing organic substances while maintaining the liquid state by applying pressure and heating, and increasing the recovery efficiency of the catalyst, and based on this, the present invention has been completed.

したがって、本発明の目的は、テレフタル酸製造工程の廃棄物から有機物成分を分解し、触媒回収効率を増大させることができる、テレフタル酸製造工程から発生する廃棄物の処理方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for treating waste generated from a terephthalic acid production process, which can decompose organic components from the waste of the terephthalic acid production process and increase the catalyst recovery efficiency. .

上記目的を達成するために、本発明によれば、a)テレフタル酸製造工程から発生した触媒含有有機性廃棄物に水および腐食防止剤を均一に混合させた液状の廃水を提供する段階と、b)前記廃水が液状に維持される範囲内で加圧および加熱させる段階と、c)前記加熱廃水を酸化剤と反応させて有機物を分解させ、金属酸化物形態の触媒を形成させる段階と、d)前記c)段階の高温処理水を冷却させる段階と、e)前記冷却された処理水を減圧させ、気体成分および触媒粒子含有液体に分離して気体を排出させる段階と、f)前記液体からコバルトおよびマンガン触媒粒子を回収する段階とから構成される。   To achieve the above object, according to the present invention, a) providing a liquid waste water in which water and a corrosion inhibitor are uniformly mixed with a catalyst-containing organic waste generated from a terephthalic acid production process; b) pressurizing and heating within a range in which the wastewater is maintained in a liquid state; c) reacting the heated wastewater with an oxidant to decompose organic matter and form a metal oxide catalyst; d) cooling the high-temperature treated water in step c), e) depressurizing the cooled treated water, separating it into a gas component and catalyst particle-containing liquid, and discharging the gas; and f) the liquid From which cobalt and manganese catalyst particles are recovered.

従来のテレフタル酸製造工程の際に発生する副反応物質を焼却処理する方法は、溶媒である酢酸を回収すると、常温で副反応物質が固体状態になって、焼却させて処理することが難しく、焼却炉に円滑に注入するために他の液状有機溶剤を混合すると、溶剤の処理問題が発生した。特に、焼却処理の際に例えばコバルト、マンガンなどの触媒粒子が微細であって排ガスと共に外部に飛散して排出されるので、触媒回収率が低下するという問題があり、焼却灰から回収する場合、触媒回収率を高めるために強酸と強アルカリで溶解および中和させるときに新しい廃水および廃棄物の環境汚染物質が発生して実質的に触媒回収が難しいという問題点があった。   The conventional method of incinerating by-products in the production process of terephthalic acid is that when acetic acid, which is a solvent, is recovered, the by-products are in a solid state at room temperature and are difficult to incinerate. When other liquid organic solvents were mixed in order to smoothly inject into the incinerator, a problem of solvent processing occurred. In particular, in the case of incineration, for example, catalyst particles such as cobalt and manganese are fine and are scattered and discharged to the outside together with the exhaust gas, so there is a problem that the catalyst recovery rate decreases, and when recovering from incineration ash, When dissolving and neutralizing with strong acid and strong alkali in order to increase the catalyst recovery rate, there is a problem that new waste water and waste environmental pollutants are generated and the catalyst recovery is substantially difficult.

ところが、本発明に係るテレフタル酸製造工程の廃棄物処理方法は、従来の焼却処理法の問題点なしで有機物を分解して廃棄物を処理することができるうえ、触媒回収も効率的なので、テレフタル酸製造工程がより効率的に行われることが可能になった。   However, the waste treatment method of the terephthalic acid production process according to the present invention can treat organic waste by decomposing organic matter without the problems of the conventional incineration treatment method, and the catalyst recovery is also efficient. The acid production process can be performed more efficiently.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書および図面において、同一または類似の部分については同一の符号を付する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In the present specification and drawings, the same or similar parts are denoted by the same reference numerals.

前述したように、テレフタル酸製造工程の廃棄物の大部分は分子量の大きい有機酸物質なので、水に対する溶解度が非常に低いため、廃棄物を水と混合してもよく溶けず、スラリー状態を維持する。また、テレフタル酸合成過程で助触媒として用いられる臭化水素酸(HBr)は、腐食性が非常に強いから、有機物酸化過程で装置の腐食を防止するために腐食防止剤を添加しなければならない。したがって、前記廃棄物を処理するためには有機物の溶解度を高め、臭化水素酸による腐食を防止するためには適切なアルカリ成分を選定して投与することが好ましい。   As mentioned above, most of the waste in the terephthalic acid production process is an organic acid substance with a high molecular weight, so its solubility in water is so low that even if it mixes with water, it does not dissolve well and maintains a slurry state. To do. Also, hydrobromic acid (HBr) used as a co-catalyst in the terephthalic acid synthesis process is very corrosive, so a corrosion inhibitor must be added to prevent corrosion of the equipment during the organic oxidation process. . Therefore, it is preferable to select and administer an appropriate alkaline component in order to increase the solubility of organic matter in order to treat the waste and to prevent corrosion by hydrobromic acid.

本発明によれば、テレフタル酸製造工程から発生した廃棄物を水に適正の濃度で混合した後、水に対する有機物の溶解度を高め且つ臭化水素酸による腐食を防止するために腐食防止剤を混合する。   According to the present invention, after mixing the waste generated from the terephthalic acid production process with water at an appropriate concentration, a corrosion inhibitor is mixed in order to increase the solubility of organic matter in water and prevent corrosion by hydrobromic acid. To do.

その後、高圧ポンプを用いて、反応温度で廃水が液体状態を維持するように圧力を41
.5〜260barに上昇させて連続的に処理設備に注入し、熱交換器と加熱器を介して250〜370℃の反応温度まで上昇させた後、酸化剤(例えば、酸素、空気など)を注入して有機物成分を二酸化炭素と水などに分解させる。本発明によれば、前記水に混合される有機性廃棄物の含量は0.1重量%〜30重量%が適切である。
Thereafter, using a high-pressure pump, the pressure is adjusted to 41 so that the wastewater remains in a liquid state at the reaction temperature.
. The temperature is raised to 5 to 260 bar and continuously injected into the processing facility. After the temperature is raised to a reaction temperature of 250 to 370 ° C. through a heat exchanger and a heater, an oxidizing agent (eg, oxygen, air, etc.) is injected. The organic components are decomposed into carbon dioxide and water. According to the present invention, the content of the organic waste mixed with the water is suitably 0.1% by weight to 30% by weight.

このような酸化反応過程で、有機物成分は二酸化炭素と水に分解されるが、コバルトとマンガンなどの触媒成分は金属酸化物粒子に変化して新しいスラリー状態になる。本発明では、所望の濃度で有機物を分解させた後、触媒粒子含有混合物を冷却させ、降圧し、触媒金属粒子を分離して回収した後、再び触媒としてリサイクルし得るようにした。   In such an oxidation reaction process, the organic component is decomposed into carbon dioxide and water, but catalyst components such as cobalt and manganese are converted into metal oxide particles to form a new slurry state. In the present invention, after decomposing the organic substance at a desired concentration, the catalyst particle-containing mixture is cooled, the pressure is lowered, the catalyst metal particles are separated and recovered, and then recycled as a catalyst again.

図1は本発明に係るテレフタル酸の製造過程から発生する廃棄物を処理する一実施例を示す。   FIG. 1 shows an embodiment for treating waste generated from the production process of terephthalic acid according to the present invention.

図1を参照すると、テレフタル酸製造過程から発生する廃棄物10は、常温で固体状態であって、未回収テレフタル酸だけでなく安息香酸、p−トルアルデヒド、p−トルイル酸、4−カルボキシベンズアルデヒド、4−ヒドロキシメチルベンゾ酸などの分子量の比較的大きい芳香族の副反応物質である。これらは、溶媒としての酢酸が除去された状態では常温で固体として存在する。したがって、これらの有機性廃棄物を効果的に酸化分解させるためには水に均一に分散させなければならない。ところが、大部分の有機物が非常に低い水に対する溶解度を示すため、均一に分散させることが非常に難しい。幸いに、テレフタル酸製造過程から発生する廃棄物は、有機酸物質なので、塩基成分を混合して有機塩に変換して水に対する溶解度を増加させることができた。   Referring to FIG. 1, the waste 10 generated from the terephthalic acid production process is in a solid state at room temperature, and includes not only unrecovered terephthalic acid but also benzoic acid, p-tolualdehyde, p-toluic acid, 4-carboxybenzaldehyde. , 4-hydroxymethylbenzoic acid and other aromatic side reaction materials having a relatively large molecular weight. These exist as solids at room temperature in a state where acetic acid as a solvent is removed. Therefore, in order to effectively oxidize and decompose these organic wastes, they must be uniformly dispersed in water. However, since most organic substances exhibit very low solubility in water, it is very difficult to disperse them uniformly. Fortunately, the waste generated from the terephthalic acid production process is an organic acid substance, so it was possible to increase the solubility in water by mixing base components and converting them to organic salts.

図1に示すように、テレフタル酸製造工程から発生する廃棄物10は、水11と混合してスラリー化させる。その後、廃棄物を水に溶解させ且つ助触媒としての臭化水素酸を中和させるために、腐食防止剤12を混合して均一な廃水状態で混合槽14に保管させる。   As shown in FIG. 1, the waste 10 generated from the terephthalic acid production process is mixed with water 11 to be slurried. Thereafter, in order to dissolve the waste in water and neutralize hydrobromic acid as a co-catalyst, the corrosion inhibitor 12 is mixed and stored in the mixing tank 14 in a uniform waste water state.

本発明の廃棄物の溶解度を増加させ、臭化水素酸と中和させて中性の塩を形成させるための腐食防止剤(または防食剤)としては、水酸化ナトリウム(NaOH)、炭酸ナトリウム(NaCO-3-)、炭酸水素ナトリウム(NaHCO)、水酸化カリウム(KOH)、および炭酸カリウム(KCO)の中から少なくとも一つを選択して使用する。前記防食剤を投与しなければ、臭化水素酸によって腐食が増大し、防食剤があまり多く投与されると、廃水のpHが高くなってアルカリによる腐食が再び増大するため、防食剤は、廃水のpHが4〜7の範囲に調節されるように投入しなければならない。 Corrosion inhibitors (or anticorrosives) for increasing the solubility of the waste of the present invention and neutralizing with hydrobromic acid to form neutral salts include sodium hydroxide (NaOH), sodium carbonate ( At least one selected from Na 2 CO − 3 − ), sodium hydrogen carbonate (NaHCO 3 ), potassium hydroxide (KOH), and potassium carbonate (K 2 CO 3 ) is used. If the anticorrosive agent is not administered, the corrosion is increased by hydrobromic acid, and if too much anticorrosive agent is administered, the pH of the wastewater is increased and the corrosion due to alkali increases again. So that the pH of the solution is adjusted to the range of 4-7.

前記混合槽14で十分に混合されて均一に溶解された廃棄物水溶液としての廃水をポンプ21によって昇圧して処理工程に注入する。本発明によれば、処理工程の圧力は、処理温度でスチームが生成されない圧力、すなわち最高反応温度における蒸気圧より高い圧力まで上昇させて反応物が気化しないようにしなければならない。前記反応物の圧力が蒸気圧より低い場合、反応混合物は気化し、激しい場合には蒸気によるハンマリング(hammering)現象まで発生して工程の運転が不均一、不安定になり、蒸気が生成されると、流体の
密度が急激に減少するため、反応に必要な十分な滞留時間を確保することができなくて有機物を適切に分解させ難くなる。よって、有機物を分解させる酸化反応温度が250〜370℃の範囲で変わるとき、41.5〜250barの運転圧力で廃水を注入しなければならない。
Waste water as a waste aqueous solution sufficiently mixed and uniformly dissolved in the mixing tank 14 is pressurized by a pump 21 and injected into a treatment process. In accordance with the present invention, the process pressure must be raised to a pressure at which no steam is generated at the process temperature, i.e. higher than the vapor pressure at the maximum reaction temperature, so that the reactants do not vaporize. When the pressure of the reactant is lower than the vapor pressure, the reaction mixture is vaporized, and when it is violent, a steam hammering phenomenon occurs, causing the operation of the process to be uneven and unstable, generating steam. Then, since the density of the fluid rapidly decreases, it is difficult to ensure a sufficient residence time necessary for the reaction, and it is difficult to appropriately decompose the organic matter. Therefore, when the oxidation reaction temperature for decomposing organic substances varies in the range of 250 to 370 ° C., waste water must be injected at an operating pressure of 41.5 to 250 bar.

前記ポンプ21によって加圧された廃水は、熱交換器22に注入される。熱交換器22は、反応器24で酸化反応によって分解されてから排出される高温の処理水の熱エネルギーを流入廃水の加熱に活用することができるため、熱エネルギーの観点で経済的な工程となるようにする。特に、有機物の濃度がCOD80,000mgO/Lの程度と高い場
合には、有機物の分解に伴って発生する酸化反応熱のみでも流入廃水を反応温度にまで十分加熱することができる。
Waste water pressurized by the pump 21 is injected into the heat exchanger 22. Since the heat exchanger 22 can utilize the thermal energy of the high-temperature treated water discharged after being decomposed by the oxidation reaction in the reactor 24 for heating the inflow wastewater, it is an economical process from the viewpoint of thermal energy. To be. In particular, when the concentration of organic matter is high and the degree of COD80,000mgO 2 / L can also be sufficiently heat the flowing waste water to the reaction temperature only in the oxidation reaction heat generated with the decomposition of organic matter.

本発明では、熱交換器22を通過しながら1次加熱された廃水を、酸化反応温度まで最終的に加熱させるために加熱器23に流入させる。流入する廃水は、加熱器23によって250〜370℃の範囲で選定された反応温度まで加熱された後、反応器24に注入される。熱交換器22を通過した廃水が所望の反応温度と同一またはより高い場合には、加熱器ではさらに熱エネルギーを供給せず直ちに反応器24に注入する。反応器24に注入された廃水に酸化剤13が注入され、廃水に含まれた有機物と酸化剤とが反応して有機物が二酸化炭素および水などに分解される。   In the present invention, the waste water that has been primarily heated while passing through the heat exchanger 22 is caused to flow into the heater 23 in order to finally heat it to the oxidation reaction temperature. The inflowing waste water is heated to the reaction temperature selected in the range of 250 to 370 ° C. by the heater 23 and then injected into the reactor 24. If the waste water that has passed through the heat exchanger 22 is equal to or higher than the desired reaction temperature, the heater immediately injects it into the reactor 24 without supplying further heat energy. The oxidant 13 is injected into the wastewater injected into the reactor 24, and the organic matter contained in the wastewater reacts with the oxidant to decompose the organic matter into carbon dioxide and water.

本発明によれば、酸化剤は、酸素、空気、酸素を含有する気体混合物、オゾン、酸素と水との混合液、過酸化水素などの酸素含有流体の少なくとも一種を選択して使用し、有機物の分解に要求される理論的な注入量より1〜50モル%超過する量で過量注入する。特に、廃水の有機物濃度が高い場合には、反応器の温度が超臨界水条件の374℃以上に過熱されないように酸化剤の種類を選択し、好ましくは酸素と水との混合液を酸化剤として注入して廃水の有機物を分解させることにより、反応器の冷却効果も示すことができる。また、酸化剤を反応器の入口と反応器の内部のうち少なくとも一箇所で分注する。   According to the present invention, the oxidant is selected from at least one of oxygen, air, a gas mixture containing oxygen, ozone, a mixture of oxygen and water, and an oxygen-containing fluid such as hydrogen peroxide. An overdose is carried out in an amount exceeding 1 to 50 mol% of the theoretical injection amount required for the decomposition of. In particular, when the concentration of organic matter in the wastewater is high, the type of oxidizing agent is selected so that the temperature of the reactor is not overheated to 374 ° C., which is a supercritical water condition, and preferably a mixture of oxygen and water is used The cooling effect of the reactor can also be shown by decomposing the organic matter of the wastewater by injecting as follows. Further, the oxidant is dispensed at at least one of the inlet of the reactor and the inside of the reactor.

前記反応器で有機物が十分に酸化反応されて分解されるように、廃水の滞留時間は2〜30分とすることが好ましい。   The residence time of the waste water is preferably 2 to 30 minutes so that the organic substance is sufficiently oxidized and decomposed in the reactor.

その後、反応器24から排出される処理水は、流入する廃水と熱交換器22で熱交換しながら冷却されるが、外部に排出されるには未だあまり高い温度であるから、圧力を降下させる前に再び冷却器25を通過させ、排出に適するように25〜100℃の温度で冷却させる。冷却された処理水は減圧装置26と減圧弁27を通過させて減圧させる。   Thereafter, the treated water discharged from the reactor 24 is cooled while exchanging heat with the inflowing waste water in the heat exchanger 22, but the pressure is lowered because it is still too high to be discharged outside. It passes through the cooler 25 again before and is cooled at a temperature of 25 to 100 ° C. so as to be suitable for discharge. The cooled treated water is reduced in pressure by passing through the pressure reducing device 26 and the pressure reducing valve 27.

本発明において、前記1次減圧装置26は、反応温度で蒸気圧以上の高圧状態の処理水を冷却させた後、圧力を降下させる装置である。廃水が分解されると、水の他にも例えば二酸化炭素、酸素などの気体成分だけでなく、例えばコバルト、マンガンなどの触媒成分が金属粒子として析出されて一緒に排出される。したがって、圧力を降下させる過程でこのような気体−液体−固体成分が混合された場合、減圧弁27を激しく磨耗させて使用寿命が短縮する。よって、減圧弁27の前に、1次に圧力を降下させる設備を設置すると、減圧弁27の磨耗を予防することができる。前記減圧弁の磨耗を予防する減圧装置26としては、例えば代表的に内径の小さいチューブを設置した毛細管減圧設備を挙げることができる。   In the present invention, the primary pressure reducing device 26 is a device that lowers the pressure after cooling the treated water in a high pressure state equal to or higher than the vapor pressure at the reaction temperature. When the wastewater is decomposed, not only water but also gas components such as carbon dioxide and oxygen, as well as catalyst components such as cobalt and manganese, are deposited as metal particles and discharged together. Therefore, when such a gas-liquid-solid component is mixed in the process of decreasing the pressure, the pressure reducing valve 27 is worn violently and the service life is shortened. Therefore, if a facility for reducing the primary pressure is installed before the pressure reducing valve 27, wear of the pressure reducing valve 27 can be prevented. As the pressure reducing device 26 for preventing the wear of the pressure reducing valve, for example, a capillary pressure reducing facility in which a tube having a small inner diameter is installed can be given.

本発明によれば、前記冷却処理水は、減圧装置26を通過すると、41.5〜250barの高圧流体が常圧〜20barの圧力に低くなって、最終的に圧力を降下させる減圧弁27の磨耗速度を低下させることができる。最後に減圧弁27を通過した後、気液分離器31に流入して前記有機物が分解されながら発生する二酸化炭素、過量注入された酸素などの気体成分25が大気中に排出され、残りの触媒粒子を含む液体は固液分離器32に流入して金属酸化物粒子形態の触媒粒子34が回収され、その他の処理水33は排出される。   According to the present invention, when the cooling treated water passes through the pressure reducing device 26, the high pressure fluid of 41.5 to 250 bar is reduced to the pressure of normal pressure to 20 bar, and finally the pressure reducing valve 27 for lowering the pressure is used. The wear rate can be reduced. Finally, after passing through the pressure reducing valve 27, the gas component 25 such as carbon dioxide generated while the organic matter is decomposed by being decomposed into the gas-liquid separator 31 and excessively injected oxygen is discharged into the atmosphere, and the remaining catalyst The liquid containing the particles flows into the solid-liquid separator 32 to recover the catalyst particles 34 in the form of metal oxide particles, and the other treated water 33 is discharged.

前記固液分離器32は、触媒粒子と処理水が混合された状態で触媒粒子を除去する装置であって、例えば沈殿による分離、遠心分離器、フィルターなどが使用できる。有機物の分解過程で生成されるコバルトとマンガン触媒粒子は、数μm程度と非常に微細なので、単純な沈殿方法のみで十分分離するには多くの時間が要求される。したがって、遠心分離器とフィルターなどが結合した形態の分離装置を使用することが好ましい。   The solid-liquid separator 32 is an apparatus for removing catalyst particles in a state where the catalyst particles and treated water are mixed. For example, separation by precipitation, a centrifugal separator, a filter, or the like can be used. Cobalt and manganese catalyst particles produced in the process of decomposing organic matter are very fine, on the order of a few μm, and therefore a long time is required for sufficient separation only by a simple precipitation method. Therefore, it is preferable to use a separation device in which a centrifuge and a filter are combined.

一方、有機性廃棄物の有機物の濃度が高い廃水を分解する場合、酸化剤を過量で使用して酸素排出量も増加し、二酸化炭素の生成量が増加すると、減圧装置で圧力を降下させる過程で不安定な運転状況が発生するおそれがある。よって、このような場合には、冷却した処理水を減圧させた後で気体成分を除去するよりは、気体成分を除去した後で圧力を降下させる方法がさらに好ましい。   On the other hand, when decomposing wastewater with high organic matter concentration in organic waste, an excessive amount of oxidant is used to increase oxygen emissions, and when the amount of carbon dioxide production increases, the process of reducing pressure with a decompressor May cause unstable driving conditions. Therefore, in such a case, a method of lowering the pressure after removing the gas component is more preferable than removing the gas component after depressurizing the cooled treated water.

図2には有機物の濃度が比較的高い廃水処理の際に、気体成分を排出した後で圧力を降下させる方法について示した。反応器24で有機物が分解されると、二酸化炭素が発生する。発生した二酸化炭素は、一部は水に溶解されるが、平衡濃度以上の二酸化炭素は気体として存在する。また、CODより1〜50モル%過量で注入された酸素は反応せず、反応器24から排出される。このように気体成分を大量含有する場合には、図1のように毛細管減圧装置26に直接処理水を注入すると、気体−スラリー状態のスラグ流れが形成される。このようなスラグ流れは気体とスラリー間の摩擦係数差が非常に大きいため、圧力変動が激しくなり、圧力調節弁の磨耗も激しくなるおそれがある。   FIG. 2 shows a method of lowering the pressure after discharging the gaseous component during wastewater treatment with a relatively high concentration of organic matter. When the organic substance is decomposed in the reactor 24, carbon dioxide is generated. Some of the generated carbon dioxide is dissolved in water, but carbon dioxide above the equilibrium concentration exists as a gas. Further, oxygen injected in an excess amount of 1 to 50 mol% from COD does not react and is discharged from the reactor 24. When a large amount of gas component is contained in this way, when treated water is directly injected into the capillary pressure reducing device 26 as shown in FIG. 1, a slag flow in a gas-slurry state is formed. In such a slag flow, the difference in the coefficient of friction between the gas and the slurry is very large, so that the pressure fluctuation becomes severe, and the pressure control valve may be worn heavily.

したがって、気体成分が多い場合には、図2に示すように、反応器24から排出される処理水は、熱交換器22で流入廃水と熱交換された後、冷却器25で冷却され、気液分離器31に注入されて気体および触媒粒子含有液体に分離される。前記気液分離器31の圧
力は気体排出口の気体減圧弁126を用いて調節する。気液分離器31の圧力を調節することにより、工程の全体圧力が調節される。一方、気液分離器31で気体が分離された処理水と触媒粒子の混合スラリーは、液位を調節する液位調節器(LC)によって適正水位以上になると、自動水位調節弁127が開かれて高圧のスラリーが排出される。
Therefore, when there are many gaseous components, as shown in FIG. 2, the treated water discharged | emitted from the reactor 24 is cooled with the cooler 25 after heat-exchanging with inflow waste water with the heat exchanger 22, It is injected into the liquid separator 31 and separated into gas and liquid containing catalyst particles. The pressure of the gas-liquid separator 31 is adjusted using a gas pressure reducing valve 126 at the gas outlet. By adjusting the pressure of the gas-liquid separator 31, the overall pressure of the process is adjusted. On the other hand, when the mixed slurry of treated water and catalyst particles from which the gas has been separated by the gas-liquid separator 31 reaches or exceeds an appropriate water level by a liquid level controller (LC) that adjusts the liquid level, the automatic water level control valve 127 is opened. High pressure slurry is discharged.

この際、弁(例えば、減圧弁27)の磨耗を防止するために、自動弁127の次に減圧装置26を設置した。その後、図1で説明したように、減圧装置26を通過しながら41.5〜250barの高圧流体が常圧〜20barの圧力に降下して、最終的に圧力を降下させる減圧弁27の磨耗速度を低下させることができる。前記減圧弁27を通過した後、処理水と触媒粒子は固液分離器32に流入して触媒が回収され、処理水が排出される。   At this time, in order to prevent the wear of the valve (for example, the pressure reducing valve 27), the pressure reducing device 26 was installed next to the automatic valve 127. Thereafter, as described with reference to FIG. 1, the wear rate of the pressure reducing valve 27 that causes the high pressure fluid of 41.5 to 250 bar to drop to the pressure of normal pressure to 20 bar while passing through the pressure reducing device 26, and finally reduces the pressure. Can be reduced. After passing through the pressure reducing valve 27, the treated water and the catalyst particles flow into the solid-liquid separator 32, the catalyst is recovered, and the treated water is discharged.

上述したように、本発明は、テレフタル酸製造工程の際に発生する有機物を酸化分解させるとともに、廃棄物に含まれている触媒成分を金属酸化物粒子の形で効率よく回収することができるという利点がある。   As described above, the present invention is capable of oxidizing and decomposing organic substances generated during the terephthalic acid production process and efficiently recovering catalyst components contained in waste in the form of metal oxide particles. There are advantages.

[発明の様態]
以下、実施例によって本発明をより具体的に説明する。しかし、本発明は下記実施例に限定されるものではない。
[Mode of Invention]
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

〈実施例1〉
テレフタル酸製造工程から発生する廃棄物の組成成分
テレフタル酸製造工程から発生する廃棄物から溶媒としての酢酸と水を完全に除去した後、廃棄物に含まれた有機物と触媒成分を分析した。下記表1はテレフタル酸製造工程から発生する廃棄物の組成の一例を示す。
<Example 1>
Composition components of waste generated from the terephthalic acid production process After completely removing acetic acid and water as solvents from the waste generated from the terephthalic acid production process, the organic substances and catalyst components contained in the waste were analyzed. Table 1 below shows an example of the composition of the waste generated from the terephthalic acid production process.

下記表1より、テレフタル酸工程の廃棄物にはテレフタル酸と安息香酸が85%程度となるほど高い含量を占めており、イソフタル酸、p−トルイル酸などの物質が少量含まれており、その他の不純物が含まれていることが分かる。   From Table 1 below, the terephthalic acid process waste has a high content of about 85% terephthalic acid and benzoic acid, and contains a small amount of substances such as isophthalic acid and p-toluic acid. It can be seen that impurities are contained.

Figure 0004763789
Figure 0004763789

〈実施例2〉
テレフタル酸製造工程から発生する廃棄物の分解
前述したように、テレフタル酸製造工程から発生する廃棄物は、有機物と触媒成分とが混合された状態である。この廃棄物に水を混合し、NaOHを添加して溶解させた後、一部の固体粒子が存在する廃水状態で処理工程に投入した。
<Example 2>
Decomposition of waste generated from the terephthalic acid production process As described above, the waste generated from the terephthalic acid production process is a state in which organic substances and catalyst components are mixed. Water was mixed into this waste, and NaOH was added to dissolve it. Then, the waste was put into a treatment process in a waste water state in which some solid particles existed.

流入する廃水は、82,300mgO/LのCOD(化学的酸素要求量)を有し、NaOHを1.786重量%の濃度で混合してpHを6.0に調整した。反応器は、管型反応器を使用し、298℃の入口温度で反応が進行しながら益々増加して反応器の出口温度は361℃に維持され、圧力は250barであり、反応器滞留時間は4.3分であった。酸素は化学的酸素要求量より20%過量注入し、分解後の処理水のpHは7.2であって原廃水より増加し、CODは3,570mgO/Lと測定され、これにより分解率が95.7%に到達することが分かった。 The influent wastewater had a COD (chemical oxygen demand) of 82,300 mg O 2 / L and was adjusted to pH 6.0 by mixing NaOH at a concentration of 1.786 wt%. The reactor uses a tubular reactor, and the reaction proceeds more and more as the reaction proceeds at an inlet temperature of 298 ° C., the reactor outlet temperature is maintained at 361 ° C., the pressure is 250 bar, and the reactor residence time is 4.3 minutes. Oxygen was injected in excess of 20% from the chemical oxygen demand, the pH of the treated water after decomposition was 7.2 and increased from the raw wastewater, and the COD was measured to be 3,570 mgO 2 / L, thereby the decomposition rate Was found to reach 95.7%.

〈実施例3〉
反応器の反応時間による有機物の分解
テレフタル酸製造工程から発生する廃棄物に水と水酸化ナトリウムを混合して原廃水を製造した。原廃水のCODは84,000mgO/Lであり、pHは5.5にした。工程の圧力は250barとし、酸素は化学的酸素要求量より20%超過して注入した。下記表2は各反応条件による処理水のCODと有機物分解率を示す。
<Example 3>
Decomposition of organic matter by reaction time in the reactor Waste water generated from the terephthalic acid production process was mixed with water and sodium hydroxide to produce raw waste water. The COD of the raw waste water was 84,000 mg O 2 / L, and the pH was 5.5. The process pressure was 250 bar and oxygen was injected 20% above the chemical oxygen demand. Table 2 below shows the COD and organic matter decomposition rate of the treated water under each reaction condition.

表2に示すように、廃水の反応器流入温度は250℃より高いことが好ましく、反応温度および滞留時間が増加するほど有機物の分解効率が増大することを確認することができ、反応器流入温度が250℃より低い場合、初期反応速度があまり遅いため、滞留時間が長くなっても反応が本格的に開始される250℃まで上昇することは難しくなって、十分な有機物分解率を得難いことを確認することができた。   As shown in Table 2, the reactor inflow temperature of waste water is preferably higher than 250 ° C., and it can be confirmed that the decomposition efficiency of organic matter increases as the reaction temperature and residence time increase. When the temperature is lower than 250 ° C., the initial reaction rate is so low that it is difficult to increase to 250 ° C. where the reaction starts in earnest even if the residence time is long, and it is difficult to obtain a sufficient organic matter decomposition rate. I was able to confirm.

Figure 0004763789
Figure 0004763789

〈実施例4〉
防食剤の投与による処理水の金属成分含量の変化
テレフタル酸製造工程から発生する廃棄物は、臭化水素酸(HBr)と例えばテレフタル酸、安息香酸、p−トルイル酸などの有機酸から構成されており、これらによって前記廃棄物を水に混合すると酸性を呈する。また、これらの有機酸は、水に対する解離度が大きくないため、よく溶解されない。臭化水素酸による腐食を防止し、酸性を呈するため解離度が低くてスラリー状態になるという問題を解決するために、本発明では、水酸化ナトリウム(NaOH)、炭酸ナトリウム(NaCO)、炭酸水素ナトリウム(NaHCO)、水酸化カリウム(KOH)、炭酸カリウム(KCO)などのアルカリを投与して廃棄物を溶解させ、一部の固体粒子が存在する廃水に製造した後、分解することにより、工程に円滑な投入が可能であり、腐食防止効果が得られた。
<Example 4>
Changes in metal content of treated water due to administration of anticorrosives Waste generated from the terephthalic acid production process is composed of hydrobromic acid (HBr) and organic acids such as terephthalic acid, benzoic acid, and p-toluic acid. Therefore, when the waste is mixed with water, it becomes acidic. In addition, these organic acids are not well dissolved because the degree of dissociation with respect to water is not large. In order to prevent corrosion due to hydrobromic acid and to solve the problem of being in a slurry state due to its acidity and low dissociation degree, in the present invention, sodium hydroxide (NaOH), sodium carbonate (Na 2 CO 3 ) , Sodium bicarbonate (NaHCO 3 ), potassium hydroxide (KOH), potassium carbonate (K 2 CO 3 ) and other alkalis are administered to dissolve the waste and produce waste water containing some solid particles By disassembling, it was possible to smoothly put into the process, and an anti-corrosion effect was obtained.

本発明に係る防食剤の投与による腐食防止効果を確認した。実験は管型反応器を用いて行った。反応器の出口温度が360℃であり、滞留時間は4.5〜5分に調節し、圧力は250barに維持し、酸素は廃水のCOD84,000mgO/Lに必要量より20%超過して注入した。 The corrosion prevention effect by administration of the anticorrosive agent according to the present invention was confirmed. The experiment was performed using a tubular reactor. The reactor outlet temperature is 360 ° C., the residence time is adjusted to 4.5-5 minutes, the pressure is maintained at 250 bar, and the oxygen exceeds 20% over the required amount of COD 84,000 mg O 2 / L of wastewater. Injected.

表3は廃棄物を水に混合した後、水酸化ナトリウム(NaOH)、炭酸ナトリウム(NaCO)、炭酸水素ナトリウム(NaHCO)、水酸化カリウム(KOH)、炭酸カリウム(KCO)などのアルカリ水溶液またはアルカリ炭酸塩水溶液を混合して分解した後、処理水に混合された4種の金属成分の含量を分析した結果を示す。4種の金属成分は、反応器と実験装置の製作に使用したニッケル合金I−625の主要合金材料である鉄(Fe)、ニッケル(Ni)、クロム(Cr)、モリブデン(Mo)であって、これらの成分が処理水に多量含有されると、例えば反応器、熱交換器などの腐食が多く進んでいることを示す。 Table 3 shows that after mixing the waste with water, sodium hydroxide (NaOH), sodium carbonate (Na 2 CO 3 ), sodium bicarbonate (NaHCO 3 ), potassium hydroxide (KOH), potassium carbonate (K 2 CO 3) The results of analyzing the contents of the four metal components mixed in the treated water after mixing and decomposing the aqueous alkali solution or alkaline carbonate solution such as The four metal components are iron (Fe), nickel (Ni), chromium (Cr), and molybdenum (Mo), which are the main alloy materials of the nickel alloy I-625 used for the production of the reactor and the experimental apparatus. When these components are contained in a large amount in the treated water, it indicates that the corrosion of, for example, the reactor and the heat exchanger has progressed a lot.

表3に示すように、防食剤を使用しない場合に腐食が非常に激しく進行するが、廃水のpHが4〜7に維持されるように防食剤を混合すると、腐食が著しく減少することを確認することができる。   As shown in Table 3, it is confirmed that the corrosion progresses very severely when the anticorrosive agent is not used, but the corrosion is remarkably reduced when the anticorrosive agent is mixed so that the pH of the wastewater is maintained at 4-7. can do.

Figure 0004763789
Figure 0004763789

〈実施例5〉
回収された触媒粒子のサイズ分布
テレフタル酸製造工程から発生する廃棄物に水と防食剤としての水酸化ナトリウム、炭酸水素ナトリウムを混合した廃水を360℃で分解させた後、処理水に含まれた触媒粒子のサイズ分布を測定した。図3は粒子のサイズ分布を示した。体積を基準として、粒子はd(0.1)=1.175μm、d(0.5)=3.005μm、d(0.9)=18.324μmのサイズを持つと測定された。
<Example 5>
Size distribution of recovered catalyst particles Waste generated from terephthalic acid production process was mixed with water, sodium hydroxide as an anticorrosive, and sodium bicarbonate at 360 ° C, and then contained in treated water The size distribution of the catalyst particles was measured. FIG. 3 shows the size distribution of the particles. Based on volume, the particles were measured to have a size of d (0.1) = 1.175 μm, d (0.5) = 3.005 μm, d (0.9) = 18.324 μm.

〈実施例6〉
触媒回収
廃水の酸化分解は360℃、250barで実施した。防食剤として水酸化ナトリウムと炭酸水素ナトリウムとの組み合わせを用いて廃水のpHを調節した。前記廃水に含まれたコバルトおよびマンガン触媒の含量はICP−MSで分析し、注入される触媒量を計算した。触媒は処理水を停滞させた後、フィルターを用いて回収した。下記表4には注入した触媒量と回収した触媒量を各成分別に分析してまとめた。表4より、本発明によれば触媒回収効率に優れることが分かる。
<Example 6>
Catalyst recovery Oxidative decomposition of wastewater was carried out at 360 ° C. and 250 bar. The pH of the wastewater was adjusted using a combination of sodium hydroxide and sodium bicarbonate as a corrosion inhibitor. The contents of cobalt and manganese catalysts contained in the wastewater were analyzed by ICP-MS, and the amount of catalyst injected was calculated. The catalyst was recovered using a filter after stagnation of the treated water. Table 4 below summarizes the amount of catalyst injected and the amount of recovered catalyst analyzed for each component. Table 4 shows that according to the present invention, the catalyst recovery efficiency is excellent.

Figure 0004763789
Figure 0004763789

本発明によってテレフタル酸製造工程から発生する廃棄物を処理する工程の概略図である。It is the schematic of the process of processing the waste generated from a terephthalic-acid manufacturing process by this invention. 本発明によってテレフタル酸製造工程から発生する廃棄物内の有機物の濃度が高くて排出ガスが多い場合の好適な工程の概略図である。It is the schematic of a suitable process in case the density | concentration of the organic substance in the waste generated from a terephthalic-acid manufacturing process by this invention is high, and there are many exhaust gas. 本発明の一実施例によってテレフタル酸製造工程の際に発生した廃棄物を処理し、回収された触媒粒子のサイズ分布を示すグラフである。4 is a graph illustrating a size distribution of catalyst particles recovered by treating waste generated during a terephthalic acid manufacturing process according to an embodiment of the present invention.

符号の説明Explanation of symbols

10:テレフタル酸工程廃棄物
11:水
12:腐食防止剤 13:酸化剤
14:混合槽 21:廃水ポンプ
22:熱交換器 23:加熱器
24:反応器 25:冷却器
26:減圧装置 27:減圧弁
31:気液分離器 32:固液分離器
33:排出された処理水 34:回収された触媒
35:排出ガス 126:気体排出器
127:水位調節弁
10: Terephthalic acid process waste 11: Water 12: Corrosion inhibitor 13: Oxidizing agent 14: Mixing tank 21: Waste water pump 22: Heat exchanger 23: Heater 24: Reactor 25: Cooler 26: Depressurizer 27: Pressure reducing valve 31: Gas-liquid separator 32: Solid-liquid separator 33: Discharged treated water 34: Recovered catalyst 35: Exhaust gas 126: Gas exhauster 127: Water level control valve

Claims (11)

a)コバルトおよびマンガン触媒粒子を用い、助触媒として臭化水素酸を用いてp−キシレンを部分的に酸化反応させるテレフタル酸製造工程から発生した触媒含有有機性廃棄物に水および水酸化ナトリウム、炭酸水素ナトリウム、炭酸ナトリウム、水酸化カリウム、炭酸カリウム、およびこれらの組み合わせよりなる群から選ばれる腐食防止剤を均一に混合させた液状の廃水を提供する段階と、
b)前記廃水が液状に維持される範囲内で加圧および250〜370℃の温度で加熱させる段階と、
c)前記加熱廃水を酸化剤と反応させて有機物を分解させ、金属酸化物形態の触媒を形成させる段階と、
d)前記(c)段階の高温処理水を冷却させる段階と、
e)前記冷却された処理水を減圧させ、気体成分および触媒粒子含有液体に分離して気体を排出させる段階と、
f)前記液体からコバルトおよびマンガン触媒粒子を回収する段階とを含むことを特徴とする、テレフタル酸製造工程から発生する廃棄物の処理方法。
a) Water and sodium hydroxide are added to the catalyst-containing organic waste generated from the terephthalic acid production process in which cobalt and manganese catalyst particles are used and hydrobromic acid is used as a co-catalyst to partially oxidize p-xylene . Providing liquid waste water in which a corrosion inhibitor selected from the group consisting of sodium bicarbonate, sodium carbonate, potassium hydroxide, potassium carbonate, and combinations thereof is uniformly mixed;
b) pressurizing and heating at a temperature of 250 to 370 ° C. within a range where the wastewater is maintained in a liquid state;
c) reacting the heated wastewater with an oxidant to decompose organic matter to form a metal oxide catalyst;
d) cooling the high temperature treated water of step (c),
e) depressurizing the cooled treated water, separating it into a gas component and catalyst particle-containing liquid, and discharging the gas;
and f) recovering cobalt and manganese catalyst particles from the liquid. A method for treating waste generated from a terephthalic acid production process.
前記(a)段階の液状廃水の有機性廃棄物の含量は0.1重量%〜30重量%であることを特徴とする、請求項1に記載のテレフタル酸製造工程から発生する廃棄物の処理方法。  The treatment of waste generated from the terephthalic acid production process according to claim 1, wherein the organic waste content of the liquid waste water in the step (a) is 0.1 wt% to 30 wt%. Method. 前記(e)段階は、前記冷却処理水を、気体成分および触媒粒子含有液体に分離した後、減圧させる段階で代替されることを特徴とする、請求項1に記載のテレフタル酸製造工程から発生する廃棄物の処理方法。  The step (e) is generated from the terephthalic acid production process according to claim 1, wherein the cooling treatment water is replaced with a step of depressurizing after separating the cooling water into a gas component and a catalyst particle-containing liquid. Waste disposal method. 前記腐食防止剤は、前記廃水のpHが4〜7に維持されるように投入されることを特徴とする、請求項1に記載のテレフタル酸製造工程から発生する廃棄物の処理方法。  The method for treating waste generated from a terephthalic acid production process according to claim 1, wherein the corrosion inhibitor is added so that the pH of the wastewater is maintained at 4-7. 前記(b)段階は41.5〜250barの圧力下で行われ、且つ前記(c)段階は、41.5〜250barの圧力および250〜370℃の温度で行われることを特徴とする、請求項1に記載のテレフタル酸製造工程から発生する廃棄物の処理方法。The step (b) is performed under a pressure of 41.5 to 250 bar, and the step (c) is performed at a pressure of 41.5 to 250 bar and a temperature of 250 to 370 ° C. A method for treating waste generated from the terephthalic acid production process according to Item 1. 前記酸化剤は、酸素、空気、酸素を含有する気体混合物、オゾン、過酸化水素水溶液、酸素含有水、およびこれらの組み合わせよりなる群から選ばれることを特徴とする、請求項1に記載のテレフタル酸製造工程から発生する廃棄物の処理方法。  2. The terephthalate according to claim 1, wherein the oxidant is selected from the group consisting of oxygen, air, a gas mixture containing oxygen, ozone, an aqueous hydrogen peroxide solution, oxygen-containing water, and combinations thereof. A method for treating waste generated from the acid production process. 前記酸化剤は、前記廃水の有機物を完全酸化分解させるのに必要な量より1モル%〜50モル%を超過する量で使用されることを特徴とする、請求項1に記載のテレフタル酸製造工程から発生する廃棄物の処理方法。  [2] The terephthalic acid production according to claim 1, wherein the oxidizing agent is used in an amount exceeding 1 mol% to 50 mol% than an amount necessary for complete oxidative decomposition of the organic matter in the wastewater. A method for treating waste generated from processes. 前記(d)段階では、25〜100℃で冷却することを特徴とすることを特徴とする、請求項1に記載のテレフタル酸製造工程から発生する廃棄物の処理方法。  The method for treating waste generated from a terephthalic acid production process according to claim 1, wherein the cooling is performed at 25 to 100 ° C. in the step (d). 前記(e)段階では、常圧〜20barの範囲に減圧することを特徴とする、請求項1または3に記載のテレフタル酸製造工程から発生する廃棄物の処理方法。  The method for treating waste generated from a terephthalic acid production process according to claim 1 or 3, wherein in step (e), the pressure is reduced to a range of normal pressure to 20 bar. 前記(e)段階は、毛細管減圧器で行われることを特徴とする、請求項1または3に記載のテレフタル酸製造工程から発生する廃棄物の処理方法。  The method for treating waste generated from a terephthalic acid production process according to claim 1 or 3, wherein the step (e) is performed by a capillary pressure reducer. 前記(f)段階は、沈殿器、遠心分離器、およびフィルターよりなる群から選ばれた少なくとも一つが設置された固液分離器で行われることを特徴とする、請求項1に記載のテレフタル酸製造工程から発生する廃棄物の処理方法。  The terephthalic acid according to claim 1, wherein the step (f) is performed in a solid-liquid separator in which at least one selected from the group consisting of a precipitator, a centrifuge, and a filter is installed. A method for treating waste generated from the manufacturing process.
JP2008529916A 2005-09-07 2006-09-05 Treatment method of waste generated from terephthalic acid process Expired - Fee Related JP4763789B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2005-0083293 2005-09-07
KR1020050083293A KR100662146B1 (en) 2005-09-07 2005-09-07 Method for treating wastes from terephthalic acid process
PCT/KR2006/003515 WO2007029956A1 (en) 2005-09-07 2006-09-05 Method for treating wastes from terephthalic acid process

Publications (2)

Publication Number Publication Date
JP2009506888A JP2009506888A (en) 2009-02-19
JP4763789B2 true JP4763789B2 (en) 2011-08-31

Family

ID=37815789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008529916A Expired - Fee Related JP4763789B2 (en) 2005-09-07 2006-09-05 Treatment method of waste generated from terephthalic acid process

Country Status (4)

Country Link
JP (1) JP4763789B2 (en)
KR (1) KR100662146B1 (en)
CN (1) CN101257975B (en)
WO (1) WO2007029956A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101013489B1 (en) * 2008-10-29 2011-02-11 아신기술 주식회사 Recovery of catalysts and aromatic acids from the wastes aromatic acid production plants
US9388110B2 (en) 2013-12-12 2016-07-12 Saudi Arabian Oil Company Liquid phase oxidation of aromatic feedstocks with manganate recycling to produce carboxylic acids
CN112830597A (en) * 2020-12-31 2021-05-25 何蕾 Polyester wastewater treatment method
CN116265044B (en) * 2021-12-16 2024-06-18 中国科学院大连化学物理研究所 Method for treating paraxylene liquid phase oxidation residues
CN114712959B (en) * 2022-05-21 2023-04-18 山东凯希威智能装备有限公司 Waste gas treatment method for polymerizing waste by using oxygen-enriched water

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106401A (en) * 1973-02-16 1974-10-09
JP2003531964A (en) * 2000-04-28 2003-10-28 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Recovery of precious metals from organic substances-precious metal compositions by supercritical water reactants

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR790000412B1 (en) * 1974-04-03 1979-05-14 Matsuyama Petrochemicals Inc Method for recovering oxidation catalyst
IT1075317B (en) * 1977-04-13 1985-04-22 Montedison Spa METHOD FOR SOLVENT ANHYDRIFICATION AND FOR THE RECOVERY OF THE BY-PRODUCT OF METHYL ACETATE IN A SYNTHESIS PROCESS OF TEREPHTHALIC ACID
DE2950318C2 (en) * 1979-12-14 1982-02-25 Dynamit Nobel Ag, 5210 Troisdorf Recovery and reuse of cobalt or cobalt and manganese compounds from the Witten DMT process
US4939297A (en) * 1989-06-05 1990-07-03 Eastman Kodak Company Extraction process for removal of impurities from terephthalic acid filtrate
JPH1015390A (en) * 1996-07-02 1998-01-20 Mitsubishi Gas Chem Co Inc Method for recovering catalyst from liquid phase oxidation reaction mother liquor
JPH11165079A (en) 1997-12-05 1999-06-22 Toray Ind Inc Method for recovering acetic acid in liquid-phase air oxidation reaction and method for recovering catalyst
CN1062852C (en) * 1998-02-16 2001-03-07 中国石化辽阳石油化纤公司 Process for recovering cobalt and manganese catalysts from production of terephthalic acid
US7282151B2 (en) * 2003-06-05 2007-10-16 Eastman Chemical Company Process for removal of impurities from mother liquor in the synthesis of carboxylic acid using pressure filtration

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106401A (en) * 1973-02-16 1974-10-09
JP2003531964A (en) * 2000-04-28 2003-10-28 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Recovery of precious metals from organic substances-precious metal compositions by supercritical water reactants

Also Published As

Publication number Publication date
CN101257975B (en) 2010-12-15
WO2007029956A1 (en) 2007-03-15
CN101257975A (en) 2008-09-03
JP2009506888A (en) 2009-02-19
KR100662146B1 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
US5106513A (en) Process for oxidation of materials in water at supercritical temperatures and subcritical pressures
US5232604A (en) Process for the oxidation of materials in water at supercritical temperatures utilizing reaction rate enhancers
EP0513186B1 (en) Process for oxidation of materials in water at supercritical temperatures
US20100252500A1 (en) Treatment of spent caustic waste
JP4763789B2 (en) Treatment method of waste generated from terephthalic acid process
JP5073143B2 (en) Recovery of noble metals from organic matter-noble metal compositions by supercritical water reactants
KR100625882B1 (en) The process for oxidative decomposition of wastewater containing organic material by supercritical conditions
JP4703227B2 (en) Wastewater treatment method
KR100249496B1 (en) Process for oxidizing liquid wastes containing organic compounds using supercritical water and catalytic oxidation
JP3345285B2 (en) How to start and stop supercritical water oxidation equipment
JP2002102672A (en) Method and apparatus for hydrothermal reaction
JP2004167475A (en) Method for reducing waste oxide gas emissions
He Catalytic wet oxidation: process and catalyst development and the application perspective
JP4355246B2 (en) High temperature and high pressure treatment equipment for organic waste
KR100478271B1 (en) Wet oxidation process
JP2008207102A (en) Wastewater treatment method
JP3669881B2 (en) Method and apparatus for decomposing a hardly decomposable substance
JP3801803B2 (en) Descale removal method for supercritical water oxidation equipment
JP3302125B2 (en) Wastewater treatment method
JP3482306B2 (en) Supercritical water oxidation method and apparatus for organic chlorine compounds
JP2002336673A (en) Method and apparatus for decomposing organic waste at high speed
JP2005288295A (en) Wastewater treatment method
JP2008093538A (en) Wastewater treatment method
JPH06277679A (en) Cleaning method for wet oxidization device
JPH10314770A (en) Method and apparatus for oxidation of supercritical water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees