JP4525993B2 - Asymmetric epoxidation catalyst and method for producing optically active epoxide - Google Patents

Asymmetric epoxidation catalyst and method for producing optically active epoxide Download PDF

Info

Publication number
JP4525993B2
JP4525993B2 JP2000073996A JP2000073996A JP4525993B2 JP 4525993 B2 JP4525993 B2 JP 4525993B2 JP 2000073996 A JP2000073996 A JP 2000073996A JP 2000073996 A JP2000073996 A JP 2000073996A JP 4525993 B2 JP4525993 B2 JP 4525993B2
Authority
JP
Japan
Prior art keywords
reaction
added
carbon atoms
optically active
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000073996A
Other languages
Japanese (ja)
Other versions
JP2001253876A (en
Inventor
純二 稲永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2000073996A priority Critical patent/JP4525993B2/en
Priority to US09/788,371 priority patent/US6680275B2/en
Priority to EP01103616A priority patent/EP1127616B1/en
Priority to DE60120005T priority patent/DE60120005T2/en
Priority to DE60129608T priority patent/DE60129608T2/en
Priority to EP03019601A priority patent/EP1366815B1/en
Priority to EP04008802A priority patent/EP1439001B1/en
Priority to DE60116383T priority patent/DE60116383T2/en
Publication of JP2001253876A publication Critical patent/JP2001253876A/en
Priority to US10/714,599 priority patent/US6878835B2/en
Application granted granted Critical
Publication of JP4525993B2 publication Critical patent/JP4525993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、エノン類の不斉エポキシ化触媒及びそれを用いた光学活性エポキシドの製造方法に関する。
【0002】
【従来の技術】
エノン類の不斉エポキシ化反応としては、光学活性ジヒドロキシ化合物と希土類金属アルコキシドのテトラヒドロフラン溶液より調製される錯体触媒の存在下、カルコン等のカルボニル基に隣接する炭素−炭素二重結合を有する化合物を、ヒドロキシパーオキシド化合物で不斉エポキシ化する方法が知られており、具体的には、(R)−ビナフトールとランタントリイソプロポキシドのテトラヒドロフラン溶液を(R)−ランタン−ビナフトキシドとして反応に用いている(特開平10−120668号公報)。
【0003】
【発明が解決する課題】
しかしながら、特開昭10−120668号公報に記載の方法では、例えば、酸化剤としてtert−ブチルハイドロパーオキシド(以下、TBHPと略す)を用いた場合、目的とする光学活性エポキシドが低収率、低光学純度でしか得られない。このため満足出来る結果を得るためには、3位にメチロールを導入した特殊なビナフトールを用いるか、又はイッテルビウムのようなランタン以外の希土類金属アルコキシドを用いる必要があった。また、触媒量としても反応に具するエノン類に対して5〜10mol%程度必要で、さらなる触媒量の低減が望まれていた。
【0004】
【課題を解決するための手段】
本発明者らは、反応性が高く、かつ高光学を与える触媒の開発について鋭意検討した結果、(A)光学活性ビナフトール、(B)ランタントリイソプロポキシド、及び(C)トリ(4−フルオロフェニル)フォスフィンオキサイド、トリ(4−クロロフェニル)フォスフィンオキサイド又はトリ(4−トリフルオロメチルフェニル)フォスフィンオキサイドからなる触媒組成物が、従来の触媒に比べて安定性が高く、高い反応活性を持ち、生成物に高い光学純度を与え、さらに反応に具するエノン類に対して触媒量の低減が可能であることを見出し、本発明を完成させるに至った。
【0005】
すなわち本発明は、(A)光学活性ビナフトール、(B)ランタントリイソプロポキシド、及び(C)トリ(4−フルオロフェニル)フォスフィンオキサイド、トリ(4−クロロフェニル)フォスフィンオキサイド又はトリ(4−トリフロオロフェニル)フォスフィンオキサイドからなるエノン類の不斉エポキシ化触媒であって、その触媒の存在下、下記一般式(1)
【0006】
【化3】

Figure 0004525993
【0007】
(式中、R1、R2は各々独立して、炭素数1〜20の直鎖状、分岐若しくは環式のアルキル基、芳香族基、炭素数1〜5のアルキル基で1〜5置換された芳香族基、炭素数1〜5のアルコキシ基で1〜5置換された芳香族基、ハロゲン元素で1〜5置換された芳香族基、芳香族基で置換された炭素数1〜5の直鎖状、分岐状若しくは環式アルキル基、又はハロゲン化芳香族基で置換された炭素数1〜5の直鎖状、分岐状若しくは環式アルキル基を表わす。)
で示されるエノン類と酸化剤を反応させることを特徴とする下記一般式(2)
【0008】
【化4】
Figure 0004525993
【0009】
(式中、R1、R2は前記と同じ定義であり、*印は光学活性炭素を示す。)
で示される光学活性エポキシドの製造方法を提供するものである。
【0010】
本発明を以下詳細に説明する。
【0011】
本発明の触媒は、エノン類の不斉エポキシ化反応に利用可能であり、高い反応性を示し、また生成物に高い光学純度を与える。
【0012】
本発明の触媒は、(A)光学活性ビナフトール、(B)ランタントリイソプロポキシド、並びに(C)トリ(4−フルオロフェニル)フォスフィンオキサイド、トリ(4−クロロフェニル)フォスフィンオキサイド又はトリ(4−トリフルオロメチルフェニル)フォスフィンオキサイドからなる。
【0013】
本発明において、触媒成分の構成比は、特に限定するものではないが、(B)ランタントリイソプロポキシド1モルに対して、(A)ビナフトールが通常1〜3モル、(C)トリ(4−フルオロ)フェニルフォスフィンオキサイド、トリ(4−クロロフェニル)フォスフィンオキサイド又はトリ(4−トリフルオロメチルフェニル)フォスフィンオキサイドが通常0.1〜10モル、好ましくは1〜10モルである。
【0014】
本発明の触媒に、さらに所定量のクメンハイドロパーオキサイド(以下、CMHPと略す)又はtert−ブチルハイドロパーオキサイド(以下、TBHPと略す)を添加し、反応活性種となる黄緑色〜深緑色を呈する錯体を形成した後、反応に用いてもよく、この場合得られる結果に大きな差はない。また、上記触媒に反応に必要なCMHP又はTBHPをあらかじめ添加した後、エノン類を添加して反応を行ってもよく、この場合も得られる結果に大きな差はない。
【0015】
本発明の触媒を用い反応させることにより発現する光学絶対配置は、一般的には、触媒を構成する光学活性ビナフトールの光学絶対配置に依存し、(R)−ビナフトールを用いた場合には、生成物の不斉炭素の絶対配置が(R)体になる基質は、(S)−ビナフトールを用いれば、生成物の不斉炭素の光学絶対配置は(S)体になる関係にある。但し、(R)−ビナフトールを用いれば、生成物の不斉炭素の光学絶対配置が(R)体になるというわけではなく、基質の種類等によって生成物の光学絶対配置は異なる。本発明の触媒を用いて不斉エポキシ化反応を行った場合、一般的には、(R)−ビナフトールを用いれば、生成するエノンのエポキシドの2位(α位)と3位(β位)の光学絶対配置は(2S,3R)になり、一方、(S)−ビナフトールを用いれば、(2R,3S)になる。
【0016】
本発明の方法において、触媒の使用量は特に限定するものではないが、反応に具される基質に対して、ランタンイソプロポキシドのモル数を基準として、0.001〜50モル%、さらに好ましくは0.01〜25モル%の範囲である。
【0017】
本発明の方法に適用可能な溶剤としては触媒及びエポキシ化反応に不活性な溶剤であればあらゆる溶剤が適用可能であるが、触媒の安定性、エポキシ化反応の反応成績の面でジメチルエーテル、ジイソプロピルエーテル、1,2−ジメトキシエタン、テトラヒドロフラン(以下、THFと略す)等のエーテル系溶剤が好ましく、中でも最も高結果を与えるのはTHFである。
【0018】
溶剤の使用量としては、反応に具するエノンに対して重量換算で2〜200倍量、さらに好ましくは5〜100倍量の範囲である。
【0019】
触媒の形成は前記触媒を構成する成分を添加し、−50℃〜100℃の範囲で0.5時間から4時間保持することにより形成させた後、酸化剤及び反応に具するエノン類を添加し反応を行っても良いし、また形成した触媒に所定量の酸化剤を添加、攪拌し、次いで不足の酸化剤及び反応に具するエノン類を添加し、反応を行っても良い。
【0020】
本発明の方法に適用なエノンとしては、下記一般式(1)
【0021】
【化5】
Figure 0004525993
【0022】
(式中、R1、R2は各々独立して、炭素数1〜20の直鎖状、分岐状若しくは環式のアルキル基、芳香族基、短素数1〜5のアルキル基で1〜5置換された芳香族基、短素数1〜5のアルコキシ基で1〜5置換された芳香族基、ハロゲン元素で1〜5置換された芳香族基、芳香族基で置換された炭素数1〜5の直鎖状、分岐状若しくは環式アルキル基、又はハロゲン化芳香族基で置換された短素数1〜5の直鎖状、分岐状若しくは環式アルキル基を表わす。)
で示される化合物であればあらゆるものが適用可能であるが、具体的には、メチルビニルケトン、trans−3−ペンテン−2−オン、trans−3−ヘキセン−2−オン、trans−3−ヘプテン−2−オン、trans−3−オクテン−2−オン、trans−3−ノネン−2−オン、エチルビニルケトン、trans−4−ヘキセン−3−オン、trans−4−へプテン−3−オン、trans−4−オクテン−3−オン、trans−4−ノネン−3−オン、イソプロピルビニルケトン、trans−2−メチル−4−ヘキセン−3−オン、trans−2−メチル−4−へプテン−3−オン、trans−2−メチル−4−オクテン−3−オン、trans−2−メチル−4−ノネン−3−オン、trans−1,3−ジフェニル−2−プロピレン−1−オン(カルコン)、trans−2−メチル−5−フェニル−4−ペンテン−3−オン、4−メチル−1−フェニル−3−ペンテン−2−オン、4−フェニル−3−ブチレン−2−オン、6−フェニル−3−へキセン−2−オン、5−フェニル−3−ヘキセン−2−オン等が挙げられる。
【0023】
本発明に使用する酸化剤は、通常CMHPやTBHPであるが、同等の酸化力を有し、反応系内において副反応を起こさない他の酸化剤も使用可能である。
【0024】
本発明の方法において酸化剤として使用するTBHPは、市販のデカン等の溶液をそのまま用いても良いし、70%又は90%水溶液よりトルエン抽出し、硫酸マグネシウム等で乾燥した後、本発明に使用しても良い。また、CMHPは市販の80重量%品を精製した後使用しても良いし、精製することなくそのまま用いても良い。さらに反応基質の種類によっては、CMHPを用いることによりほぼ定量的に純粋な光学活性体を与える場合もある。
【0025】
酸化剤の使用量は、反応に具するエノン類に対して理論的には等量で充分であるが、反応を完結させるためには、好ましくは1.1モル倍量以上使用する。
【0026】
本発明の方法における反応温度は、エノン類の基質の違いにより異なるが、通常−50℃〜100℃の範囲で、反応時間としては、通常24時間以内で反応が完結する。
【0027】
触媒調製時及び反応時に系内を脱水し、また触媒形成反応、エポキシ化反応を加速する目的で、必要に応じてゼオライトを使用してもよい。ゼオライトの使用量は、エノン類に対してあらゆる量比で使用可能であり、特に限定するものではないが、通常エノン類1mmolに対して10mg〜2g程度使用する。ゼオライトの種類としてはモレキュラシーブ3A、4A、5Aに代表されるA型ゼオライト、モレキュラシーブ13X、Y型、L型等、様々なゼオライトが適用可能であるが、これらのうちモレキュラシーブ4Aが好ましい。
【0028】
反応終了後、後処理、カラムクロマトグラフィー等で精製を行うことにより、目的物の光学活性エポキシドが高収率、高光学純度で得られる。
【0029】
【発明の効果】
本発明の触媒により、高反応性、高収率かつ高光学純度でのエノン類の不斉エポキシ化反応が提供されるので、本発明の方法は、各種医農薬中間体の製造方法として極めて有用である。
【0030】
【実施例】
以下実施例により本発明を具体的に説明するが、本発明は実施例のみに限定されるものではない。なお生成物の光学純度の検定は、以下のとおり実施した。
【0031】
すなわち、trans−(2S,3R)−エポキシ−1,3−ジフェニルプロパン−1−オンの測定においては、ダイセル(株)のキラルカラムOB−Hを装着した高速液体クロマトグラフィーで行い、溶離溶媒:Hexane/i−PrOH=90/10(vol/vol)、流量1ml/minで測定した。
【0032】
実施例1
50mlのナス型フラスコ(A)にマグネチックスタラーチップ及びモレキュラーシーブス4A(128mg、あらかじめ真空ポンプで減圧下、180℃×4時間予備乾燥品)を入れ、攪拌しながら真空ポンプで減圧下、ヒートガンで10分加熱し、乾燥させた。室温まで冷却の後、トリ(4−フルオロフェニル)フォスフィンオキサイド(63.1mg、0.1898mmol)及び(R)−ビナフトール(18.1mg、0.0633mmol)を仕込み、反応系内を窒素置換した。次いで、THF(2.5ml)を加え5分攪拌することにより溶解させた。
【0033】
別のマグネチックスタラーチップを入れた50mlのナス型フラスコ(B)に、ランタントリイソプロポキシド(La(O−iPr)3、20.0mg、0.0633mmol)を秤りとり、これにTHF(2.0ml)を入れ、攪拌することにより溶解させた後、これに先に調製したナス型フラスコ(A)の混合物を2mlのシリンジを用いフラスコ(B)に加え、さらにTHF(0.6ml)で1回洗い込みを行った。
【0034】
フラスコ(B)の混合物は、室温で攪拌しながら1時間保持した後、クメンハイドロパーオキサイド(299μl、2.024mmol)を加え、さらに5時間攪拌を行った。
【0035】
5時間後、調製した触媒溶液が深緑色に呈色したのを目視で確認の後、これにカルコン(263.4mg、1.2651mmol)及びTHF(2.5ml)からなる溶液を添加し、1時間反応を行った。
【0036】
反応終了後、シリカゲル500mg、メタノール3mlを添加し15分攪拌し、次いで濾過、濃縮することにより残査を得、シリカゲルカラム(Hexane/AcOEt=30/1)で精製精製することによりtrans−(2S,3R)−エポキシ−1,3−ジフェニルプロパン−1−オンを無色透明なオイルして得た(収量:245.7mg、収率:86.6%、光学純度:98.9%ee)。
【0037】
実施例2
50mlのナス型フラスコ(A)にマグネチックスタラーチップ及びモレキュラーシーブス4A(146mg、あらかじめ真空ポンプで減圧下、180℃×4時間予備乾燥品)を入れ、攪拌しながら真空ポンプで減圧下、ヒートガンで10分加熱し、乾燥させた。室温まで冷却の後、トリ(4−クロロフェニル)フォスフィンオキサイド(83.3mg、0.2182mmol)及び(R)−ビナフトール(20.8mg、0.0727mmol)を仕込み、反応系内を窒素置換した。次いで、THF(3.0ml)を加え5分攪拌することにより溶解させた。
【0038】
別のマグネチックスタラーチップを入れた50mlのナス型フラスコ(B)に、ランタントリイソプロポキシド(La(O−iPr)3、23.0mg、0.0727mmol)を秤りとり、これにTHF(2.0ml)を入れ、攪拌することにより溶解させた後、これに先に調製したナス型フラスコ(A)の混合物を2mlのシリンジを用いフラスコ(B)に加え、さらにTHF(1.0ml)で1回洗い込みを行った。
【0039】
フラスコ(B)の混合物は、室温で攪拌しながら1時間保持した後、クメンハイドロパーオキサイド(344μl、2.3279mmol)を加え、さらに5時間攪拌を行った。
【0040】
5時間後、調製した触媒溶液が深緑色に呈色したのを目視で確認の後、これにカルコン(303.0mg、1.4549mmol)及びTHF(2.8ml)からなる溶液を添加し、1時間反応を行った。
【0041】
反応終了後、シリカゲル500mg、メタノール3mlを添加し15分攪拌し、次いで濾過、濃縮することにより残査を得、シリカゲルカラム(Hexane/AcOEt=30/1)で精製精製することによりtrans−(2S,3R)−エポキシ−1,3−ジフェニルプロパン−1−オンを無色透明なオイルして得た(収量:252.5mg、収率:77.4%、光学純度:98.9%ee)。
【0042】
実施例3
50mlのナス型フラスコ(A)にマグネチックスタラーチップ及びモレキュラーシーブス4A(133mg、あらかじめ真空ポンプで減圧下、180℃×4時間予備乾燥品)を入れ、攪拌しながら真空ポンプで減圧下、ヒートガンで10分加熱し、乾燥させた。室温まで冷却の後、トリ(4−トリフルオロメチルフェニル)フォスフィンオキサイド(96.1mg、0.1993mmol)及び(R)−ビナフトール(19.0mg、0.0664mmol)を仕込み、反応系内を窒素置換した。次いで、THF(3.0ml)を加え5分攪拌することにより溶解させた。
【0043】
別のマグネチックスタラーチップを入れた50mlのナス型フラスコ(B)に、ランタントリイソプロポキシド(La(O−iPr)3、21.0mg、0.0664mmol)を秤りとり、これにTHF(2.0ml)を入れ、攪拌することにより溶解させた後、これに先に調製したナス型フラスコ(A)の混合物を2mlのシリンジを用いフラスコ(B)に加え、さらにTHF(1.0ml)で1回洗い込みを行った。
【0044】
フラスコ(B)の混合物は、室温で攪拌しながら1時間保持した後、クメンハイドロパーオキサイド(314μl、2.1254mmol)を加え、さらに5時間攪拌を行った。
【0045】
5時間後、調製した触媒溶液が深緑色に呈色したのを目視で確認の後、これにカルコン(276.6mg、1.3284mmol)及びTHF(2.0ml)からなる溶液を添加し、1時間反応を行った。
【0046】
反応終了後、シリカゲル500mg、メタノール3mlを添加し15分攪拌し、次いで濾過、濃縮することにより残査を得、シリカゲルカラム(Hexane/AcOEt=30/1)で精製精製することによりtrans−(2S,3R)−エポキシ−1,3−ジフェニルプロパン−1−オンを無色透明なオイルして得た(収量:223.8mg、収率:75.1%、光学純度:95.3%ee)。
【0047】
比較例1
50mlのナス型フラスコ(A)にマグネチックスタラーチップ及びモレキュラーシーブス4A(146mg、あらかじめ真空ポンプで減圧下、180℃×4時間予備乾燥品)を入れ、攪拌しながら真空ポンプで減圧下、ヒートガンで10分加熱し、乾燥させた。室温まで冷却の後、トリフェニルフォスフィンオキサイド(60.7mg、0.2182mmol)及び(R)−ビナフトール(20.8mg、0.0727mmol)を仕込み、反応系内を窒素置換した。次いで、THF(3.0ml)を加え5分攪拌することにより溶解させた。
【0048】
別のマグネチックスタラーチップを入れた50mlのナス型フラスコ(B)に、ランタントリイソプロポキシド(La(O−iPr)3、23.0mg、0.0727mmol)を秤りとり、これにTHF(2.0ml)を入れ、攪拌することにより溶解させた後、これに先に調製したナス型フラスコ(A)の混合物を2mlのシリンジを用いフラスコ(B)に加え、さらにTHF(1.0ml)で1回洗い込みを行った。
【0049】
フラスコ(B)の混合物は、室温で攪拌しながら1時間保持した後、クメンハイドロパーオキサイド(344μl、2.3279mmol)を加え、さらに5時間攪拌を行った。
【0050】
5時間後、調製した触媒溶液が黒緑色に呈色したのを目視で確認の後、これにカルコン(303.0mg、1.4549mmol)及びTHF(2.8ml)からなる溶液を添加し、1時間反応を行った。
【0051】
反応終了後、シリカゲル500mg、メタノール3mlを添加し15分攪拌し、次いで濾過、濃縮することにより残査を得、シリカゲルカラム(Hexane/AcOEt=30/1)で精製精製することによりtrans−(2S,3R)−エポキシ−1,3−ジフェニルプロパン−1−オンを無色透明なオイルして得た(収量:134.1mg、収率:41.1%、光学純度:94.5%ee)。
【0052】
また、未反応の原料166.7mg(回収率55.0%)を回収した。
【0053】
実施例4
50mlのナス型フラスコ(A)にマグネチックスタラーチップ及びモレキュラーシーブス4A(1330mg、あらかじめ真空ポンプで減圧下、180℃×4時間予備乾燥品)を入れ、攪拌しながら真空ポンプで減圧下、ヒートガンで10分加熱し、乾燥させた。室温まで冷却の後、トリ(4−フルオロフェニル)フォスフィンオキサイド(66.2mg、0.1993mmol)及び(R)−ビナフトール(19.0mg、0.0664mmol)を仕込み、反応系内を窒素置換した。次いで、THF(25ml)を加え5分攪拌することにより溶解させた。
【0054】
別のマグネチックスタラーチップを入れた100mlのナス型フラスコ(B)に、ランタントリイソプロポキシド(La(O−iPr)3、21.0mg、0.0664mmol)を秤りとり、これにTHF(20ml)を入れ、攪拌することにより溶解させた後、これに先に調製したナス型フラスコ(A)の混合物を20mlのシリンジを用いフラスコ(B)に加え、さらにTHF(10ml)で1回洗い込みを行った。
【0055】
フラスコ(B)の混合物は、室温で攪拌しながら1時間保持した後、クメンハイドロパーオキサイド(3141μl、21.2544mmol)を加え、さらに30分間攪拌を行った。
【0056】
30分後、調製した触媒溶液が深緑色に呈色したのを目視で確認の後、これにカルコン(2767mg、13.2840mmol)及びTHF(25ml)からなる溶液を添加し、1時間反応を行った。
【0057】
反応終了後、シリカゲル500mg、メタノール3mlを添加し15分攪拌し、次いで濾過、濃縮することにより残査を得、シリカゲルカラム(Hexane/AcOEt=30/1)で精製精製することによりtrans−(2S,3R)−エポキシ−1,3−ジフェニルプロパン−1−オンを無色透明なオイルして得た(収量:2920mg、収率:98.0%、光学純度:98.0%ee)。
【0058】
比較例2
50mlのナス型フラスコ(A)にマグネチックスタラーチップ及びモレキュラーシーブス4A(1520mg、あらかじめ真空ポンプで減圧下、180℃×4時間予備乾燥品)を入れ、攪拌しながら真空ポンプで減圧下、ヒートガンで10分加熱し、乾燥させた。室温まで冷却の後、トリフェニルフォスフィンオキサイド(63.4mg、0.2277mmol)及び(R)−ビナフトール(21.7mg、0.0759mmol)を仕込み、反応系内を窒素置換した。次いで、THF(30ml)を加え5分攪拌することにより溶解させた。
【0059】
別のマグネチックスタラーチップを入れた100mlのナス型フラスコ(B)に、ランタントリイソプロポキシド(La(O−iPr)3、24.0mg、0.0759mmol)を秤りとり、これにTHF(25ml)を入れ、攪拌することにより溶解させた後、これに先に調製したナス型フラスコ(A)の混合物を20mlのシリンジを用いフラスコ(B)に加え、さらにTHF(6.5ml)で1回洗い込みを行った。
【0060】
フラスコ(B)の混合物は、室温で攪拌しながら1時間保持した後、クメンハイドロパーオキサイド(3589μl、24.2908mmol)を加え、さらに30分間攪拌を行った。
【0061】
30分後、調製した触媒溶液が緑色に呈色したのを目視で確認の後、これにカルコン(3162mg、15.1817mmol)及びTHF(30ml)からなる溶液を添加し、1時間反応を行った。
【0062】
反応終了後、シリカゲル500mg、メタノール3mlを添加し15分攪拌し、次いで濾過、濃縮することにより残査を得、シリカゲルカラム(Hexane/AcOEt=30/1)で精製精製することによりtrans−(2S,3R)−エポキシ−1,3−ジフェニルプロパン−1−オンを無色透明なオイルして得た(収量:2622mg、収率:77.0%、光学純度:98.0%ee)。
【0063】
なお、薄層クロマトグラフィーにより原料の残存が確認された。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an asymmetric epoxidation catalyst for enones and a method for producing an optically active epoxide using the same.
[0002]
[Prior art]
As an asymmetric epoxidation reaction of enones, a compound having a carbon-carbon double bond adjacent to a carbonyl group such as chalcone in the presence of a complex catalyst prepared from a tetrahydrofuran solution of an optically active dihydroxy compound and a rare earth metal alkoxide. A method of asymmetric epoxidation with a hydroxy peroxide compound is known. Specifically, a tetrahydrofuran solution of (R) -binaphthol and lanthanum triisopropoxide is used in the reaction as (R) -lanthanum-binaphthoxide. (Japanese Patent Laid-Open No. 10-120668).
[0003]
[Problems to be solved by the invention]
However, in the method described in JP-A-10-120668, for example, when tert-butyl hydroperoxide (hereinafter abbreviated as TBHP) is used as the oxidizing agent, the target optically active epoxide is produced in a low yield. It can only be obtained with low optical purity. For this reason, in order to obtain satisfactory results, it was necessary to use special binaphthol having methylol introduced at the 3-position or to use a rare earth metal alkoxide other than lanthanum such as ytterbium. Further, the catalyst amount is required to be about 5 to 10 mol% with respect to the enones included in the reaction, and further reduction of the catalyst amount has been desired.
[0004]
[Means for Solving the Problems]
As a result of intensive studies on the development of a catalyst having high reactivity and high optical properties, the present inventors have found that (A) optically active binaphthol, (B) lanthanum triisopropoxide, and (C) tri (4-fluoro). The catalyst composition comprising phenyl) phosphine oxide, tri (4-chlorophenyl) phosphine oxide, or tri (4-trifluoromethylphenyl) phosphine oxide has higher stability and higher reaction activity than conventional catalysts. It has been found that the amount of the catalyst can be reduced with respect to enones included in the reaction, giving the product a high optical purity, and the present invention has been completed.
[0005]
That is, the present invention relates to (A) optically active binaphthol, (B) lanthanum triisopropoxide, and (C) tri (4-fluorophenyl) phosphine oxide, tri (4-chlorophenyl) phosphine oxide or tri (4- Asymmetric epoxidation catalyst of enones composed of (trifluorophenyl) phosphine oxide, in the presence of the catalyst, the following general formula (1)
[0006]
[Chemical 3]
Figure 0004525993
[0007]
(Wherein R 1 and R 2 are each independently 1 to 5 substituted with a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an aromatic group, or an alkyl group having 1 to 5 carbon atoms. Aromatic group substituted, aromatic group substituted with 1 to 5 carbon atoms alkoxy group, aromatic group substituted with halogen elements 1 to 5 carbon atoms, substituted with aromatic group 1 to 5 carbon atoms A linear, branched or cyclic alkyl group, or a linear, branched or cyclic alkyl group having 1 to 5 carbon atoms substituted with a halogenated aromatic group.)
The following general formula (2), characterized by reacting an enone represented by the formula (1) with an oxidizing agent
[0008]
[Formula 4]
Figure 0004525993
[0009]
(In the formula, R 1 and R 2 have the same definitions as above, and * indicates optically active carbon.)
The manufacturing method of the optically active epoxide shown by these is provided.
[0010]
The present invention is described in detail below.
[0011]
The catalyst of the present invention can be used for asymmetric epoxidation reaction of enones, exhibits high reactivity, and gives high optical purity to the product.
[0012]
The catalyst of the present invention comprises (A) optically active binaphthol, (B) lanthanum triisopropoxide, and (C) tri (4-fluorophenyl) phosphine oxide, tri (4-chlorophenyl) phosphine oxide or tri (4 -Trifluoromethylphenyl) phosphine oxide.
[0013]
In the present invention, the composition ratio of the catalyst component is not particularly limited, but (A) binaphthol is usually 1 to 3 mol, and (C) tri (4) per 1 mol of (B) lanthanum triisopropoxide. -Fluoro) phenylphosphine oxide, tri (4-chlorophenyl) phosphine oxide or tri (4-trifluoromethylphenyl) phosphine oxide is usually 0.1 to 10 mol, preferably 1 to 10 mol.
[0014]
A predetermined amount of cumene hydroperoxide (hereinafter abbreviated as CMHP) or tert-butyl hydroperoxide (hereinafter abbreviated as TBHP) is further added to the catalyst of the present invention, so that yellowish green to dark green as reaction active species are added. After forming the complex to be exhibited, it may be used in the reaction. In this case, there is no significant difference in the results obtained. Moreover, after adding CMHP or TBHP necessary for the reaction to the catalyst in advance, the reaction may be performed by adding enones, and in this case, there is no significant difference in the obtained results.
[0015]
The optical absolute configuration expressed by the reaction using the catalyst of the present invention generally depends on the optical absolute configuration of the optically active binaphthol constituting the catalyst, and is generated when (R) -binaphthol is used. When (S) -binaphthol is used as the substrate in which the absolute configuration of the asymmetric carbon of the product becomes the (R) isomer, the optical absolute configuration of the asymmetric carbon of the product has a relationship of becoming the (S) isomer. However, when (R) -binaphthol is used, the optical absolute configuration of the asymmetric carbon of the product does not become the (R) isomer, and the optical absolute configuration of the product varies depending on the type of substrate. When an asymmetric epoxidation reaction is carried out using the catalyst of the present invention, generally, when (R) -binaphthol is used, the 2-position (α-position) and 3-position (β-position) of the epoxide of the enone to be produced The optical absolute configuration of (2S, 3R) becomes (2S, 3R), while when (S) -binaphthol is used, it becomes (2R, 3S).
[0016]
In the method of the present invention, the amount of the catalyst used is not particularly limited, but is preferably 0.001 to 50 mol%, more preferably based on the number of moles of lanthanum isopropoxide with respect to the substrate included in the reaction. Is in the range of 0.01 to 25 mol%.
[0017]
As the solvent applicable to the method of the present invention, any solvent can be used as long as it is inert to the catalyst and the epoxidation reaction, but dimethyl ether and diisopropyl in terms of the stability of the catalyst and the reaction result of the epoxidation reaction. Ether solvents such as ether, 1,2-dimethoxyethane, and tetrahydrofuran (hereinafter abbreviated as THF) are preferable, and among them, THF gives the highest results.
[0018]
The amount of the solvent used is in the range of 2 to 200 times, more preferably 5 to 100 times the amount of enone included in the reaction in terms of weight.
[0019]
The catalyst is formed by adding the components constituting the catalyst and holding it in the range of −50 ° C. to 100 ° C. for 0.5 to 4 hours, and then adding the oxidizing agent and enones included in the reaction. The reaction may be carried out, or a predetermined amount of oxidizing agent may be added to the formed catalyst and stirred, and then the insufficient oxidizing agent and enones for the reaction may be added to carry out the reaction.
[0020]
The enone applicable to the method of the present invention includes the following general formula (1)
[0021]
[Chemical formula 5]
Figure 0004525993
[0022]
(In the formula, R 1 and R 2 are each independently a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an aromatic group, and a short prime alkyl group having 1 to 5 carbon atoms. A substituted aromatic group, an aromatic group substituted with 1 to 5 short alkoxy groups, an aromatic group substituted with 1 to 5 halogen atoms, 1 to 5 carbon atoms substituted with an aromatic group 5 represents a linear, branched or cyclic alkyl group having 1 to 5 short atoms substituted with a linear, branched or cyclic alkyl group, or a halogenated aromatic group.
Any compound can be used as long as it is a compound represented by the formula: methyl vinyl ketone, trans-3-penten-2-one, trans-3-hexen-2-one, trans-3-heptene. 2-one, trans-3-octen-2-one, trans-3-nonen-2-one, ethyl vinyl ketone, trans-4-hexen-3-one, trans-4-hept-3-one, trans-4-octen-3-one, trans-4-nonen-3-one, isopropyl vinyl ketone, trans-2-methyl-4-hexen-3-one, trans-2-methyl-4-heptene-3 -One, trans-2-methyl-4-octen-3-one, trans-2-methyl-4-nonen-3-one, trans-1,3-di Enyl-2-propylene-1-one (chalcone), trans-2-methyl-5-phenyl-4-penten-3-one, 4-methyl-1-phenyl-3-penten-2-one, 4-phenyl -3-butylene-2-one, 6-phenyl-3-hexen-2-one, 5-phenyl-3-hexen-2-one and the like.
[0023]
The oxidizing agent used in the present invention is usually CMHP or TBHP, but other oxidizing agents having equivalent oxidizing power and causing no side reaction in the reaction system can be used.
[0024]
TBHP used as an oxidizing agent in the method of the present invention may be a commercially available solution of decane or the like, or extracted with 70% or 90% aqueous solution, dried with magnesium sulfate, etc., and then used in the present invention. You may do it. CMHP may be used after purifying a commercially available 80% by weight product, or may be used as it is without purification. Furthermore, depending on the kind of reaction substrate, pure optically active substance may be obtained almost quantitatively by using CMHP.
[0025]
The amount of the oxidizing agent used is theoretically equivalent to the enones included in the reaction, but in order to complete the reaction, it is preferably used in an amount of 1.1 mole times or more.
[0026]
Although the reaction temperature in the method of the present invention varies depending on the substrate of the enone, it is usually in the range of −50 ° C. to 100 ° C., and the reaction time is usually completed within 24 hours.
[0027]
If necessary, zeolite may be used for the purpose of dehydrating the system at the time of catalyst preparation and reaction and accelerating the catalyst formation reaction and epoxidation reaction. The amount of zeolite used can be used in any quantitative ratio with respect to enones, and is not particularly limited, but is usually about 10 mg to 2 g per 1 mmol of enones. As the type of zeolite, various zeolites such as A-type zeolite represented by molecular sieves 3A, 4A, and 5A, molecular sieve 13X, Y-type, and L-type can be applied. Of these, molecular sieve 4A is preferable.
[0028]
After completion of the reaction, purification by post-treatment, column chromatography or the like yields the target optically active epoxide in high yield and high optical purity.
[0029]
【The invention's effect】
Since the catalyst of the present invention provides an asymmetric epoxidation reaction of enones with high reactivity, high yield and high optical purity, the method of the present invention is extremely useful as a method for producing various pharmaceutical and agrochemical intermediates. It is.
[0030]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited only to the examples. The optical purity of the product was tested as follows.
[0031]
That is, trans- (2S, 3R) -epoxy-1,3-diphenylpropan-1-one was measured by high performance liquid chromatography equipped with Daicel's chiral column OB-H. Elution solvent: Hexane / I-PrOH = 90/10 (vol / vol), measured at a flow rate of 1 ml / min.
[0032]
Example 1
Into a 50 ml eggplant-shaped flask (A) is placed a magnetic stirrer tip and molecular sieves 4A (128 mg, preliminarily dried at 180 ° C. for 4 hours under reduced pressure with a vacuum pump), and with a heat gun under reduced pressure with a vacuum pump while stirring. Heated for 10 minutes and dried. After cooling to room temperature, tri (4-fluorophenyl) phosphine oxide (63.1 mg, 0.1898 mmol) and (R) -binaphthol (18.1 mg, 0.0633 mmol) were charged, and the reaction system was purged with nitrogen. . Then, THF (2.5 ml) was added and dissolved by stirring for 5 minutes.
[0033]
Lanthanum triisopropoxide (La (O-iPr) 3 , 20.0 mg, 0.0633 mmol) is weighed into a 50 ml eggplant-shaped flask (B) containing another magnetic stirrer chip, and THF ( 2.0 ml) was added and dissolved by stirring, and the mixture of the eggplant-shaped flask (A) prepared previously was added to the flask (B) using a 2 ml syringe, and further THF (0.6 ml) was added. Wash once.
[0034]
The mixture of the flask (B) was kept for 1 hour while stirring at room temperature, and then cumene hydroperoxide (299 μl, 2.024 mmol) was added thereto, followed by further stirring for 5 hours.
[0035]
After 5 hours, visually confirming that the prepared catalyst solution had a dark green color, a solution composed of chalcone (263.4 mg, 1.2651 mmol) and THF (2.5 ml) was added thereto, and 1 Time reaction was performed.
[0036]
After completion of the reaction, 500 mg of silica gel and 3 ml of methanol were added and stirred for 15 minutes, followed by filtration and concentration to obtain a residue, which was purified and purified on a silica gel column (Hexane / AcOEt = 30/1) to produce trans- (2S , 3R) -epoxy-1,3-diphenylpropan-1-one was obtained as a colorless and transparent oil (yield: 245.7 mg, yield: 86.6%, optical purity: 98.9% ee).
[0037]
Example 2
Into a 50 ml eggplant-shaped flask (A) is placed a magnetic stirrer chip and molecular sieves 4A (146 mg, preliminarily dried at 180 ° C. for 4 hours under reduced pressure with a vacuum pump), and stirred with a vacuum pump under reduced pressure with a heat gun. Heated for 10 minutes and dried. After cooling to room temperature, tri (4-chlorophenyl) phosphine oxide (83.3 mg, 0.2182 mmol) and (R) -binaphthol (20.8 mg, 0.0727 mmol) were charged, and the reaction system was purged with nitrogen. Then, THF (3.0 ml) was added and dissolved by stirring for 5 minutes.
[0038]
Lanthanum triisopropoxide (La (O-iPr) 3 , 23.0 mg, 0.0727 mmol) is weighed into a 50 ml eggplant-shaped flask (B) containing another magnetic stirrer chip, and THF ( 2.0 ml) was added and dissolved by stirring, and the mixture of the eggplant-shaped flask (A) prepared previously was added to the flask (B) using a 2 ml syringe, and further THF (1.0 ml) was added. Wash once.
[0039]
The mixture of the flask (B) was kept at room temperature with stirring for 1 hour, and then cumene hydroperoxide (344 μl, 2.3279 mmol) was added thereto, followed by further stirring for 5 hours.
[0040]
After 5 hours, visually confirming that the prepared catalyst solution had a dark green color, a solution composed of chalcone (303.0 mg, 1.4549 mmol) and THF (2.8 ml) was added thereto, and 1 Time reaction was performed.
[0041]
After completion of the reaction, 500 mg of silica gel and 3 ml of methanol were added and stirred for 15 minutes, followed by filtration and concentration to obtain a residue, which was purified and purified on a silica gel column (Hexane / AcOEt = 30/1) to produce trans- (2S , 3R) -epoxy-1,3-diphenylpropan-1-one was obtained as a colorless transparent oil (yield: 252.5 mg, yield: 77.4%, optical purity: 98.9% ee).
[0042]
Example 3
Into a 50 ml eggplant-shaped flask (A) is placed a magnetic stirrer chip and molecular sieves 4A (133 mg, preliminarily dried at 180 ° C. for 4 hours under reduced pressure with a vacuum pump) and stirred with a vacuum pump under reduced pressure and a heat gun. Heated for 10 minutes and dried. After cooling to room temperature, tri (4-trifluoromethylphenyl) phosphine oxide (96.1 mg, 0.1993 mmol) and (R) -binaphthol (19.0 mg, 0.0664 mmol) were charged, and the reaction system was filled with nitrogen. Replaced. Then, THF (3.0 ml) was added and dissolved by stirring for 5 minutes.
[0043]
Lanthanum triisopropoxide (La (O-iPr) 3 , 21.0 mg, 0.0664 mmol) was weighed into a 50 ml eggplant-shaped flask (B) containing another magnetic stirrer chip, and THF ( 2.0 ml) was added and dissolved by stirring, and the mixture of the eggplant-shaped flask (A) prepared previously was added to the flask (B) using a 2 ml syringe, and further THF (1.0 ml) was added. Wash once.
[0044]
The mixture in the flask (B) was kept at room temperature with stirring for 1 hour, and then cumene hydroperoxide (314 μl, 2.1254 mmol) was added thereto, followed by further stirring for 5 hours.
[0045]
After 5 hours, after visually confirming that the prepared catalyst solution had a dark green color, a solution consisting of chalcone (276.6 mg, 1.3284 mmol) and THF (2.0 ml) was added thereto. Time reaction was performed.
[0046]
After completion of the reaction, 500 mg of silica gel and 3 ml of methanol were added and stirred for 15 minutes, followed by filtration and concentration to obtain a residue, which was purified and purified on a silica gel column (Hexane / AcOEt = 30/1) to produce trans- (2S , 3R) -epoxy-1,3-diphenylpropan-1-one was obtained as a colorless and transparent oil (yield: 223.8 mg, yield: 75.1%, optical purity: 95.3% ee).
[0047]
Comparative Example 1
Into a 50 ml eggplant-shaped flask (A) is placed a magnetic stirrer chip and molecular sieves 4A (146 mg, preliminarily dried at 180 ° C. for 4 hours under reduced pressure with a vacuum pump), and stirred with a vacuum pump under reduced pressure with a heat gun. Heated for 10 minutes and dried. After cooling to room temperature, triphenylphosphine oxide (60.7 mg, 0.2182 mmol) and (R) -binaphthol (20.8 mg, 0.0727 mmol) were charged, and the inside of the reaction system was purged with nitrogen. Then, THF (3.0 ml) was added and dissolved by stirring for 5 minutes.
[0048]
Lanthanum triisopropoxide (La (O-iPr) 3 , 23.0 mg, 0.0727 mmol) is weighed into a 50 ml eggplant-shaped flask (B) containing another magnetic stirrer chip, and THF ( 2.0 ml) was added and dissolved by stirring, and the mixture of the eggplant-shaped flask (A) prepared previously was added to the flask (B) using a 2 ml syringe, and further THF (1.0 ml) was added. Wash once.
[0049]
The mixture of the flask (B) was kept at room temperature with stirring for 1 hour, and then cumene hydroperoxide (344 μl, 2.3279 mmol) was added thereto, followed by further stirring for 5 hours.
[0050]
After 5 hours, after visually confirming that the prepared catalyst solution was colored black-green, a solution composed of chalcone (303.0 mg, 1.4549 mmol) and THF (2.8 ml) was added thereto. Time reaction was performed.
[0051]
After completion of the reaction, 500 mg of silica gel and 3 ml of methanol were added and stirred for 15 minutes, followed by filtration and concentration to obtain a residue, which was purified and purified on a silica gel column (Hexane / AcOEt = 30/1) to produce trans- (2S , 3R) -epoxy-1,3-diphenylpropan-1-one was obtained as a colorless transparent oil (yield: 134.1 mg, yield: 41.1%, optical purity: 94.5% ee).
[0052]
Further, 166.7 mg of unreacted raw material (recovery rate 55.0%) was recovered.
[0053]
Example 4
Into a 50 ml eggplant-shaped flask (A) is placed a magnetic stirrer chip and molecular sieves 4A (1330 mg, preliminarily dried at 180 ° C. for 4 hours under reduced pressure with a vacuum pump) and stirred with a vacuum pump under reduced pressure and with a heat gun. Heated for 10 minutes and dried. After cooling to room temperature, tri (4-fluorophenyl) phosphine oxide (66.2 mg, 0.1993 mmol) and (R) -binaphthol (19.0 mg, 0.0664 mmol) were charged, and the reaction system was purged with nitrogen. . Then, THF (25 ml) was added and dissolved by stirring for 5 minutes.
[0054]
Lanthanum triisopropoxide (La (O-iPr) 3 , 21.0 mg, 0.0664 mmol) was weighed into a 100 ml eggplant-shaped flask (B) containing another magnetic stirrer chip, and THF ( 20 ml) was added and dissolved by stirring, and then the mixture of the eggplant-shaped flask (A) prepared previously was added to the flask (B) using a 20 ml syringe and further washed once with THF (10 ml). I did.
[0055]
The mixture of the flask (B) was kept at room temperature for 1 hour with stirring, and then cumene hydroperoxide (3141 μl, 21.2544 mmol) was added thereto, followed by further stirring for 30 minutes.
[0056]
After 30 minutes, it was visually confirmed that the prepared catalyst solution had a dark green color, and then a solution composed of chalcone (2767 mg, 13.2840 mmol) and THF (25 ml) was added thereto and reacted for 1 hour. It was.
[0057]
After completion of the reaction, 500 mg of silica gel and 3 ml of methanol were added and stirred for 15 minutes, followed by filtration and concentration to obtain a residue, which was purified and purified on a silica gel column (Hexane / AcOEt = 30/1) to produce trans- (2S , 3R) -epoxy-1,3-diphenylpropan-1-one was obtained as a colorless transparent oil (yield: 2920 mg, yield: 98.0%, optical purity: 98.0% ee).
[0058]
Comparative Example 2
Put a magnetic stirrer chip and molecular sieves 4A (1520 mg, preliminarily dried at 180 ° C. for 4 hours) in a 50 ml eggplant-shaped flask (A) and stir with a vacuum pump with a heat gun while stirring. Heated for 10 minutes and dried. After cooling to room temperature, triphenylphosphine oxide (63.4 mg, 0.2277 mmol) and (R) -binaphthol (21.7 mg, 0.0759 mmol) were charged, and the inside of the reaction system was purged with nitrogen. Then, THF (30 ml) was added and dissolved by stirring for 5 minutes.
[0059]
Lanthanum triisopropoxide (La (O-iPr) 3 , 24.0 mg, 0.0759 mmol) was weighed into a 100 ml eggplant-shaped flask (B) containing another magnetic stirrer chip, and THF ( 25 ml) was added and dissolved by stirring, and the mixture of the eggplant-shaped flask (A) prepared previously was added to the flask (B) using a 20 ml syringe, and further added with THF (6.5 ml). Washed twice.
[0060]
The mixture of the flask (B) was kept at room temperature with stirring for 1 hour, and then cumene hydroperoxide (3589 μl, 24.2908 mmol) was added and further stirred for 30 minutes.
[0061]
After 30 minutes, it was visually confirmed that the prepared catalyst solution was colored green, and then a solution composed of chalcone (3162 mg, 15.1817 mmol) and THF (30 ml) was added thereto, and the reaction was performed for 1 hour. .
[0062]
After completion of the reaction, 500 mg of silica gel and 3 ml of methanol were added, and the mixture was stirred for 15 minutes, then filtered and concentrated to obtain a residue. , 3R) -epoxy-1,3-diphenylpropan-1-one was obtained as a colorless and transparent oil (yield: 2622 mg, yield: 77.0%, optical purity: 98.0% ee).
[0063]
The remaining raw materials were confirmed by thin layer chromatography.

Claims (2)

(A)光学活性ビナフトール、(B)ランタントリイソプロポキシド、並びに(C)トリ(4−フルオロフェニル)フォスフィンオキサイド、トリ(4−クロロフェニル)フォスフィンオキサイド又はトリ(4−トリフルオロメチルフェニル)フォスフィンオキサイドからなるエノン類の不斉エポキシ化触媒。(A) optically active binaphthol, (B) lanthanum triisopropoxide, and (C) tri (4-fluorophenyl) phosphine oxide, tri (4-chlorophenyl) phosphine oxide or tri (4-trifluoromethylphenyl) Asymmetric epoxidation catalyst of enones consisting of phosphine oxide. 請求項1に記載の触媒存在下、下記一般式(1)
Figure 0004525993
(式中、R1、R2は各々独立して、炭素数1〜20の直鎖状、分岐若しくは環式のアルキル基、芳香族基、炭素数1〜5のアルキル基で1〜5置換された芳香族基、炭素数1〜5のアルコキシ基で1〜5置換された芳香族基、ハロゲン元素で1〜5置換された芳香族基、芳香族基で置換された炭素数1〜5の直鎖状、分岐状若しくは環式アルキル基、又はハロゲン化芳香族基で置換された炭素数1〜5の直鎖状、分岐状若しくは環式アルキル基を表わす。)
で示されるエノン類と酸化剤を反応させることを特徴とする下記一般式(2)
Figure 0004525993
(式中、R1、R2は前記と同じ定義であり、*印は光学活性炭素を示す。)
で示される光学活性エポキシドの製造方法。
In the presence of the catalyst according to claim 1, the following general formula (1)
Figure 0004525993
(Wherein R 1 and R 2 are each independently 1 to 5 substituted with a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an aromatic group, or an alkyl group having 1 to 5 carbon atoms. Aromatic group substituted, aromatic group substituted with 1 to 5 carbon atoms alkoxy group, aromatic group substituted with halogen elements 1 to 5 carbon atoms, substituted with aromatic group 1 to 5 carbon atoms A linear, branched or cyclic alkyl group, or a linear, branched or cyclic alkyl group having 1 to 5 carbon atoms substituted with a halogenated aromatic group.)
The following general formula (2), characterized by reacting an enone represented by the formula (1) with an oxidizing agent
Figure 0004525993
(In the formula, R 1 and R 2 have the same definitions as above, and * indicates optically active carbon.)
The manufacturing method of the optically active epoxide shown by these.
JP2000073996A 2000-02-23 2000-03-13 Asymmetric epoxidation catalyst and method for producing optically active epoxide Expired - Fee Related JP4525993B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2000073996A JP4525993B2 (en) 2000-03-13 2000-03-13 Asymmetric epoxidation catalyst and method for producing optically active epoxide
US09/788,371 US6680275B2 (en) 2000-02-23 2001-02-21 Catalyst for asymmetric epoxidation of enones and process for producing optically active epoxide employing it
DE60120005T DE60120005T2 (en) 2000-02-23 2001-02-22 Catalyst for asymmetric epoxidation of enones and process for the preparation of optically active epoxides
DE60129608T DE60129608T2 (en) 2000-02-23 2001-02-22 Process for the preparation of optically active epoxides
EP01103616A EP1127616B1 (en) 2000-02-23 2001-02-22 Catalyst for asymmetric epoxidations of enones and process for producing optically active epoxide employing it
EP03019601A EP1366815B1 (en) 2000-02-23 2001-02-22 Catalyst for asymmetric epoxidations of enones and process for producing optically active epoxide employing it
EP04008802A EP1439001B1 (en) 2000-02-23 2001-02-22 Process for producing optically active epoxides
DE60116383T DE60116383T2 (en) 2000-02-23 2001-02-22 Catalyst for asymmetric epoxidation of enones and process for the preparation of optically active epoxides
US10/714,599 US6878835B2 (en) 2000-02-23 2003-11-18 Catalyst for asymmetric epoxidation of enones and process for producing optically active epoxide employing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000073996A JP4525993B2 (en) 2000-03-13 2000-03-13 Asymmetric epoxidation catalyst and method for producing optically active epoxide

Publications (2)

Publication Number Publication Date
JP2001253876A JP2001253876A (en) 2001-09-18
JP4525993B2 true JP4525993B2 (en) 2010-08-18

Family

ID=18592120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000073996A Expired - Fee Related JP4525993B2 (en) 2000-02-23 2000-03-13 Asymmetric epoxidation catalyst and method for producing optically active epoxide

Country Status (1)

Country Link
JP (1) JP4525993B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529419B2 (en) * 2002-11-25 2010-08-25 東ソー株式会社 Optically active fluorine-containing compounds and methods for producing them

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229242A (en) * 1998-07-08 2000-08-22 Tosoh Corp Catalyst for asymmetric epoxidation of enones and production of optically active epoxide using the same
JP2000334307A (en) * 1999-05-25 2000-12-05 Tosoh Corp Asymmetrically epoxidized catalyst of enoic acid and manufacture of optically-active epoxide using that
JP2001232211A (en) * 2000-02-23 2001-08-28 Tosoh Corp Complex catalyst for asymmetric epoxidation reaction of enones and method for producing optically active epoxide using the catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229242A (en) * 1998-07-08 2000-08-22 Tosoh Corp Catalyst for asymmetric epoxidation of enones and production of optically active epoxide using the same
JP2000334307A (en) * 1999-05-25 2000-12-05 Tosoh Corp Asymmetrically epoxidized catalyst of enoic acid and manufacture of optically-active epoxide using that
JP2001232211A (en) * 2000-02-23 2001-08-28 Tosoh Corp Complex catalyst for asymmetric epoxidation reaction of enones and method for producing optically active epoxide using the catalyst

Also Published As

Publication number Publication date
JP2001253876A (en) 2001-09-18

Similar Documents

Publication Publication Date Title
Hamada et al. Highly enantioselective benzylic hydroxylation with concave type of (salen) manganese (III) complex
US8097738B2 (en) Ruthenium (II) catalysts for use in stereoselective cyclopropanations
CN105521826A (en) Zirconium catalyst and method for preparing chiral alpha-hydroxy-beta-keto ester compound by use of zirconium catalyst
WO2006137195A1 (en) Sulfonate catalyst and process for producing alcohol compound with the same
JPH11501250A (en) Epoxides produced by oxidizing olefins with air or oxygen
US6225482B1 (en) Process for the enantioselective epoxidation of C═C double bonds
JP2003055389A (en) Complex and method for producing epoxide therewith
JP4525993B2 (en) Asymmetric epoxidation catalyst and method for producing optically active epoxide
JP4283377B2 (en) Asymmetric epoxidation catalyst for enones and method for producing optically active epoxide using the same
JP4378826B2 (en) Complex catalyst for asymmetric epoxidation reaction of enones and method for producing optically active epoxide using the same
EP1366815B1 (en) Catalyst for asymmetric epoxidations of enones and process for producing optically active epoxide employing it
JP3782149B2 (en) Metal complex for asymmetric synthesis, catalyst and method for producing asymmetric compound using the same
US6787657B2 (en) Optically active epoxypropionate derivative, intermediate thereof and processes for their production
JP4239622B2 (en) Asymmetric epoxy catalyst and method for producing optically active epoxide using the same
JP2001233869A (en) Optically active epoxypropionic acid ester derivative, its intermediate and method for producing thereof
JP3924613B2 (en) Production of α, β-epoxyamide
JP2000334307A (en) Asymmetrically epoxidized catalyst of enoic acid and manufacture of optically-active epoxide using that
JP4386626B2 (en) Novel chiral metal complex solid catalyst, intermediates thereof, method for producing them, and method for producing asymmetric epoxy compound using the catalyst
JP2001354665A (en) Optically active epoxypropionic acid ester derivative and method for producing the same
JP2004323445A (en) Method for producing optically active sulfoxide compound
JP2518102B2 (en) Method for producing optically active alcohol and method for dividing optically active alcohol
JP2004269490A (en) Production method of optically active lactone compound
JPH0631266B2 (en) Optically active alcohol
JPH05111638A (en) Assymmetric induction catalyst
JPS63126885A (en) Production of stereoregular alcohol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees