JP4525905B2 - Horizontal heat treatment furnace and annealed wafer manufacturing method - Google Patents

Horizontal heat treatment furnace and annealed wafer manufacturing method Download PDF

Info

Publication number
JP4525905B2
JP4525905B2 JP2004177397A JP2004177397A JP4525905B2 JP 4525905 B2 JP4525905 B2 JP 4525905B2 JP 2004177397 A JP2004177397 A JP 2004177397A JP 2004177397 A JP2004177397 A JP 2004177397A JP 4525905 B2 JP4525905 B2 JP 4525905B2
Authority
JP
Japan
Prior art keywords
heat treatment
shutter
treatment furnace
process tube
horizontal heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004177397A
Other languages
Japanese (ja)
Other versions
JP2006005016A (en
Inventor
明浩 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2004177397A priority Critical patent/JP4525905B2/en
Publication of JP2006005016A publication Critical patent/JP2006005016A/en
Application granted granted Critical
Publication of JP4525905B2 publication Critical patent/JP4525905B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、横型熱処理炉の改良並びにこの改良された横型熱処理炉を用いたアニールウェーハの製造方法に関する。   The present invention relates to an improved horizontal heat treatment furnace and a method for manufacturing an annealed wafer using the improved horizontal heat treatment furnace.

CZシリコンウェーハにはCOPや酸素析出物などの、いわゆるGrown−in欠陥と呼ばれる結晶欠陥が存在することが知られているが、そのウェーハ表面近傍のGrown−in欠陥を消滅させる方法として、Arガス100%雰囲気やHガス100%雰囲気で行う熱処理(以下、Arアニール、Hアニールと呼ぶことがある)、またはArとHの混合雰囲気で行う熱処理が提案されている。 CZ silicon wafers are known to have crystal defects such as COP and oxygen precipitates, so-called Grown-in defects. As a method for eliminating Grown-in defects near the wafer surface, Ar gas A heat treatment performed in a 100% atmosphere or an H 2 gas 100% atmosphere (hereinafter sometimes referred to as Ar annealing or H 2 annealing) or a heat treatment performed in a mixed atmosphere of Ar and H 2 has been proposed.

アニールもしくはArとHの混合雰囲気で行う熱処理の場合、高温で爆発性を有するHガスを使用することから、安全面や装置上のコスト面においてArアニールに劣る。一方、Arアニールの場合、例えば熱処理中にプロセスチューブ内に酸素や水分が不純物として取り込まれると酸化膜が形成され、その酸化膜とシリコン(Si)がSiO+Si→2SiOという反応を起こして結果的にSiがエッチングされその部分がピットとなり、表面粗さを悪化させるという問題があるため、縦型熱処理炉に比べて機密性が劣る横型熱処理炉を使用した場合、特に問題となる可能性があった。 In the case of H 2 annealing or heat treatment performed in a mixed atmosphere of Ar and H 2 , since H 2 gas having explosive properties at high temperature is used, it is inferior to Ar annealing in terms of safety and equipment cost. On the other hand, in the case of Ar annealing, for example, when oxygen or moisture is incorporated as an impurity in the process tube during the heat treatment, an oxide film is formed, and the oxide film and silicon (Si) cause a reaction of SiO 2 + Si → 2SiO. In particular, there is a problem that Si is etched and the portion becomes pits, and the surface roughness is deteriorated. Therefore, when a horizontal heat treatment furnace, which is less confidential than a vertical heat treatment furnace, is used, there is a possibility that it becomes a problem. there were.

そこで本出願人は特許文献1において、原料ガス(プロセスガス)の供給側からプロセスチューブに混入する不純物量を低減することにより、上記問題点を解決する技術を提案した。   Therefore, the present applicant has proposed a technique in Patent Document 1 that solves the above problem by reducing the amount of impurities mixed into the process tube from the supply side of the source gas (process gas).

一方、特許文献2には、プロセスチューブの開口端部とそれを開閉するシャッターを有する横型熱処理炉において、開口端部の下部に存在する隙間をなくすことにより外気の侵入を防ぐ技術が記載されている。   On the other hand, Patent Document 2 describes a technique for preventing intrusion of outside air by eliminating a gap existing at the lower portion of the open end in a horizontal heat treatment furnace having an open end of the process tube and a shutter for opening and closing the open end. Yes.

また、特許文献3において、本出願人はプロセスチューブの開口端部とそれを開閉するシャッターとの接触部分の密着性を高める手段を提案した。   In Patent Document 3, the present applicant has proposed means for improving the adhesion of the contact portion between the opening end of the process tube and the shutter that opens and closes the process tube.

従って、上記3つの技術を組み合わせれば、横型熱処理炉でArアニールする場合であっても、熱処理中にプロセスチューブ内に酸素や水分が不純物として取り込まれることに起因するアニールウェーハの表面粗さの劣化は発生しないものと考えられる。   Therefore, by combining the above three techniques, even when Ar annealing is performed in a horizontal heat treatment furnace, the surface roughness of the annealed wafer caused by oxygen and moisture being incorporated as impurities into the process tube during the heat treatment It is considered that no deterioration occurs.

しかしながら、プロセスガス供給側からの不純物の侵入対策を施し、かつ、炉口部側のシャッターと開口端部に隙間が生じず、密着性を高めた構成とした横型熱処理炉(例えば、図4参照)を用いてArアニールを行っても、外気の侵入に起因すると推定されるアニールウェーハの表面粗さ(ヘイズ)の悪化が発生することが明らかとなった。   However, a horizontal heat treatment furnace (see, for example, FIG. 4) is configured to take measures against intrusion of impurities from the process gas supply side and to improve the adhesion without generating a gap between the shutter and the opening end on the furnace port side. It has been clarified that even when Ar annealing is carried out using a), the surface roughness (haze) of the annealed wafer, which is estimated to be caused by the intrusion of outside air, is deteriorated.

従来の横型熱処理炉の一例の概略構造を図4に示す。図4において、10は横型熱処理炉であり、プロセスチューブ12を有している。該プロセスチューブ12の一端は開口されて炉口部14となるとともに環状の開口端部16が形成されている。該開口端部16はシャッター18によって開閉自在に閉塞されている。22は該プロセスチューブ12の他端に設けられたガス供給口である。該プロセスチューブ12の内部には、多数のウェーハWを垂直状態に支持するウェーハ支持用ボート20が設置されている。該プロセスチューブ12の外周側には不図示のヒーターが設けられ、該プロセスチューブ12内に設置される多数のウェーハWを熱処理することができるようになっている。   FIG. 4 shows a schematic structure of an example of a conventional horizontal heat treatment furnace. In FIG. 4, 10 is a horizontal heat treatment furnace having a process tube 12. One end of the process tube 12 is opened to form a furnace port portion 14 and an annular opening end portion 16 is formed. The open end 16 is closed by a shutter 18 so as to be freely opened and closed. Reference numeral 22 denotes a gas supply port provided at the other end of the process tube 12. Inside the process tube 12, a wafer support boat 20 that supports a number of wafers W in a vertical state is installed. A heater (not shown) is provided on the outer peripheral side of the process tube 12 so that a number of wafers W installed in the process tube 12 can be heat-treated.

なお、図4において、シャッター18は不図示のシャッター移動機構によりプロセスチューブの長手方向に移動可能に構成されており、その移動機構とシャッター18のジョイント部分には、シャッター18を開口端部16に対して平行に調整し、開口端部16の全面とシャッター18とが接触可能となるようなスプリングを有する機構が設けられているため、シャッター18と開口端部16との間に隙間が形成されることは無い。   In FIG. 4, the shutter 18 is configured to be movable in the longitudinal direction of the process tube by a shutter moving mechanism (not shown). The shutter 18 is connected to the opening end 16 at the joint portion of the moving mechanism and the shutter 18. A mechanism having a spring that adjusts parallel to the opening end 16 so that the entire surface of the opening end portion 16 can come into contact with the shutter 18 is provided, so that a gap is formed between the shutter 18 and the opening end portion 16. There is nothing to do.

また、シャッター18と開口端部16の密着性を高めるため、シャッター18の前記開口端部16に対抗する面の少なくとも該開口端部16との接触部分、及び該開口端部16の端面における中心線平均粗さ(Ra)を0.2μm以下としている。
WO01/69666号公報 実開平5−38872号公報 特開2003−92302号公報
Further, in order to improve the adhesion between the shutter 18 and the opening end portion 16, at least the contact portion of the surface facing the opening end portion 16 of the shutter 18 with the opening end portion 16 and the center of the end surface of the opening end portion 16. The line average roughness (Ra) is 0.2 μm or less.
WO01 / 69666 Publication Japanese Utility Model Publication No. 5-38872 JP 2003-92302 A

本発明は上記した従来技術の問題点に鑑みてなされたものであって、本発明の目的はシリコン鏡面ウェーハを高温でArアニールしても表面粗さ(ヘイズ)を悪化させることのない横型熱処理炉を提供し、かつこの新規な横型熱処理炉を用いて熱処理を行うことによって優れた品質を有するアニールウェーハを製造することのできるアニールウェーハの製造方法を提供することである。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is a horizontal heat treatment that does not deteriorate the surface roughness (haze) even if Ar annealing is performed on a silicon mirror wafer at a high temperature. Another object of the present invention is to provide an annealed wafer manufacturing method capable of manufacturing an annealed wafer having an excellent quality by performing a heat treatment using the novel horizontal heat treatment furnace.

本発明者らは、前述したプロセスガス供給側からの不純物の侵入対策を施し、かつ、炉口側のシャッターと開口端に隙間が生じず、密着性を高めた構成とした図4に示す横型熱処理炉を用いてArアニールを行っても、外気の侵入に起因すると推定されるアニールウェーハの表面粗さ(ヘイズ)が悪化するという問題について鋭意検討した結果、このような問題点は石英製のプロセスチューブを用いた場合よりも、SiC製のプロセスチューブを用いた場合の方がより顕著に発生することを見出した。   The inventors of the present invention have taken the above-described countermeasure against intrusion of impurities from the process gas supply side, and have a configuration in which a gap is not generated between the shutter and the opening end on the furnace port side, and the adhesion is improved, as shown in FIG. As a result of earnest examination about the problem that the surface roughness (haze) of the annealed wafer, which is estimated to be caused by the intrusion of outside air, is deteriorated even if Ar annealing is performed using a heat treatment furnace, such a problem is made of quartz. It has been found that the case of using a process tube made of SiC is more prominent than the case of using a process tube.

すなわち、石英製のプロセスチューブの場合には、シャッターを石英製とすることで、前記開口端部16とシャッター18の閉塞面18aとの接続を石英同士のすり合わせとすることができ、両者の密着性を十分に高めることができた。一方SiC製のプロセスチューブの場合には、膨張係数の違いからシャッターを石英製とした場合において前記接続部をすり合わせとすることができず密着性が劣り、またシャッターの断熱効果を維持することを考えれば、シャッターの材質を石英から変更することは難しい。   That is, in the case of a quartz process tube, the shutter is made of quartz, so that the connection between the opening end portion 16 and the closing surface 18a of the shutter 18 can be made of quartz, and the two are in close contact with each other. The sex was able to be raised enough. On the other hand, in the case of a process tube made of SiC, when the shutter is made of quartz due to the difference in expansion coefficient, the connection part cannot be rubbed together and the adhesion is inferior, and the heat insulating effect of the shutter is maintained. Considering it, it is difficult to change the shutter material from quartz.

これを解決するために本出願人は特許文献3において、前記開口端部16とシャッター18の閉塞面18aとの密着性を高める方法を提案した。Arガスの場合は排気口が必ずしも必要ではないためArアニール用横型熱処理炉には排気口を設けない場合がある。この場合、Arガスは前記開口端部16とシャッター18の閉塞面18aとの極僅かな隙間から排気される。しかし、前記開口端部16に対向するシャッター18の閉塞面18aの少なくとも該開口端部16との接触部分、及び該開口端部16の端面における中心線平均粗さ(Ra)が良すぎると極僅かな隙間すら生じず、Arガスが抜けなくなってしまう。   In order to solve this problem, the present applicant has proposed a method of improving the adhesion between the opening end portion 16 and the closing surface 18a of the shutter 18 in Patent Document 3. In the case of Ar gas, an exhaust port is not necessarily required, and therefore there is a case where an exhaust port is not provided in the horizontal annealing furnace for Ar annealing. In this case, Ar gas is exhausted through a very small gap between the opening end 16 and the closing surface 18a of the shutter 18. However, if the center line average roughness (Ra) of at least the contact portion of the closing surface 18a of the shutter 18 facing the opening end 16 with the opening end 16 and the end surface of the opening end 16 is too good, the poles are extremely small. Even a slight gap does not occur, and Ar gas cannot escape.

そうすると、プロセスチューブ内にArガスが溜まり、チューブ内圧が高まる。このチューブ内圧が、前記シャッターの移動機構とシャッターのジョイント部分にあるスプリングを押すほどまでに高まると、シャッターが開き、前記開口端部16とシャッター18の閉塞面18aとの間に隙間が生じ、一気にArガスが排気される。Arガスが抜けると、再びシャッターは閉じ、前記開口端部16とシャッター18の閉塞面18aとの間には極僅かな隙間さえもなくなってしまう。これを繰り返すためにシャッターが常に振動してしまい、この時にプロセスチューブ外の酸素や水分が不純物として取り込まれ、これに起因してアニールウェーハの表面粗さの劣化が発生してしまう。     Then, Ar gas accumulates in the process tube, and the tube internal pressure increases. When the internal pressure of the tube increases to the extent that the spring in the shutter moving mechanism and the shutter joint is pressed, the shutter opens, and a gap is created between the opening end 16 and the closing surface 18a of the shutter 18, Ar gas is exhausted at once. When the Ar gas is released, the shutter is closed again, and there is no even a slight gap between the opening end portion 16 and the closing surface 18a of the shutter 18. In order to repeat this, the shutter always vibrates, and at this time, oxygen and moisture outside the process tube are taken in as impurities, resulting in deterioration of the surface roughness of the annealed wafer.

また、この振動が原因で石英製シャッターとその移動機構を接続するナットが徐々に緩んでしまう。
そうするとシャッターが不安定な状態になってしまい、前記開口端部16とシャッター18の閉塞面18aとの間を密着することができず、しかも両者の間に生じる隙間が一様ではなくなり、Arガスの抜けが均一ではなく偏ってしまう。そして別の隙間(Arガスが抜けない隙間)からプロセスチューブ外の酸素や水分が不純物として取り込まれ、これに起因してアニールウェーハの表面粗さの劣化が発生してしまう。
Moreover, the nut which connects the quartz shutter and its moving mechanism gradually loosens due to this vibration.
As a result, the shutter becomes unstable, the opening end portion 16 and the closing surface 18a of the shutter 18 cannot be brought into close contact with each other, and the gap formed between them is not uniform, and Ar gas The omission is not uniform but biased. Then, oxygen and moisture outside the process tube are taken in as impurities from another gap (a gap where Ar gas cannot escape), and this causes deterioration of the surface roughness of the annealed wafer.

また、特許文献3には前記開口端部16とシャッター18の閉塞面18aとの間をO−リングを用いて密着性を高める手段が提案されているが、特に900℃以上のアニールの場合、該開口端部16及びシャッター18が高温となっており、O−リングを使用することはできなかった。   Further, Patent Document 3 proposes a means for improving the adhesion between the opening end portion 16 and the closed surface 18a of the shutter 18 using an O-ring. Especially, in the case of annealing at 900 ° C. or higher, The open end portion 16 and the shutter 18 were at a high temperature, and an O-ring could not be used.

そこで本発明の横型熱処理炉は、一端に開口端部を有するプロセスチューブと、前記開口端部と接触する閉塞面を介して前記開口端部を閉塞するシャッターとを備える横型熱処理炉において、前記プロセスチューブに供給されるプロセスガスを排気する機能を有する凹部が前記シャッターの閉塞面に穿設され、前記凹部が前記開口端部の内側面と外側面とを跨ぐように設けられており、かつ前記プロセスガスが常に該凹部を通って排気されるようにしたことを特徴とする。 Therefore, the horizontal heat treatment furnace of the present invention is a horizontal heat treatment furnace comprising a process tube having an open end at one end and a shutter for closing the open end through a closed surface in contact with the open end. A recess having a function of exhausting the process gas supplied to the tube is formed in the closing surface of the shutter , the recess is provided so as to straddle the inner surface and the outer surface of the opening end, and The process gas is always exhausted through the recess .

このように前記凹部からプロセスガスを排気すれば、炉内の圧力が高くなることが無いため、前記開口端部16とシャッター18の閉塞面18aとの極僅かな隙間からプロセスガスが抜けることが無くなり、両者の密着性が高い場合であってもプロセスチューブからプロセスガスが抜ける際にシャッターが振動することは無く、この振動による及び/又はナットの緩みから生じる別の隙間から酸素や水分が不純物として取り込まれることによるアニールウェーハの表面粗さ(ヘイズ)の劣化は発生しない。   If the process gas is exhausted from the concave portion in this way, the pressure in the furnace does not increase, so that the process gas may escape from a very small gap between the opening end portion 16 and the closing surface 18a of the shutter 18. Even when the adhesion between the two is high, the shutter does not vibrate when the process gas escapes from the process tube. Oxygen and water are impurities from another gap caused by this vibration and / or loosening of the nut. As a result, the surface roughness (haze) of the annealed wafer does not deteriorate.

本発明の横型熱処理炉において用いられるプロセスチューブはSiC又は石英からなるものであることが好ましい。石英製のプロセスチューブの場合は、石英が高純度であるため処理される半導体ウェーハが汚染されることがないという利点がある。しかし、1150℃を越え1200℃以上の熱処理を行うと石英製プロセスチューブは変形(ダレ)してしまう不利があるが、1150℃以下の熱処理においては好適に用いられる。一方、前述のようにSiC製のプロセスチューブの場合には石英製のシャッターとすり合わせ構造にすることができないため、本発明の横型熱処理炉にとってはより効果的である。また、例えば、1150℃を越える熱処理など、高温の熱処理を横型熱処理炉で行う場合には、上述したように、石英製のプロセスチューブでは変形(ダレ)してしまい使用することができないので、SiC製プロセスチューブを使用することが好ましい。さらに、このプロセスチューブの直径は、プロセスチューブ外から取り込まれる酸素や水分などの影響が大きくなる150mmもしくはそれ以上のウェーハを投入可能なサイズとするのが望ましい。   The process tube used in the horizontal heat treatment furnace of the present invention is preferably made of SiC or quartz. In the case of a process tube made of quartz, there is an advantage that a semiconductor wafer to be processed is not contaminated because quartz has a high purity. However, when heat treatment is performed at a temperature exceeding 1150 ° C. and 1200 ° C. or more, the quartz process tube is disadvantageously deformed (sag), but it is preferably used for heat treatment at 1150 ° C. or less. On the other hand, as described above, in the case of a process tube made of SiC, it is impossible to make a structure with a shutter made of quartz, which is more effective for the horizontal heat treatment furnace of the present invention. In addition, when a high temperature heat treatment such as a heat treatment exceeding 1150 ° C. is performed in a horizontal heat treatment furnace, as described above, the quartz process tube is deformed and cannot be used. It is preferred to use a manufactured process tube. Further, it is desirable that the diameter of the process tube is a size that allows the introduction of a wafer of 150 mm or more in which the influence of oxygen or moisture taken in from outside the process tube becomes large.

本発明のアニールウェーハの製造方法は、本発明の横型熱処理炉を用い、前記プロセスチューブに半導体ウェーハを投入し、前記開口端部を前記シャッターにより閉塞して投入された半導体ウェーハの加熱処理を行う方法において、前記プロセスガスが常に前記凹部を通って排気されるようにして前記半導体ウェーハを加熱処理することを特徴とする。このようにすることで、熱処理中にプロセスチューブ内に酸素や水分が不純物として取り込まれることに起因するアニールウェーハの表面粗さの劣化が発生しないアニールウェーハを製造することができる。 The method for producing an annealed wafer according to the present invention uses the horizontal heat treatment furnace according to the present invention, puts the semiconductor wafer into the process tube, closes the opening end with the shutter, and heats the introduced semiconductor wafer. In the method, the semiconductor wafer is heat-treated so that the process gas is always exhausted through the recess . By doing so, it is possible to manufacture an annealed wafer that does not cause deterioration of the surface roughness of the annealed wafer due to oxygen and moisture being taken into the process tube as impurities during the heat treatment.

本発明のアニールウェーハは、本発明のアニールウェーハの製造方法によって製造されるもので、表面粗さの劣化のない優れた品質を有している。     The annealed wafer of the present invention is manufactured by the annealed wafer manufacturing method of the present invention, and has excellent quality without deterioration of surface roughness.

以上述べたごとく、本発明の横型熱処理炉によれば、シリコン鏡面ウェーハを横型炉で高温でArでアニールしても表面粗さ(ヘイズ)を悪化させることがなくなるという効果が達成される。本発明のアニールウェーハの製造方法によれば、本発明の横型熱処理炉を用いてウェーハを熱処理することによって、優れた品質を有するアニールウェーハを製造することができる。本発明のアニールウェーハは優れた品質を有するという効果を有している。   As described above, according to the horizontal heat treatment furnace of the present invention, the effect that the surface roughness (haze) is not deteriorated even if the silicon mirror wafer is annealed with Ar at a high temperature in the horizontal furnace is achieved. According to the method for manufacturing an annealed wafer of the present invention, an annealed wafer having excellent quality can be manufactured by heat-treating the wafer using the horizontal heat treatment furnace of the present invention. The annealed wafer of the present invention has the effect of having excellent quality.

以下、本発明の実施の形態について添付図面を参照しながら具体的に説明するが、図示例は例示的に示されるもので本発明はこれらに限定されるものではない。図1は本発明の横型熱処理炉の一つの実施の形態のシャッター部分を示す概略説明図である。図2はシャッターに穿設された凹部部分の幅方向断面説明図である。図3はシャッターに穿設された凹部部分の長手方向断面説明図である。なお、本発明の横型熱処理炉の基本的構造は図4に示した従来の横型熱処理炉と同様であるので再度の説明は省略するが、図1〜図3において、図4に示した部材と同一又は類似部材については同一の符号を用いて説明する。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. However, the illustrated examples are illustrative and the present invention is not limited thereto. FIG. 1 is a schematic explanatory view showing a shutter portion of one embodiment of a horizontal heat treatment furnace of the present invention. FIG. 2 is a cross-sectional explanatory view in the width direction of the recessed portion formed in the shutter. FIG. 3 is an explanatory view in the longitudinal direction of the recessed portion formed in the shutter. The basic structure of the horizontal heat treatment furnace of the present invention is the same as that of the conventional horizontal heat treatment furnace shown in FIG. 4 and will not be described again. However, in FIGS. 1 to 3, the members shown in FIG. The same or similar members will be described using the same reference numerals.

図1に示したように、本発明の横型熱処理炉10aは、図4に示した従来の横型熱処理炉10の場合と同様に、一端に開口端部16を有するプロセスチューブ12と、前記開口端部16と接触する閉塞面18aを介して前記開口端部16を閉塞するシャッター18とを備えている。前記シャッター18の閉塞面18aには、前記プロセスチューブ12に供給されるプロセスガスGを排気する機能を有する凹部30が穿設されている。図3によく示されるように、該凹部30は前記開口端部16の内側面16aと外側面16bとを跨ぐように穿設されている。また、前記開口端部16のほとんどはシャッター18の閉塞面18aに接触しており、前記凹部30に該開口端部16がはめ込まれる構造ではない。このようにすることで、プロセスガスGは常に該凹部30を通って排気される。設ける凹部30の数、サイズはなんら限定されるものではないし、位置も任意の場所で良い。ただし、プロセスガスGが排気される凹部30の総断面積が大きすぎると、酸素や水分などの不純物がプロセスチューブ12内へ取り込まれることになるので逆効果である。よって、凹部30の総断面積は必要最小限であることが好ましい。   As shown in FIG. 1, the horizontal heat treatment furnace 10a of the present invention includes a process tube 12 having an open end 16 at one end, and the open end, as in the case of the conventional horizontal heat treatment furnace 10 shown in FIG. And a shutter 18 that closes the opening end 16 via a closing surface 18a that contacts the portion 16. A recess 30 having a function of exhausting the process gas G supplied to the process tube 12 is formed in the closing surface 18 a of the shutter 18. As well shown in FIG. 3, the recess 30 is formed so as to straddle the inner side surface 16a and the outer side surface 16b of the opening end portion 16. Further, most of the opening end portion 16 is in contact with the closing surface 18 a of the shutter 18, and the opening end portion 16 is not structured to be fitted into the concave portion 30. By doing so, the process gas G is always exhausted through the recess 30. The number and size of the recessed portions 30 to be provided are not limited at all, and the positions may be arbitrary places. However, if the total cross-sectional area of the recess 30 from which the process gas G is exhausted is too large, impurities such as oxygen and moisture are taken into the process tube 12, which is counterproductive. Therefore, it is preferable that the total cross-sectional area of the recess 30 is the minimum necessary.

前記凹部30の穿設位置については、シャッター18の閉塞面18aの上部に穿設すれば、プロセスチューブ12内部の加熱されたプロセスガスGによる上昇気流によりプロセスチューブ12から該凹部30を通ってプロセスガスGが噴出し、そのガス圧により外部からの大気の侵入を阻むことができるし、逆にシャッター18の閉塞面18aの下部に穿設した場合は、設けない場合のプロセスチューブ内の気流、すなわち加熱されたプロセスガスGによる上昇気流のためシャッター18付近下部でのプロセスガスG流が希薄になることにより、シャッター18下部からの大気巻き込みが発生しやすくなっている状態に逆らって、シャッター18下部にプロセスガスGの排気流が生じ、このガス圧により外部からの大気の侵入を阻むことができるので、凹部30の穿設位置については、プロセスガスG流量、プロセスチューブ12の形状(直径、長さなど)などにより最適化すれば良い。   With respect to the drilling position of the recess 30, if it is drilled in the upper part of the closing surface 18 a of the shutter 18, the process tube 12 passes through the recess 30 through the recess 30 due to the rising airflow caused by the heated process gas G inside the process tube 12. The gas G is ejected, and the gas pressure can prevent the entry of the atmosphere from the outside. Conversely, when the gas G is drilled in the lower part of the closing surface 18a of the shutter 18, the airflow in the process tube when not provided, In other words, the process gas G flow in the lower portion near the shutter 18 is dilute due to the rising air flow caused by the heated process gas G, and thus the shutter 18 is opposed to a state in which atmospheric entrainment from the lower portion of the shutter 18 is likely to occur. An exhaust flow of process gas G is generated at the bottom, and this gas pressure can prevent the entry of air from the outside. Runode, for drilling position of the recess 30, the process gas G flow, shape (diameter, length, etc.) of the process tube 12 may be optimized by like.

以下に実施例を挙げて本発明をさらに具体的に説明するが、これらの実施例は例示的に示されるものであり、限定的に解釈されるべきでないことは言うまでも無い。   EXAMPLES The present invention will be described more specifically with reference to the following examples. However, it is needless to say that these examples are illustrative and should not be construed as limiting.

(実施例1)
使用ウェーハ:直径200mm、P型、10Ωcm、(100)、100枚チャージ(評価対象ウェーハは炉口部から5枚目のウェーハ)。
アニール条件:Ar100%、1200℃/1h。
ヘイズ評価:パーティクルカウンターSP−1(KLA−Tencor社製)。
Example 1
Wafer used: Diameter 200 mm, P-type, 10 Ωcm, (100), 100 sheets charged (evaluation wafer is the fifth wafer from the furnace opening).
Annealing conditions: Ar 100%, 1200 ° C./1 h.
Haze evaluation: Particle counter SP-1 (manufactured by KLA-Tencor).

SiC製のプロセスチューブと、図1のような凹部30を穿設した石英製のシャッターとで構成される横型熱処理炉を用い、上記使用ウェーハに対して上記条件でArアニールを行い、アニールウェーハのヘイズ評価を上記装置で行った。なお、プロセスチューブの開口端部の端面の中心線平均粗さ(Ra)は研磨により0.10μmとし、シャッターのRaは0.10μmのものを用いた。Ra測定はミツトヨ社製サーフテスト301によって行った。ウェーハ全面でのヘイズの平均値は0.063ppmであり、酸素や水分などの不純物が巻き込んだことによる表面粗さの劣化は認められず、良好なレベルであった。   Using a horizontal heat treatment furnace composed of a process tube made of SiC and a quartz shutter having a recess 30 as shown in FIG. 1, Ar annealing is performed on the wafer to be used under the above conditions. Haze evaluation was performed with the above apparatus. The center line average roughness (Ra) of the end face of the open end of the process tube was set to 0.10 μm by polishing, and the shutter Ra was set to 0.10 μm. Ra measurement was performed by a surf test 301 manufactured by Mitutoyo Corporation. The average value of haze on the entire surface of the wafer was 0.063 ppm, and the surface roughness was not deteriorated due to the inclusion of impurities such as oxygen and moisture, which was a good level.

(比較例1)
シャッターに凹部30を設けない横型熱処理炉を用いた以外は実施例1と同様にArアニールを行い、アニールウェーハの評価を行った。その結果、ウェーハ全面でのヘイズの平均値は7.489ppmであり、特にウェーハ周辺0〜20mmの領域でのヘイズが劣化しており、酸素や水分などの不純物に起因したウェーハ品質の悪化が認められた。
(Comparative Example 1)
Ar annealing was performed in the same manner as in Example 1 except that a horizontal heat treatment furnace having no shutter 30 provided with a recess 30 was used, and the annealed wafer was evaluated. As a result, the average value of haze on the entire wafer surface is 7.489 ppm, and the haze particularly in the area of 0 to 20 mm around the wafer is deteriorated, and the deterioration of the wafer quality due to impurities such as oxygen and moisture is recognized. It was.

尚、本発明は上記実施形態に限定されるものではない。上記実施形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的思想に包含される。
例えば、本実施の形態では、プロセスチューブの開口端部の形状がつば付のものを図に示して説明したが、これに限定されるものではなく、プロセスチューブの胴体部の肉厚と同じ肉厚の開口端部となっているつばのないものや薄い肉厚となっているものなど変更が可能であり、これらが本願特許請求の範囲に含まれることは言うまでもない。
The present invention is not limited to the above embodiment. The above embodiment is merely an example, and the present invention has the same configuration as that of the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical idea of the invention.
For example, in the present embodiment, the process tube having an open end portion having a flange shape is illustrated and described, but the present invention is not limited to this, and the same thickness as the thickness of the body portion of the process tube. Needless to say, it is possible to make changes such as those having a thick opening end or a thin thickness, and these are included in the scope of claims of the present application.

本発明の横型熱処理炉の一つの実施の形態のシャッター部分を示す概略説明図である。It is a schematic explanatory drawing which shows the shutter part of one embodiment of the horizontal type heat treatment furnace of this invention. シャッターに穿設された凹部部分の幅方向摘示断面説明図である。It is a cross-sectional explanatory drawing of the width direction of the recessed part pierced by the shutter. シャッターに穿設された凹部部分の長手方向摘示断面説明図である。It is a cross-sectional explanatory view in the longitudinal direction of a recessed portion formed in the shutter. 従来の横型熱処理炉の1例を示す概略構造説明図である。It is schematic structure explanatory drawing which shows an example of the conventional horizontal heat processing furnace.

符号の説明Explanation of symbols

10:従来の横型熱処理炉、10a:本発明の横型熱処理炉、12:プロセスチューブ、14:炉口部、16:開口端部、18:シャッター、20:ウェーハ支持用ボート、22:ガス供給口、30:凹部。   10: Conventional horizontal heat treatment furnace, 10a: Horizontal heat treatment furnace of the present invention, 12: Process tube, 14: Furnace port, 16: Open end, 18: Shutter, 20: Wafer support boat, 22: Gas supply port , 30: recess.

Claims (6)

一端に開口端部を有するプロセスチューブと、前記開口端部と接触する閉塞面を介して前記開口端部を閉塞するシャッターとを備える横型熱処理炉において、前記プロセスチューブに供給されるプロセスガスを排気する機能を有する凹部が前記シャッターの閉塞面に穿設され、前記凹部が前記開口端部の内側面と外側面とを跨ぐように設けられており、かつ前記プロセスガスが常に該凹部を通って排気されるようにしたことを特徴とする横型熱処理炉。 In a horizontal heat treatment furnace provided with a process tube having an open end at one end and a shutter for closing the open end through a closed surface that contacts the open end, the process gas supplied to the process tube is exhausted A recess having a function to perform is formed in the closing surface of the shutter , the recess is provided so as to straddle the inner surface and the outer surface of the opening end, and the process gas always passes through the recess. A horizontal heat treatment furnace characterized by being evacuated . 前記プロセスチューブは、SiC又は石英からなるものであることを特徴とする請求項記載の横型熱処理炉。 Said process tube, horizontal heat treatment furnace of claim 1, wherein a is made of SiC or quartz. 前記プロセスチューブの直径は、直径が150mmもしくはそれ以上のウェーハを投入可能なサイズであることを特徴とする請求項1又は2に記載の横型熱処理炉。 3. The horizontal heat treatment furnace according to claim 1, wherein the diameter of the process tube is a size capable of loading a wafer having a diameter of 150 mm or more. 請求項1〜のいずれか1項に記載の横型熱処理炉を用い、前記プロセスチューブに半導体ウェーハを投入し、前記開口端部を前記シャッターにより閉塞して投入された半導体ウェーハの加熱処理を行う方法において、前記プロセスガスが常に前記凹部を通って排気されるようにして前記半導体ウェーハを加熱処理することを特徴とするアニールウェーハの製造方法。 A horizontal heat treatment furnace according to any one of claims 1 to 3 , wherein a semiconductor wafer is put into the process tube, the opening end is closed by the shutter, and the inserted semiconductor wafer is heated. A method of manufacturing an annealed wafer, comprising: heat-treating the semiconductor wafer so that the process gas is always exhausted through the recess . 前記半導体ウェーハの直径は、150mm以上であることを特徴とする請求項に記載のアニールウェーハの製造方法。 The method of manufacturing an annealed wafer according to claim 4 , wherein the diameter of the semiconductor wafer is 150 mm or more. 前記半導体ウェーハは、シリコン単結晶であることを特徴とする請求項又は請求項に記載のアニールウェーハの製造方法。 The semiconductor wafer manufacturing method of the annealed wafer according to claim 4 or claim 5, characterized in that a silicon single crystal.
JP2004177397A 2004-06-15 2004-06-15 Horizontal heat treatment furnace and annealed wafer manufacturing method Expired - Fee Related JP4525905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004177397A JP4525905B2 (en) 2004-06-15 2004-06-15 Horizontal heat treatment furnace and annealed wafer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004177397A JP4525905B2 (en) 2004-06-15 2004-06-15 Horizontal heat treatment furnace and annealed wafer manufacturing method

Publications (2)

Publication Number Publication Date
JP2006005016A JP2006005016A (en) 2006-01-05
JP4525905B2 true JP4525905B2 (en) 2010-08-18

Family

ID=35773156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004177397A Expired - Fee Related JP4525905B2 (en) 2004-06-15 2004-06-15 Horizontal heat treatment furnace and annealed wafer manufacturing method

Country Status (1)

Country Link
JP (1) JP4525905B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170017A (en) * 1987-12-25 1989-07-05 Toshiba Corp Semiconductor processing device
JPH07326588A (en) * 1994-05-30 1995-12-12 Dainippon Screen Mfg Co Ltd Heat treatment device for substrate
WO2001069666A1 (en) * 2000-03-16 2001-09-20 Shin-Etsu Handotai Co., Ltd. Method for manufacturing silicon mirror wafer, silicon mirror wafer, and heat treatment furnace

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2601830B2 (en) * 1987-07-28 1997-04-16 株式会社東芝 Heat treatment equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170017A (en) * 1987-12-25 1989-07-05 Toshiba Corp Semiconductor processing device
JPH07326588A (en) * 1994-05-30 1995-12-12 Dainippon Screen Mfg Co Ltd Heat treatment device for substrate
WO2001069666A1 (en) * 2000-03-16 2001-09-20 Shin-Etsu Handotai Co., Ltd. Method for manufacturing silicon mirror wafer, silicon mirror wafer, and heat treatment furnace

Also Published As

Publication number Publication date
JP2006005016A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP4317871B2 (en) Heat treatment equipment
TWI445090B (en) Longitudinal heat treatment device and heat treatment method
JP4386837B2 (en) Heat treatment apparatus, semiconductor device manufacturing method, and substrate manufacturing method
WO2014192870A1 (en) Substrate processing apparatus, semiconductor device manufacturing method, and substrate processing method
JP4998246B2 (en) Semiconductor substrate support jig and manufacturing method thereof.
JP4525905B2 (en) Horizontal heat treatment furnace and annealed wafer manufacturing method
JP4611229B2 (en) Substrate support, substrate processing apparatus, substrate processing method, substrate manufacturing method, and semiconductor device manufacturing method
JP5350623B2 (en) Heat treatment method for silicon wafer
WO2002045141A1 (en) Method for manufacturing semiconductor wafer
WO2012063402A1 (en) Method for forming thermal oxide film of monocrystalline silicon wafer
EP1189268A1 (en) Method for manufacturing silicon mirror wafer, silicon mirror wafer, and heat treatment furnace
TW508634B (en) Manufacturing method for silicon wafer
JP4140220B2 (en) Horizontal heat treatment furnace and annealed wafer manufacturing method
JP4449307B2 (en) Wafer heat treatment method and heat treatment apparatus
JP5109588B2 (en) Heat treatment equipment
JP5530856B2 (en) Wafer heat treatment method, silicon wafer production method, and heat treatment apparatus
JP2008227060A (en) Method of manufacturing annealed wafer
JP4453257B2 (en) Wafer heat treatment method, heat treatment apparatus, and heat treatment boat
KR102105367B1 (en) Heat treatment method
KR20140118905A (en) Silicon member and method of producing the same
JP2006319137A (en) Semiconductor device and its manufacturing method
JP2003257881A (en) Boat for heat treatment and method for heat treating wafer
JP2006332705A (en) Substrate holder and heat treatment apparatus
JP2006100303A (en) Substrate manufacturing method and heat treatment apparatus
KR100351453B1 (en) Method for fabrication SEG in semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100310

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4525905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees