JP4524100B2 - Method for forming molded body for plasma generating electrode, and method for manufacturing plasma generating electrode - Google Patents

Method for forming molded body for plasma generating electrode, and method for manufacturing plasma generating electrode Download PDF

Info

Publication number
JP4524100B2
JP4524100B2 JP2003423556A JP2003423556A JP4524100B2 JP 4524100 B2 JP4524100 B2 JP 4524100B2 JP 2003423556 A JP2003423556 A JP 2003423556A JP 2003423556 A JP2003423556 A JP 2003423556A JP 4524100 B2 JP4524100 B2 JP 4524100B2
Authority
JP
Japan
Prior art keywords
molded
sheet
plasma generating
dielectric material
comb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003423556A
Other languages
Japanese (ja)
Other versions
JP2005177644A (en
Inventor
純一 鈴木
直美 寺谷
厚男 近藤
昌明 桝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
NGK Insulators Ltd
Original Assignee
Honda Motor Co Ltd
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, NGK Insulators Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003423556A priority Critical patent/JP4524100B2/en
Publication of JP2005177644A publication Critical patent/JP2005177644A/en
Application granted granted Critical
Publication of JP4524100B2 publication Critical patent/JP4524100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Plasma Technology (AREA)
  • Treating Waste Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、プラズマ発生電極用成形の成形方法、並びにプラズマ発生電極の製造方法に関する。さらに詳しくは、温度変化による電極の破損を有効に防止し得るためのプラズマ発生電極用成形の成形方法、並びにプラズマ発生電極の製造方法に関する。 The present invention is a molding method of the plasma generating electrode molded product, and a method for manufacturing a plasma generating electrode. More specifically, the present invention relates to a method for forming a molded body for a plasma generating electrode and a method for manufacturing the plasma generating electrode that can effectively prevent damage to the electrode due to temperature change.

二枚の電極間に誘電体を配置し高電圧の交流、あるいは周期パルス電圧をかけることにより、無声放電が発生し、これによりできるプラズマ場では活性種、ラジカル、イオンが生成され、気体の反応、分解を促進することが知られており、これをエンジン排気ガスや各種の焼却炉排気ガスに含まれる有害成分の除去に利用できることが知られている。   Silent discharge is generated by placing a dielectric between two electrodes and applying a high-voltage AC or periodic pulse voltage. In the resulting plasma field, active species, radicals, and ions are generated, and gas reactions occur. It is known to promote decomposition, and it is known that this can be used to remove harmful components contained in engine exhaust gas and various incinerator exhaust gases.

例えば、エンジン排気ガスや各種の焼却炉排気ガスを、プラズマ場内を通過させることによって、このエンジン排気ガスや各種の焼却炉排気ガス中に含まれる、例えば、NOx、カーボン微粒子、HC、CO等を処理する、プラズマ反応器等が開示されている(例えば、特許文献1参照)。
特開2001−164925号公報
For example, by passing engine exhaust gas and various incinerator exhaust gases through the plasma field, for example, NOx, carbon particulates, HC, CO, etc. contained in the engine exhaust gas and various incinerator exhaust gases are contained. The plasma reactor etc. which process are disclosed (for example, refer patent document 1).
JP 2001-164925 A

しかしながら、プラズマをできるかぎり低電力で安定的に均一に発生させる構造を採ろうとすると、プラズマ発生電極を構成する各電極(単位電極)間の距離を小さくする必要があり、部品点数が多くなるとともに組み付けが煩雑となり生産性が低いという問題があった。また、排ガスがプラズマ発生電極を通過するときの圧力損失を小さくしようとすると、上記単位電極自体を薄くする必要があるが、薄くした単位電極は変形しやすいため単位電極の弛み等により単位電極間の距離が部分的に異なり、全体的に一定とならないため、プラズマが不均一になるという問題があった。さらに、プラズマ発生電極に熱応力が加わったときには、熱応力によりプラズマ発生電極が破損することがあるという問題もあった。   However, when trying to adopt a structure that stably and uniformly generates plasma with as low power as possible, it is necessary to reduce the distance between each electrode (unit electrode) constituting the plasma generating electrode, and the number of parts increases. There was a problem that assembly was complicated and productivity was low. In order to reduce the pressure loss when the exhaust gas passes through the plasma generating electrode, it is necessary to make the unit electrode itself thin. However, since the thin unit electrode is easily deformed, the unit electrodes may be loosened due to looseness of the unit electrodes. Since the distances are partially different and are not constant as a whole, there is a problem that the plasma becomes non-uniform. Furthermore, when thermal stress is applied to the plasma generating electrode, there is a problem that the plasma generating electrode may be damaged by the thermal stress.

本発明は、上述した問題に鑑みてなされたものであり、生産性が高く、均一かつ安定なプラズマを発生させることが可能であるとともに、温度変化や高圧の電圧負荷による電極の破損を有効に防止し得る耐熱性に優れたプラズマ発生電極用成形の成形方法、並びにプラズマ発生電極の製造方法を提供することにある。 The present invention has been made in view of the above-described problems, has high productivity, can generate uniform and stable plasma, and effectively breaks electrodes due to temperature changes and high voltage loads. An object of the present invention is to provide a method for forming a molded article for a plasma generating electrode excellent in heat resistance that can be prevented, and a method for producing a plasma generating electrode.

上述の目的を達成するため、本発明は、以下のプラズマ発生電極用成形体及びその成形方法、並びにプラズマ発生電極を提供するものである。   In order to achieve the above object, the present invention provides the following molded article for a plasma generating electrode, a molding method thereof, and a plasma generating electrode.

[1] 一方の押出成形機により平板部の表面に櫛形状に突条部が配設された誘電材料からなる第一の成形シートを一体的に押し出して第一の搬送ラインで搬送するとともに、前記押出成形機と平行配置させたもう一方の押出成形機により平板状の誘電材料からなる第二の成形シートを押し出して第二の搬送ラインで搬送する際、前記第一の成形シート又は前記第二の成形シートの平坦面に、導電膜を所定のパターンで形成した後、前記第一の成形シート及び前記第二の成形シートを密着させ、前記第一の成形シートと前記第二の成形シートを前記導電膜を介在させながら、ガイド溝を有するロールを用いて圧着・一体化することにより、前記導電膜が埋設され、且つ平板部の表面に櫛形状に突条部が配設された片櫛状の積層シートを所定の寸法で切断するプラズマ発生電極用成形体の成形方法。[1] With one extruder, the first molded sheet made of a dielectric material having comb-shaped protrusions disposed on the surface of the flat plate portion is integrally extruded and conveyed on the first conveyance line, When the second molding sheet made of a flat plate-like dielectric material is extruded by the other extrusion molding machine arranged in parallel with the extrusion molding machine and conveyed by the second conveyance line, the first molding sheet or the first After the conductive film is formed in a predetermined pattern on the flat surface of the second molded sheet, the first molded sheet and the second molded sheet are brought into close contact with each other, and the first molded sheet and the second molded sheet A piece in which the conductive film is embedded and crimped and integrated using a roll having a guide groove while the conductive film is interposed, and a comb-shaped protrusion is disposed on the surface of the flat plate portion. Comb-shaped laminated sheet Method of forming a plasma generating electrode molded body cut by law.

[2] 前記第一の成形シートと前記第二の成形シートを密着させる方法として、前記櫛形状の突条部が潰れないようにガイド溝を有する双ロールを用いる[1]に記載のプラズマ発生電極用成形体の成形方法。[2] Plasma generation according to [1], wherein a twin roll having a guide groove is used so that the comb-shaped protrusions are not crushed as a method of bringing the first molded sheet and the second molded sheet into close contact with each other. A method for forming a molded article for an electrode.

[3] 前記一方の押出成形機及びこれに平行に配置された前記もう一方の押出成形機におけるそれぞれの成形シートの押出し速度が、共に同期しているとともに、前記導電膜のパターン形成時間を確保できる速度である[1]又は[2]に記載のプラズマ発生電極用成形体の成形方法。[3] The extrusion speeds of the respective molded sheets in the one extrusion molding machine and the other extrusion molding machine arranged in parallel therewith are synchronized with each other, and the pattern formation time of the conductive film is ensured. The method for forming a molded body for a plasma generating electrode according to [1] or [2], which is a possible speed.

[4] 一方の押出成形機により平板部の表面に櫛形状に突条部が配設された誘電材料からなる第一の成形シートを一体的に押し出して第一の搬送ラインで搬送するとともに、前記押出成形機と平行に配置されたもう一方の押出成形機により平板部の裏面に櫛形状に突条部が配設された誘電材料からなる第三の成形シートを一体的に押し出して第二の搬送ラインで搬送する際、前記第一の成形シート又は第三の成形シートのいずれか一方の平坦面に導電膜を所定のパターンで形成した後、前記第一の成形シート及び前記第三の成形シートを密着させ、前記導電膜を介在させながら、ガイド溝を有するロールを用いて前記第一の成形シート及び第三の成形シートを圧着・一体化することにより、前記導電膜が埋設された両櫛状の積層シートを所定の寸法で切断するプラズマ発生電極用成形体の成形方法。[4] While extruding the first molded sheet made of a dielectric material having a comb-shaped protrusion on the surface of the flat plate portion by one extruder and transporting it in the first transport line, A second molding machine arranged in parallel with the extrusion molding machine integrally extrudes a third molding sheet made of a dielectric material having a comb-shaped protrusion on the back surface of the flat plate portion, and is secondly extruded. When the conductive film is conveyed on the flat surface of either the first molded sheet or the third molded sheet, the conductive film is formed in a predetermined pattern, and then the first molded sheet and the third molded sheet are conveyed. The conductive film was embedded by pressing and integrating the first molded sheet and the third molded sheet using a roll having guide grooves while closely contacting the molded sheet and interposing the conductive film. Place the comb-like laminated sheet Method of forming a plasma generating electrode molded body is cut at dimensions.

[5] 前記第一の成形シートと前記第三の成形シートを密着させる方法として、前記櫛形状の突条部が潰れないようにガイド溝を有する双ロールを用いる[4]に記載のプラズマ発生電極用成形体の成形方法。[5] Plasma generation as described in [4], wherein a twin roll having a guide groove is used so that the comb-shaped protrusions are not crushed as a method of bringing the first molded sheet and the third molded sheet into close contact with each other. A method for forming a molded article for an electrode.

[6] 前記一方の押出成形機及びこれに平行に配置された前記もう一方の押出成形機におけるそれぞれの成形シートの押出し速度が、共に同期しているとともに、前記導電膜のパターン形成時間を確保できる速度である[4]又は[5]に記載のプラズマ発生電極用成形体の成形方法。[6] The extrusion speeds of the respective molded sheets in the one extrusion molding machine and the other extrusion molding machine arranged in parallel therewith are synchronized with each other, and the pattern formation time of the conductive film is ensured. The method for forming a molded body for a plasma generating electrode according to [4] or [5], which is a speed capable of being produced.

[7] 第一の押出成形機により平板状の誘電材料からなる第二の成形シートを押し出して搬送ラインで搬送する際、前記第二の成形シートの表面に導電膜を所定のパターンで形成した後、第二の押出成形機内に搬送され、前記第二の成形シート上に平板部の表面に櫛形状に突条部が配設された誘電材料からなる第四の成形シートを一体的に押し出しつつ、ガイド溝を有するロールを用いて前記第二の成形シートと圧着・一体化させることにより、前記導電膜が埋設され、且つ平板部の表面に櫛形状に突条部が配設された片櫛状の積層シートを一体的に得、得られた前記積層シートを所定の寸法で切断するプラズマ発生電極用成形体の成形方法。[7] When the second molded sheet made of a flat dielectric material is extruded by the first extruder and conveyed by the conveying line, a conductive film is formed in a predetermined pattern on the surface of the second molded sheet. Thereafter, the sheet is conveyed into a second extrusion molding machine, and a fourth molded sheet made of a dielectric material having comb-shaped protrusions disposed on the surface of the flat plate portion is integrally extruded onto the second molded sheet. On the other hand, the conductive film is embedded by pressing and integrating with the second molded sheet using a roll having a guide groove, and a comb-shaped protrusion is disposed on the surface of the flat plate portion. A method for forming a molded body for a plasma generating electrode, wherein a comb-shaped laminated sheet is obtained integrally, and the obtained laminated sheet is cut with a predetermined dimension.

[8] それぞれの送給流路から押し出された平板部の表面に櫛形状に突条部が配設された誘電材料と、平板状に配設された誘電材料との間に、所定のパターン及び厚さに配設された導電材料が介在するように配置された口金から、前記誘電材料及び導電材料を同時に押出成形することにより、導電材料が誘電材料に埋設された構造を有し、且つ平板部の片面に櫛形状に突条部が配設されたプラズマ発生電極用成形体を成形する、プラズマ発生電極用成形体の成形方法 [8] A predetermined pattern is formed between the dielectric material in which the protrusions are arranged in a comb shape on the surface of the flat plate portion extruded from each of the supply passages, and the dielectric material provided in the flat plate shape. And having a structure in which the conductive material is embedded in the dielectric material by simultaneously extruding the dielectric material and the conductive material from a base disposed so that the conductive material disposed in the thickness is interposed, and A method for forming a plasma generating electrode molded body, wherein a plasma generating electrode molded body having a comb-shaped protrusion disposed on one side of a flat plate portion is formed .

[9] [8]に記載の成形方法により成形された成形体同士を、一方の成形体の前記櫛形状に配設された突条部と、もう一方の成形体の平面部との界面や隙間が無いように積層し、得られた積層体の最上面又は最下面に導電膜が埋設された平板状の成形体を載置した後、焼成・一体化する、プラズマ発生電極の製造方法。[9] The molded bodies molded by the molding method according to [8] are connected to each other between an interface between the protrusions disposed in the comb shape of one molded body and a flat portion of the other molded body. A method for producing a plasma generating electrode, wherein lamination is performed so that there is no gap, and a flat molded body in which a conductive film is embedded is placed on the uppermost surface or the lowermost surface of the obtained laminated body, followed by firing and integration.

[10] それぞれの送給流路から押し出された平板部の表面に櫛形状に突条部が配設された誘電材料と、平板部の裏面に櫛形状に突条部が配設された誘電材料との間に、所定のパターン及び厚さに配設された導電材料が介在するように配置された口金から、前記誘電材料及び導電材料を同時に押出成形することにより、導電材料が誘電材料に埋設された構造を有し、且つ平板部の両面に櫛形状に突条部が配設されたプラズマ発生電極用成形体を成形する、プラズマ発生電極用成形体の成形方法。[10] Dielectric material in which the protrusions are arranged in a comb shape on the surface of the flat plate portion extruded from each feeding flow path, and the dielectric material in which the protrusions are arranged in a comb shape on the back surface of the flat plate portion By simultaneously extruding the dielectric material and the conductive material from a die arranged so that the conductive material arranged in a predetermined pattern and thickness is interposed between the conductive material and the material, the conductive material becomes a dielectric material. A method for forming a plasma generating electrode molded body, wherein the plasma generating electrode molded body has an embedded structure and has comb-shaped protrusions disposed on both sides of a flat plate portion.

[11] [10]に記載の成形方法により成形された成形体の片面及び/又は両面に、導電膜が埋設された平板状の成形体を載置しつつ、請求項10に記載の成形方法により成形された成形体の前記櫛形状に配設された突条部と、前記導電膜が埋設された平板状の成形体の平面部との界面や隙間が無いように積層した後、焼成・一体化する、プラズマ発生電極の製造方法 [11] The molding method according to claim 10, while mounting a flat molded body with a conductive film embedded on one side and / or both sides of the molded body molded by the molding method according to [10]. After laminating so that there is no interface or gap between the protrusions arranged in the comb shape of the molded body formed by the above and the flat portion of the flat plate-shaped molded body in which the conductive film is embedded, A method for producing a plasma generating electrode to be integrated .

[12] それぞれの送給流路から押し出された平板部の表面に櫛形状に突条部が配設された誘電材料と、平板状の誘電材料又は平板部の裏面に櫛形状に突条部が配設された誘電材料との間に、所定のパターン及び厚さに配設された導電材料が介在するように配置されたものを、更に縦方向に複数個並列させた口金から同時に押出成形することにより、予め複数の成形体を積層させたユニット成形体を得た後、焼成・一体化する、プラズマ発生電極の製造方法。[12] A dielectric material in which protrusions are arranged in a comb shape on the surface of a flat plate portion extruded from each feeding flow path, and a flat protrusion material in a comb shape on the back surface of the flat plate dielectric material or the flat plate portion Extrusion molding is performed simultaneously from a die in which a plurality of conductive materials arranged in a predetermined pattern and thickness intervene between the dielectric material in which the material is arranged and a plurality of pieces arranged in parallel in the vertical direction. A method for producing a plasma generating electrode in which a unit molded body obtained by previously laminating a plurality of molded bodies is obtained, and then fired and integrated.

本発明のプラズマ発生電極用成形の成形方法、並びにプラズマ発生電極の製造方法は、生産性が高く、均一かつ安定なプラズマを発生させることが可能であるとともに、温度変化や高圧の電圧負荷による電極の破損を有効に防止することができる。 Method of forming a plasma generating electrode molded product of the present invention, and manufacturing method of the plasma generating electrode has a high productivity, together it is possible to generate uniform and stable plasma, due to temperature changes and high voltage load It is possible to effectively prevent the electrode from being damaged.

以下、図面を参照して、本発明のプラズマ発生電極用成形の成形方法、並びにプラズマ発生電極の製造方法の実施の形態について詳細に説明するが、本発明は、これに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。 Hereinafter, embodiments of a method for forming a molded body for a plasma generating electrode and a method for manufacturing a plasma generating electrode according to the present invention will be described in detail with reference to the drawings. However, the present invention is interpreted as being limited thereto. However, various changes, modifications, and improvements can be made based on the knowledge of those skilled in the art without departing from the scope of the present invention.

図1及び図2は、本発明のプラズマ発生電極用成形体における実施の形態の各例を示すものであり、(a)は成形体の断面図、(b)は(a)の成形体を構成する第一の成形部材及び第二の成形部材の断面図、(c)は(a)の成形体を用いて作製されたプラズマ発生電極(電極ユニット)の断面図である。   1 and 2 show examples of embodiments of the molded body for plasma generating electrode according to the present invention. (A) is a sectional view of the molded body, and (b) is a molded body of (a). Sectional drawing of the 1st shaping | molding member and 2nd shaping | molding member to comprise, (c) is sectional drawing of the plasma generating electrode (electrode unit) produced using the molded object of (a).

本発明の成形体の一例は、図1(a)(b)に示すように、平板部の表面に櫛形状に突条部が配設された誘電材料からなる第一の成形部材10の裏面と、平板状の誘電材料からなる第二の成形部材12との間に、導電膜20を介在させて圧着・一体化することにより、導電膜20が埋設された構造を有し、且つ第一の成形部材10の平板部6と突条部2とが、一体成形されたものである。   As shown in FIGS. 1 (a) and 1 (b), an example of the molded body of the present invention is the back surface of the first molded member 10 made of a dielectric material in which protrusions are arranged in a comb shape on the surface of the flat plate portion. And the second molded member 12 made of a plate-like dielectric material, the conductive film 20 is interposed between the first molded member 12 and the first molded member 12, and the first conductive member 20 is embedded. The flat plate portion 6 and the ridge portion 2 of the molded member 10 are integrally molded.

図1(a)に示す成形体15を用いて、例えば、図1(c)に示すように、成形体15同士を積層し、得られた積層体の最上面に導電膜が埋設された平板状の成形体30を載置した後、焼成・一体化することにより、プラズマ発生電極(ユニット電極)40を得ることができる。尚、プラズマ発生電極は、成形体15同士の積層体又は成形体15の表面に導電膜が埋設された平板状の成形体30が載置されたものからも得ることができる。   1A. Using a molded body 15 shown in FIG. 1A, for example, as shown in FIG. 1C, the molded bodies 15 are laminated with each other, and a conductive film is embedded on the uppermost surface of the obtained laminated body. After the shaped molded body 30 is placed, the plasma generating electrode (unit electrode) 40 can be obtained by firing and integration. The plasma generating electrode can also be obtained from a laminate of molded bodies 15 or a plate-shaped molded body 30 in which a conductive film is embedded on the surface of the molded body 15.

また、本発明の成形体の他の例は、図2(a)(b)に示すように、平板部の表面に櫛形状に突条部が配設された誘電材料からなる第一の成形部材10及び第二の成形部材11の裏面同士で、導電膜20を介在させて圧着・一体化することにより、導電膜20が埋設された構造を有し、且つ第一の成形部材10及び第二の成形部材11の平板部6と突条部2とが、一体成形されたものであってもよい。   In addition, as shown in FIGS. 2 (a) and 2 (b), another example of the molded body of the present invention is a first molding made of a dielectric material in which protrusions are arranged in a comb shape on the surface of a flat plate portion. The back surfaces of the member 10 and the second molded member 11 are bonded and integrated with the conductive film 20 interposed therebetween, whereby the conductive film 20 is embedded, and the first molded member 10 and the first molded member 10 The flat plate portion 6 and the protrusion portion 2 of the second molded member 11 may be integrally formed.

図2(a)に示す成形体16を用いて、例えば、図2(c)に示すように、成形体16の片面及び/又は両面に、導電膜が埋設された平板状の成形体30を載置しつつ、成形体16を積層した後、焼成・一体化することにより、プラズマ発生電極(ユニット電極)42を得ることができる。   Using the molded body 16 shown in FIG. 2A, for example, as shown in FIG. 2C, a flat molded body 30 in which a conductive film is embedded on one side and / or both sides of the molded body 16 is used. The plasma generating electrode (unit electrode) 42 can be obtained by stacking the molded body 16 while placing it, followed by firing and integration.

このとき、本発明の成形体の主な特徴は、図1(a)及び図2(a)に示すように、成形部材の平板部6と突条部2とを一体成形することにある。   At this time, the main feature of the molded body of the present invention is that the flat plate portion 6 and the protruding portion 2 of the molded member are integrally molded as shown in FIGS. 1 (a) and 2 (a).

例えば、図14(a)(b)に示すように、平板部101と突条部102とが別体で形成された第一の成形部材103の裏面と、平板状の誘電材料からなる第二の成形部材104との間に、導電膜20を介在させて圧着・一体化することにより、導電膜20が埋設されたプラズマ発生電極用成形体100を積層して得られた図14(c)に示すプラズマ発生電極(ユニット電極)36は、平板部101と突条部102に界面や隙間が存在すると、その部分で集中的に放電が発生し、空間全域に放電を広げてしまうため、高いエネルギーを投入する必要があった。また、突条部の両端が焼成接合になっているため、突条部の成形体の平行度、平面度が精度高くできていないと、両面での接合端部の信頼性が劣り、熱衝撃試験で電極部に亀裂が入ったり、高電圧を負荷した放電試験で絶縁破壊が生じることがあった。   For example, as shown in FIGS. 14A and 14B, the back surface of the first molded member 103 in which the flat plate portion 101 and the protruding portion 102 are formed separately, and the second made of a flat dielectric material. FIG. 14C obtained by stacking the plasma generating electrode molded body 100 in which the conductive film 20 is embedded by interposing the conductive film 20 between the molded member 104 and pressing and integrating the conductive film 20. The plasma generating electrode (unit electrode) 36 shown in FIG. 2 is high because if there is an interface or gap between the flat plate portion 101 and the protruding portion 102, a discharge is generated intensively at that portion and the discharge is spread over the entire space. It was necessary to input energy. In addition, since both ends of the ridge are fired and bonded, the parallelism and flatness of the formed product of the ridge are not accurate, and the reliability of the bonded ends on both sides is inferior, and thermal shock In the test, the electrode part was cracked or a dielectric breakdown sometimes occurred in a discharge test under a high voltage.

一方、図1(a)及び図2(a)に示す成形体は、図14(a)に示す成形体と比較して、焼成時における成形部材の平板部6と突条部2との界面や隙間を無くすことができる(図1(a)及び図2(a)参照)。これは、突条部の片側だけが焼成接合のため、成形体での突条部端面の平面度、平行度の制御は容易になり、接合部での欠陥発生は少ないからである。   On the other hand, the molded body shown in FIG. 1 (a) and FIG. 2 (a) is an interface between the flat plate portion 6 and the protruding portion 2 of the molded member at the time of firing, as compared with the molded body shown in FIG. 14 (a). And gaps can be eliminated (see FIGS. 1A and 2A). This is because only one side of the ridge portion is fired and joined, so that the flatness and parallelism of the end surface of the ridge portion in the molded body can be easily controlled, and the occurrence of defects at the joint portion is small.

これにより、図1(c)及び図2(c)に示すプラズマ発生電極(ユニット電極)40,42は、実使用時に、熱応力によるプラズマ発生電極(ユニット電極)の歪みを緩和することができるとともに、導電膜(電極)間の距離を全体的に(全面に渡って)一定にすることができるだけでなく、図14(c)に示すプラズマ発生電極(ユニット電極)36と比較して、突条部の脱落や破損を大幅に抑制することができるため、絶縁破壊に対して、高い信頼性を得ることができる。   Accordingly, the plasma generating electrodes (unit electrodes) 40 and 42 shown in FIGS. 1C and 2C can alleviate distortion of the plasma generating electrodes (unit electrodes) due to thermal stress during actual use. In addition, the distance between the conductive films (electrodes) can be made constant as a whole (over the entire surface), and compared with the plasma generating electrode (unit electrode) 36 shown in FIG. Since dropout and damage of the strip can be greatly suppressed, high reliability can be obtained against dielectric breakdown.

図1(a)に示す成形体15の成形方法は、例えば、図3に示すように、一方(上部)の押出成形機50により平板部の表面に櫛形状に突条部が配設された誘電材料からなる第一の成形シート90を一体的に押し出して第一の搬送ライン56で搬送するとともに、これに平行に配置されたもう一方(下部)の押出成形機52により平板状の誘電材料からなる第二の成形シート92を押し出して第二の搬送ライン57で搬送する際、第二の成形シート12の平坦面に、導電膜形成装置53により、導電膜20を所定のパターンで形成し、更に、接合層形成装置54により、接合材からなる接合層24を形成した後、第一の成形シート90及び第二の成形シート92を双ロール58a,58bにより密着させ、導電膜20を介在させながら第一の成形シート90及び第二の成形シート92を圧着ロール59a,59bで圧着・一体化することにより、導電膜が埋設され、且つ平板部の表面に櫛形状に突条部が配設された片櫛状の積層シート95を得、ブレード80により、得られた積層シート95を所定の寸法で切断するものである。   The molding method of the molded body 15 shown in FIG. 1 (a) is, for example, as shown in FIG. 3, with one (upper) extrusion molding machine 50 having protrusions arranged in a comb shape on the surface of the flat plate portion. A first molded sheet 90 made of a dielectric material is integrally extruded and conveyed by a first conveying line 56, and a flat dielectric material is formed by another (lower) extrusion molding machine 52 arranged in parallel therewith. When the second molded sheet 92 made of is extruded and conveyed by the second conveying line 57, the conductive film 20 is formed in a predetermined pattern on the flat surface of the second molded sheet 12 by the conductive film forming device 53. Further, after the bonding layer 24 made of the bonding material is formed by the bonding layer forming device 54, the first molded sheet 90 and the second molded sheet 92 are brought into close contact with the twin rolls 58a and 58b, and the conductive film 20 is interposed. Let the first A single comb in which a conductive film is embedded by pressing and integrating the shaped sheet 90 and the second molded sheet 92 with pressure-bonding rolls 59a and 59b, and protrusions are arranged in a comb shape on the surface of the flat plate portion. A laminated sheet 95 is obtained, and the obtained laminated sheet 95 is cut by a blade 80 with a predetermined dimension.

双ロール58a,58b及び圧着ロール59a,59bは、第一の成形シートの櫛形状の突条部が潰れないようにガイド溝を有することが好ましい。また、双ロール58a,58bは、現実的には、片側が無負荷で回転するローラーで、もう一方が圧力を負荷する構造で回転するロールであることが好ましい。更に、櫛形状の突条部の幅が広く、面積が大きい場合は、平板部を加圧密着させる双ロールと、突条部を加圧密着させる双ロールの二段で圧着・一体化を行うことが、より好ましい。   The twin rolls 58a and 58b and the pressure-bonding rolls 59a and 59b preferably have guide grooves so that the comb-shaped ridges of the first molded sheet are not crushed. Moreover, it is preferable that the twin rolls 58a and 58b are rolls that rotate with a structure in which one side rotates with no load and the other side loads with pressure. Furthermore, when the comb-shaped ridge is wide and has a large area, it is crimped and integrated in two stages: a double roll that presses and contacts the flat plate part and a double roll that presses and contacts the ridge part. It is more preferable.

また、図2(a)に示す成形体16の成形方法は、例えば、図3に示すように、一方(上部)の押出成形機50により平板部の表面に櫛形状に突条部が配設された誘電材料からなる第一の成形シート90を一体的に押し出して第一の搬送ライン56で搬送するとともに、これに平行に配置されたもう一方(下部)の押出成形機52により平板部の裏面に櫛形状に突条部が配設された誘電材料からなる第三の成形シート94を一体的に押し出して第二の搬送ライン57で搬送する際、第一の成形シート90又は第三の成形シート94のいずれか一方の平坦面に、導電膜形成装置53により、導電膜20を所定のパターンで形成し、更に、接合層形成装置54により、接合材からなる接合層24を形成した後、第一の成形シート90及び第三の成形シート94を双ロール58a,58bにより密着させ、導電膜を介在させながら前記第一の成形シート90及び第三の成形シート94を圧着ロール59a,59bで圧着・一体化することにより、導電膜が埋設された両櫛状の積層シート96を得、ブレード80により、得られた積層シート96を所定の寸法に切断するものである。   2A, for example, as shown in FIG. 3, the protrusions are arranged in a comb shape on the surface of the flat plate portion by one (upper) extruder 50 as shown in FIG. The first molded sheet 90 made of the dielectric material is integrally extruded and conveyed by the first conveying line 56, and the other (lower) extrusion molding machine 52 arranged in parallel to the first molded sheet 90 is used for the flat plate portion. When the third molded sheet 94 made of a dielectric material having comb-like protrusions disposed on the back surface is integrally extruded and conveyed by the second conveyance line 57, the first molded sheet 90 or the third molded sheet 90 is conveyed. After the conductive film 20 is formed in a predetermined pattern on the flat surface of any one of the molded sheets 94 by the conductive film forming device 53, and further, the bonding layer 24 made of the bonding material is formed by the bonding layer forming device 54. , First molded sheet 90 and third component The sheet 94 is brought into close contact with the twin rolls 58a and 58b, and the first molded sheet 90 and the third molded sheet 94 are pressure-bonded and integrated with the pressure-bonding rolls 59a and 59b while interposing the conductive film. A buried comb-like laminated sheet 96 is obtained, and the obtained laminated sheet 96 is cut into a predetermined size by a blade 80.

双ロール58a,58b及び圧着ロール59a,59bは、第一の成形シート90及び第三の成形シート94の櫛形状の突条部が潰れないようにガイド溝を有することが好ましい。また、双ロール58a,58bは、現実的には、片側が無負荷で回転するローラーで、もう一方が圧力を負荷する構造で回転するロールであることが好ましい。更に、櫛形状の突条部の幅が広く、面積が大きい場合は、平板部を加圧密着させる双ロールと、突条部を加圧密着させる双ロールの二段で圧着・一体化を行うことが、さらに好ましい。   The twin rolls 58a and 58b and the pressure-bonding rolls 59a and 59b preferably have guide grooves so that the comb-shaped protrusions of the first molded sheet 90 and the third molded sheet 94 are not crushed. Moreover, it is preferable that the twin rolls 58a and 58b are rolls that rotate with a structure in which one side rotates with no load and the other side loads with pressure. Furthermore, when the comb-shaped ridge is wide and has a large area, it is crimped and integrated in two stages: a double roll that presses and contacts the flat plate part and a double roll that presses and contacts the ridge part. More preferably.

このとき、図3に示すように、一方(上部)の押出成形機及びこれに平行に配置されたもう一方(下部)の押出成形機におけるそれぞれの成形シートの押出し速度が、共に同期しているとともに、導電膜のパターン形成時間を確保できる速度であることが好ましい。   At this time, as shown in FIG. 3, the extrusion speeds of the respective molded sheets in one (upper) extruder and the other (lower) extruder arranged in parallel with each other are synchronized with each other. At the same time, it is preferable that the speed be sufficient to ensure the pattern formation time of the conductive film.

尚、図3では、押出成形機50が上部、押出成形機52が下部に配置されているが、特に限定されることはなく、押出成形機50,52の上下を反対にしたり、押出成形機50,52を左右に配置したりすることも可能である。   In FIG. 3, the extrusion molding machine 50 is arranged at the upper part and the extrusion molding machine 52 is arranged at the lower part. However, there is no particular limitation, and the extrusion molding machines 50 and 52 are turned upside down. It is also possible to arrange 50 and 52 on the left and right.

また、成形シートに導電膜を所定のパターンで形成する場合、図3に示すように、導電膜形成装置53の導電膜形成手段としてインクジェット印刷を採用することが、簡便であるため好ましいが、特に限定されることはなく、例えば、スクリーン印刷、カレンダーロール、スプレー、静電塗装、ディップ、ナイフコータ、化学蒸着、物理蒸着等も好適に用いることができる。インクジェット印刷で導電膜を形成する場合、導電体を含有したスラリーを用いることが好ましく、スクリーン印刷で導電膜を形成する場合、導電体を含有したペーストを用いることが好ましい。上記ペーストのバインダーには、エチルセルロース、ポリビニルブチラール、アクリル樹脂を用いることができる。   Further, when the conductive film is formed in a predetermined pattern on the molded sheet, it is preferable to employ ink jet printing as the conductive film forming means of the conductive film forming apparatus 53 as shown in FIG. For example, screen printing, calender roll, spray, electrostatic coating, dip, knife coater, chemical vapor deposition, physical vapor deposition and the like can be suitably used. When forming a conductive film by inkjet printing, it is preferable to use a slurry containing a conductor. When forming a conductive film by screen printing, it is preferable to use a paste containing a conductor. As the binder of the paste, ethyl cellulose, polyvinyl butyral, or acrylic resin can be used.

更に、導電膜を所定のパターンで形成された成形シートに接合層を形成する場合、図3に示すように、接合層形成装置54の接合層形成手段としてインクジェット印刷を採用することが、簡便であるため好ましい。尚、パターン化された導電膜を除いた成形シート面に接合層が形成されていることが、成形シート同士の接合時における界面や隙間を無くすことができるため、より好ましい。   Furthermore, when forming a bonding layer on a molded sheet in which the conductive film is formed in a predetermined pattern, as shown in FIG. 3, it is simple to employ ink jet printing as the bonding layer forming means of the bonding layer forming apparatus 54. This is preferable. In addition, it is more preferable that the bonding layer is formed on the surface of the molded sheet excluding the patterned conductive film because an interface and a gap at the time of bonding of the molded sheets can be eliminated.

本発明の成形体の更に他の例は、例えば、図4(a)(b)に示すように、平板部の表面に櫛形状に突条部が配設されるとともに、前記平板部の裏面にキャビティ3を有する誘電材料からなる第一の成形部材13に、前記キャビティ3と相補関係にあり、且つ表面に導電膜20が形成された平板状の誘電材料からなる第二の成形部材14を嵌合・一体化することにより、導電膜20が埋設された構造を有し、且つ第一の成形部材13の平板部6と突条部2とが、一体成形されたものであってよい。   Still another example of the molded body of the present invention is, for example, as shown in FIGS. 4 (a) and 4 (b), a comb-shaped protrusion is disposed on the surface of the flat plate portion, and the back surface of the flat plate portion. A second molding member 14 made of a flat dielectric material having a complementary relationship with the cavity 3 and having a conductive film 20 formed on the surface thereof is formed on the first molding member 13 made of a dielectric material having a cavity 3 on the surface. By fitting and integrating, the conductive film 20 may be embedded, and the flat plate portion 6 and the ridge portion 2 of the first molded member 13 may be integrally molded.

図4(a)に示す成形体17を用いて、例えば、図4(c)に示すように、成形体17同士を積層し、得られた積層体の最上面に導電膜が埋設された平板状の成形体を載置した後、焼成・一体化することにより、プラズマ発生電極(ユニット電極)43を得ることができる。尚、プラズマ発生電極は、成形体17同士の積層体又は成形体17の表面に導電膜が埋設された平板状の成形体30が載置されたものからも得ることができる。   4A. Using the molded body 17 shown in FIG. 4A, for example, as shown in FIG. 4C, the molded bodies 17 are laminated with each other, and a conductive film is embedded in the uppermost surface of the obtained laminated body. A plasma generating electrode (unit electrode) 43 can be obtained by placing and firing and integrating the shaped molded body. The plasma generating electrode can also be obtained from a laminate of molded bodies 17 or an electrode having a flat molded body 30 in which a conductive film is embedded on the surface of the molded body 17.

また、図4に示す成形体17を連続的に成形する成形方法は、例えば、図5に示すように、第二の押出成形機により平板状の誘電材料からなる第二の成形シート92を押し出して搬送ライン56で搬送する際、第二の成形シート92の表面に導電膜20を所定のパターンで形成した後、第三の押出成形機60内に搬送され、第二の成形シート92上に平板部の表面に櫛形状に突条部が配設された第四の成形シート97を一体的に押し出しつつ、第二の成形シート92と圧着・一体化させることにより、導電膜20が埋設され、且つ平板部の表面に櫛形状に突条部が配設された片櫛状の積層シート98を一体的に得、得られた積層シート98を所定の寸法で切断するものである。   Also, the molding method for continuously molding the molded body 17 shown in FIG. 4 is, for example, as shown in FIG. 5, by extruding a second molded sheet 92 made of a flat dielectric material by a second extruder. When the conductive line 20 is transported by the transport line 56, the conductive film 20 is formed in a predetermined pattern on the surface of the second molded sheet 92, and then transported into the third extrusion molding machine 60, on the second molded sheet 92. The conductive film 20 is embedded by pressing and integrating with the second molding sheet 92 while integrally extruding the fourth molding sheet 97 having comb-shaped protrusions disposed on the surface of the flat plate portion. In addition, a single comb-shaped laminated sheet 98 having comb-like protrusions arranged on the surface of the flat plate portion is integrally obtained, and the obtained laminated sheet 98 is cut with a predetermined dimension.

尚、本発明で用いる各成形部材又は成形シートの厚さは、同じか又は同程度であることが好ましい。また、各成形部材又は成形シートの厚さについては、特に限定されないが、0.1〜3mmであることが好ましい。これは、各成形部材又は成形シートの厚さが0.1mm未満の場合、導電膜(電極)相互間の電気絶縁性を確保することができないことがあるからである。一方、各成形部材又は成形シートの厚さが3mmを超過する場合、誘電体として必要とされる厚さを超えて省スペース化の妨げになることがある。   In addition, it is preferable that the thickness of each shaping | molding member or shaping | molding sheet used by this invention is the same or comparable. Moreover, about the thickness of each shaping | molding member or a shaping | molding sheet, although it does not specifically limit, it is preferable that it is 0.1-3 mm. This is because when the thickness of each molded member or molded sheet is less than 0.1 mm, electrical insulation between the conductive films (electrodes) may not be ensured. On the other hand, when the thickness of each molded member or molded sheet exceeds 3 mm, it may hinder space saving beyond the thickness required for the dielectric.

また、本発明で用いる導電膜の厚さは、プラズマ発生電極の小型化、及び排気ガス等を処理する場合に、電極相互間を通過させる被処理流体の抵抗を低減させる等の理由から、0.001〜0.1mmであることが好ましく、さらに、0.01〜0.03mmであることがより好ましい。これは、0.001mmより薄い場合、耐圧が確保できる均一な導電膜を得ることが難しく、また、0.1mmより厚い場合、両側に挟む誘電体の密着性が劣り、信頼性の高い電極を得ることが難しくなるからである。   Further, the thickness of the conductive film used in the present invention is 0 for reasons such as reducing the size of the plasma generating electrode and reducing the resistance of the fluid to be processed that passes between the electrodes when processing exhaust gas or the like. 0.001 to 0.1 mm is preferable, and 0.01 to 0.03 mm is more preferable. This is because when it is thinner than 0.001 mm, it is difficult to obtain a uniform conductive film that can secure a withstand voltage. When it is thicker than 0.1 mm, the adhesion of the dielectric sandwiched between both sides is inferior, and a highly reliable electrode is required. It is difficult to obtain.

本発明の成形体の別の例としては、図6(a)及び図7〜11に示すように、誘電材料供給孔70から第一の送給流路71へ押し出された平板部の表面に櫛形状に突条部が配設された誘電材料と、誘電材料供給孔70から第二の送給流路72へ押し出された平板状の誘電材料との間に、導電材料供給孔74(図7参照)から第3の送給流路76へ押し出された所定のパターン及び厚さに配設された導電材料が介在するように配置された口金62(口金出口78)から同時に押出成形することにより、図6(b)に示すように、導電材料が誘電材料に埋設された構造を有し、且つ平板部の片面に櫛形状に突条部が配設されたものである。   As another example of the molded body of the present invention, as shown in FIG. 6A and FIGS. 7 to 11, on the surface of the flat plate portion extruded from the dielectric material supply hole 70 to the first supply flow path 71. A conductive material supply hole 74 (see FIG. 5) is formed between the dielectric material in which the protrusions are arranged in a comb shape and the flat dielectric material extruded from the dielectric material supply hole 70 to the second supply flow path 72. 7) and simultaneously extruding from a base 62 (base outlet 78) disposed so that a conductive material disposed in a predetermined pattern and thickness extruded to the third feeding flow path 76 is interposed. Thus, as shown in FIG. 6B, the conductive material is embedded in the dielectric material, and the protrusions are arranged in a comb shape on one side of the flat plate portion.

図6(b)に示す成形体18を用いて、例えば、図6(c)に示すように、成形体18同士を積層し、得られた積層体の最上面に導電膜が埋設された平板状の成形体30を載置した後、焼成・一体化することにより、プラズマ発生電極(ユニット電極)44を得ることができる。尚、プラズマ発生電極は、成形体18同士の積層体又は成形体18の表面に導電膜が埋設された平板状の成形体30が載置されたものからも得ることができる。   Using the molded body 18 shown in FIG. 6B, for example, as shown in FIG. 6C, the molded bodies 18 are laminated with each other, and a flat plate in which a conductive film is embedded in the uppermost surface of the obtained laminated body. After the shaped molded body 30 is placed, the plasma generating electrode (unit electrode) 44 can be obtained by firing and integration. The plasma generating electrode can also be obtained from a laminate of molded bodies 18 or a flat molded body 30 in which a conductive film is embedded on the surface of the molded body 18.

また、本発明の成形体の更に別の例としては、図12(a)に示すように、誘電材料供給孔70から第一の送給流路71へ押し出された平板部の表面に櫛形状に突条部が配設された誘電材料と、誘電材料供給孔70から第二の送給流路72へ押し出された平板状の誘電材料との間に、導電材料供給孔(図示せず)から第三の送給流路76へ押し出された所定のパターン及び厚さに配設された導電材料が介在するように配置された口金63(口金出口78)から同時に押出成形することにより、図12(b)に示すように、導電材料が誘電材料に埋設された構造を有し、且つ平板部の両面に櫛形状に突条部が配設されたものである。   Further, as still another example of the molded body of the present invention, as shown in FIG. 12A, a comb-like shape is formed on the surface of the flat plate portion extruded from the dielectric material supply hole 70 to the first supply passage 71. Conductive material supply hole (not shown) between the dielectric material in which the protrusions are arranged on the flat plate and the flat dielectric material pushed out from the dielectric material supply hole 70 to the second feed channel 72 By simultaneously extruding from a base 63 (base outlet 78) arranged so that a conductive material arranged in a predetermined pattern and thickness pushed out from the third feed flow path 76 is interposed, As shown in FIG. 12B, a conductive material has a structure embedded in a dielectric material, and comb-shaped protrusions are disposed on both surfaces of the flat plate portion.

図12(b)に示す成形体19を用いて、例えば、図12(c)に示すように、成形体19の片面及び/又は両面に、導電膜が埋設された平板状の成形体30を載置しつつ、成形体19を積層した後、焼成・一体化することにより、プラズマ発生電極(ユニット電極)46を得ることができる。   Using the molded body 19 shown in FIG. 12B, for example, as shown in FIG. 12C, a flat molded body 30 in which a conductive film is embedded on one side and / or both sides of the molded body 19 is used. The plasma generating electrode (unit electrode) 46 can be obtained by stacking the molded body 19 while placing it, followed by firing and integration.

このとき、本発明の成形体の主な特徴は、図6(a)(b)及び図12(a)(b)に示すように、複数種の押出材料を口金内で所定の形状や所定の押出材料の組み合わせになるように誘導しながら同時に押出成形することにある。   At this time, as shown in FIGS. 6A and 6B and FIGS. 12A and 12B, the main feature of the molded body of the present invention is that a plurality of types of extruded materials are formed in a predetermined shape or a predetermined shape within the die. And extruding at the same time while being guided so as to be a combination of extruding materials.

例えば、図14(a)(b)に示すように、平板部101と突条部102とが別体で形成された第一の成形部材103の裏面と、平板状の誘電材料からなる第二の成形部材104との間に、導電膜20を介在させて圧着・一体化することにより、導電膜20が埋設されたプラズマ発生電極用成形体100を積層して得られた図14(c)に示すプラズマ発生電極(ユニット電極)36は、平板部101と突条部102に界面や隙間が存在すると、その部分で集中的に放電が発生し、空間全域に放電を広げてしまうため、高いエネルギーを投入する必要があった。また、突条部の両端が焼成接合になっているため、突条部の成形体の平行度、平面度が精度高くできていないと、両面での接合端部の信頼性が劣り、熱衝撃試験で電極部に亀裂が入ったり、高電圧を負荷した放電試験で絶縁破壊が生じることがあった。   For example, as shown in FIGS. 14A and 14B, the back surface of the first molded member 103 in which the flat plate portion 101 and the protruding portion 102 are formed separately, and the second made of a flat dielectric material. FIG. 14C obtained by stacking the plasma generating electrode molded body 100 in which the conductive film 20 is embedded by interposing the conductive film 20 between the molded member 104 and pressing and integrating the conductive film 20. The plasma generating electrode (unit electrode) 36 shown in FIG. 2 is high because if there is an interface or gap between the flat plate portion 101 and the protruding portion 102, a discharge is generated intensively at that portion and the discharge is spread over the entire space. It was necessary to input energy. In addition, since both ends of the ridge are fired and bonded, the parallelism and flatness of the formed product of the ridge are not accurate, and the reliability of the bonded ends on both sides is inferior, and thermal shock In the test, the electrode part was cracked or a dielectric breakdown sometimes occurred in a discharge test under a high voltage.

一方、図6(b)及び図12(b)に示す成形体は、図14(a)に示す成形体と比較して、焼成時における成形部材の平板部101と突条部102との界面や隙間を無くすことができる(図6(b)及び図12(b)参照)。これは、突条部の片側だけが焼成接合のため、成形体での突条部端面の平面度、平行度の制御は容易になり、接合部での欠陥発生は少ないからである。   On the other hand, the molded body shown in FIG. 6B and FIG. 12B is an interface between the flat plate portion 101 and the protruding portion 102 of the molded member during firing, as compared with the molded body shown in FIG. And gaps can be eliminated (see FIGS. 6B and 12B). This is because only one side of the ridge portion is fired and joined, so that the flatness and parallelism of the end surface of the ridge portion in the molded body can be easily controlled, and the occurrence of defects at the joint portion is small.

これにより、図6(c)及び図12(c)に示すプラズマ発生電極(ユニット電極)44,46は、実使用時に、熱応力によるプラズマ発生電極(ユニット電極)の歪みを緩和することができるとともに、導電膜(電極)間の距離を全体的に(全面に渡って)一定にすることができる。また、図14(c)に示すプラズマ発生電極(ユニット電極)36と比較して、突条部の脱落や破損を大幅に抑制することができるため、絶縁破壊に対して、高い信頼性を得ることができる。更に、図6(b)及び図12(b)に示す成形体は、図1(a)及び図2(a)に示す成形体と比較して、第一の成形部材と第二の成形部材との界面や隙間を無くすことができるため、導電材料からなる導電膜との一体性をより高めることができるとともに、一回の押出成形で成形体を作製することができるため、生産性に優れている。   Accordingly, the plasma generating electrodes (unit electrodes) 44 and 46 shown in FIGS. 6C and 12C can alleviate distortion of the plasma generating electrodes (unit electrodes) due to thermal stress during actual use. In addition, the distance between the conductive films (electrodes) can be made constant as a whole (over the entire surface). Further, compared to the plasma generating electrode (unit electrode) 36 shown in FIG. 14 (c), dropout and breakage of the protrusions can be greatly suppressed, so that high reliability is obtained against dielectric breakdown. be able to. Furthermore, the molded body shown in FIGS. 6 (b) and 12 (b) has a first molded member and a second molded member as compared with the molded body shown in FIGS. 1 (a) and 2 (a). This eliminates the interface and gaps between the conductive material and the conductive film, making it possible to improve the integrity of the conductive film and to produce a molded body by a single extrusion process. ing.

更に、本発明では、図13(a)に示すように、誘電材料供給孔70から第一の送給流路71へ押し出された平板部の表面に櫛形状に突条部が配設された誘電材料と、誘電材料供給孔70から第二の送給流路72へ押し出された平板状の誘電材料との間に、導電材料供給孔(図示せず)から第三の送給流路76へ押し出された所定のパターン及び厚さに配設された導電材料が介在するように配置された排出流路77を、更に縦方向に複数個並列させた口金64(口金出口78)から同時に押出成形することにより、予め複数の成形体を積層させたユニット成形体を得ることができ、更に得られたユニット成形体を焼成することにより、図13(b)に示すプラズマ発生電極(ユニット電極)48を得ることもできる。   Furthermore, in the present invention, as shown in FIG. 13A, comb-shaped protrusions are disposed on the surface of the flat plate portion extruded from the dielectric material supply hole 70 to the first supply flow path 71. Between the dielectric material and the flat dielectric material extruded from the dielectric material supply hole 70 to the second supply flow path 72, the third supply flow path 76 from the conductive material supply hole (not shown). Simultaneously extrude a plurality of discharge passages 77 arranged so as to interpose a conductive material arranged in a predetermined pattern and thickness extruded to a base 64 (base outlet 78) arranged in parallel in the vertical direction. By molding, a unit molded body in which a plurality of molded bodies are laminated in advance can be obtained. Further, by firing the obtained unit molded body, a plasma generating electrode (unit electrode) shown in FIG. 48 can also be obtained.

尚、本発明で用いる誘電材料及び導電材料は、誘電体(誘電材料の場合)又は導電体(導電材料の場合)に対して成形バインダーを適正量添加し、成形助剤として、界面活性剤及び水を添加して適正な硬度に調整した練り土(押出成形材料)である。このとき、上記成形バインダーは、ゲル化タイプの有機バインダーであることが好ましく、例えば、メチルセルロース、ポリビニルアルコール、グリセリンを好適に用いることができる。   In addition, the dielectric material and the conductive material used in the present invention are added with an appropriate amount of a molding binder to a dielectric (in the case of a dielectric material) or a conductor (in the case of a conductive material), and as a molding aid, a surfactant and A kneaded clay (extruded material) adjusted to an appropriate hardness by adding water. At this time, it is preferable that the said shaping | molding binder is a gelation type organic binder, for example, methylcellulose, polyvinyl alcohol, and glycerol can be used suitably.

本発明で用いる誘電体は、特に限定されないが、酸化マグネシウム、酸化アルミニウム、酸化珪素、酸化ジルコニウム、酸化チタン、ムライト、スピネル、コージェライト、窒化珪素、窒化アルミニウム、チタン酸バリウム、ガラス等を好適に用いることができる。   The dielectric used in the present invention is not particularly limited, but magnesium oxide, aluminum oxide, silicon oxide, zirconium oxide, titanium oxide, mullite, spinel, cordierite, silicon nitride, aluminum nitride, barium titanate, glass and the like are preferable. Can be used.

また、本発明で用いる誘電体は、導電膜を誘電体で覆うようにして用いることにより、導電膜単独で放電を行う場合と比較して、スパーク等の片寄った放電を減少させ、小さな放電を複数の箇所で生じさせることが可能となる。このような複数の小さな放電は、スパーク等の放電に比して流れる電流が少ないために、消費電力を削減することができ、さらに、誘電体が存在することにより、誘電膜相互間に流れる電流が制限されて、温度上昇を伴わない消費エネルギーの少ないノンサーマルプラズマを発生させることができる。   In addition, the dielectric used in the present invention is used by covering the conductive film with the dielectric, thereby reducing the amount of discharge such as sparks and reducing small discharge compared to the case where the conductive film alone is discharged. It can be generated at a plurality of locations. Such a plurality of small discharges can reduce power consumption because less current flows than discharges such as sparks, and further, the current flowing between the dielectric films due to the presence of the dielectric. Is limited, and non-thermal plasma with less energy consumption without temperature rise can be generated.

本発明で用いる導電体(導電膜)は、導電性に優れた金属を主成分とすることが好ましく、例えば、その主成分が、タングステン、モリブデン、マンガン、クロム、チタン、ジルコニア、ニッケル、鉄、銀、銅、白金、及びパラジウムからなる群から選ばれる少なくとも一種の金属であることが好ましい。   The conductor (conductive film) used in the present invention preferably contains a metal having excellent conductivity as a main component. For example, the main component is tungsten, molybdenum, manganese, chromium, titanium, zirconia, nickel, iron, It is preferably at least one metal selected from the group consisting of silver, copper, platinum, and palladium.

以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

(実施例1)
図3に示す成形方法で、図1(a)に示すプラズマ電極用成形体を成形した。
更に詳細には、酸化アルミニウム100重量部に対し熱ゲル化有機バインダー3%重量部及び界面活性剤0.1重量部、に水を添加して水分含有率が20重量部で適正な硬さに調製した練り土(誘電材料)を調製した。練り土(誘電材料)を真空脱気して棒状にしたものを押出成形した。口金上部は櫛型形状に、口金下部は平板状の成形口となるようセットした。
Example 1
The plasma electrode molded body shown in FIG. 1A was molded by the molding method shown in FIG.
More specifically, water is added to 3% by weight of the heat-gelled organic binder and 0.1 part by weight of the surfactant with respect to 100 parts by weight of aluminum oxide, and the water content is 20 parts by weight. The prepared kneaded clay (dielectric material) was prepared. A kneaded clay (dielectric material) was degassed into a rod shape and extruded. The upper part of the base was set in a comb shape, and the lower part of the base was set to be a flat plate-shaped molding port.

成形速度1500mm/minで両者の成形シート90,92を同期させ、下側の平板状の成形シート(第二の成形シート92)上にインクジエットによりタングステン(導電体)を含有するスラリーを所定パターンに噴射し、上側より押し出されてきた櫛型成形シート(第一の成形シート90)とロールにより圧着させた(図3参照)。   Both molding sheets 90 and 92 are synchronized at a molding speed of 1500 mm / min, and slurry containing tungsten (conductor) is formed on the lower flat plate-shaped molding sheet (second molding sheet 92) by an ink jet in a predetermined pattern. And pressed with a comb-shaped molded sheet (first molded sheet 90) extruded from above (see FIG. 3).

得られた成形体(図1(a)参照)を乾燥後、100mm×55mm幅に加工し、接合材を平面側に塗布し、同様の寸法で加工した未塗布の櫛部を有する成形体と接着して同様な操作で25枚積層した。100℃の乾燥器内で30分乾燥することにより、埋設型プラズマ電極ユニット成形品を得た。得られた成形品を1600℃で1hr還元焼成することにより、一体積層電極ユニット(プラズマ発生電極)を得た(図1(c)参照)。   The obtained molded body (see FIG. 1 (a)) is dried, then processed to a width of 100 mm × 55 mm, a bonding material is applied on the flat surface side, and bonded to a molded body having an uncoated comb portion processed with the same dimensions. Then, 25 sheets were laminated by the same operation. An embedded plasma electrode unit molded product was obtained by drying in a dryer at 100 ° C. for 30 minutes. The obtained molded product was reduced and fired at 1600 ° C. for 1 hr to obtain an integrally laminated electrode unit (plasma generating electrode) (see FIG. 1C).

(比較例1)
実施例1と同じ誘電材料で、図14(b)に示す平板101及び104、突条部102を作製し、平板104には実施例1と同じ方法で導電膜20を印刷した後に、一体加圧成形し、図14(a)に示す成形体を得た。実施例1と同じ方法で、25枚の一体積層電極ユニット(プラズマ発生電極)を得た(図14(c)参照)。
(Comparative Example 1)
The flat plates 101 and 104 and the protrusions 102 shown in FIG. 14B are made of the same dielectric material as in the first embodiment. After the conductive film 20 is printed on the flat plate 104 by the same method as in the first embodiment, the plates are integrally added. It pressure-molded and obtained the molded object shown to Fig.14 (a). In the same manner as in Example 1, 25 integrated laminated electrode units (plasma generating electrodes) were obtained (see FIG. 14C).

実施例1の電極ユニットは、8kVの100時間の連続通電パルス負荷でも、絶縁破壊は起きなかったが、比較例1の電極ユニットは、8kVの連続通電パルス負荷試験で、30時間で突条部端部で絶縁破壊が生じた。   Although the dielectric breakdown did not occur in the electrode unit of Example 1 even with a continuous energization pulse load of 8 kV for 100 hours, the electrode unit of Comparative Example 1 had a protruding portion in 30 hours in an 8 kV continuous energization pulse load test. Dielectric breakdown occurred at the edge.

(実施例2)
窒化珪素90重量%、酸化マグネシウム5重量%、酸化イットリウム5重量%の調合原料100重量部に対して、成形用バインダーであるメチルセルロースを7%重量部、界面活性剤であるMW−17を0.5%重量部に、水を25%重量部加えて混練し、硬度20の誘電体押出材料(誘電材料)を調整した。
(Example 2)
7% by weight of methylcellulose as a molding binder and 0.1% of MW-17 as a surfactant are added to 100 parts by weight of a blended raw material of 90% by weight of silicon nitride, 5% by weight of magnesium oxide and 5% by weight of yttrium oxide. 25% by weight of water was added to 5% by weight and kneaded to prepare a dielectric extruded material (dielectric material) having a hardness of 20.

モリブデン95重量%、窒化珪素5重量%の調合原料100重量部に対して、メチルセルロースを5%重量部、MW−17を0.5%重量部に、水を20%重量部加えて混練し、硬度25の導電膜押出材料(導電材料)を調整した。   Kneading by adding 5% by weight of methylcellulose, 0.5% by weight of MW-17, and 20% by weight of water to 100 parts by weight of the blended raw material of 95% by weight of molybdenum and 5% by weight of silicon nitride, A conductive film extrusion material (conductive material) having a hardness of 25 was prepared.

図12(a)に示す導電膜一体押出口金(口金63)から前記材料をそれぞれ押し出すことにより、図12(b)に示す両櫛構造の一体押出電極成形体(プラズマ発生電極用成形体19)を作製した。図12(b)に示す成形体19は、45×8mmで厚さ0.02mmの導電膜20が埋設し、50×90mmで、厚さ0.5mmの平板部8の両側に、高さ1mmで幅0.65mmの突条部2が5mm間隔で配設されたものである。また、45×80mmで厚さ0.02mmの導電膜が埋設した50×90mmで、厚さ0.5mmの平板の一体押出電極成形体(導電膜が埋設された平板状の成形体)を作製した。   By extruding the material from the conductive film integrated extrusion die (die 63) shown in FIG. 12A, the both-comb integrated extrusion electrode molding (plasma generating electrode molding 19) shown in FIG. ) Was produced. A molded body 19 shown in FIG. 12B is embedded in a conductive film 20 having a thickness of 45 × 8 mm and a thickness of 0.02 mm, and has a height of 1 mm on both sides of the flat plate portion 8 having a thickness of 50 × 90 mm and a thickness of 0.5 mm. The protrusions 2 having a width of 0.65 mm are arranged at intervals of 5 mm. In addition, a 50 × 90 mm, flat-plate, integrally-extruded electrode molded body (a flat molded body with a conductive film embedded) having a thickness of 50 × 90 mm in which a conductive film having a thickness of 45 × 80 mm and a thickness of 0.02 mm is embedded is manufactured. did.

次に、両櫛構造電極(プラズマ発生電極用成形体19)と平板電極(導電膜が埋設された平板状の成形体30)を各10枚交互に積層し、1700℃、窒素中で4時間の焼成を行うことにより、20段の一体積層電極ユニット(プラズマ発生電極)を得た(図12(c)参照)。尚、積層には、誘電材料と同じ組成で、水分量を60%重量部で調整した接合材を積層箇所に塗布した。   Next, both comb-structured electrodes (plasma generating electrode molded body 19) and flat plate electrodes (flat molded body 30 with a conductive film embedded therein) were alternately laminated and laminated at 1700 ° C. in nitrogen for 4 hours. Was fired to obtain a 20-stage integrated laminated electrode unit (plasma generating electrode) (see FIG. 12C). In the lamination, a bonding material having the same composition as that of the dielectric material and having a moisture content adjusted to 60% by weight was applied to the lamination location.

(比較例2)
実施例2の誘電材料を用い、比較例1と同様に、図14(b)に示す平板101,104及び突条部材102を作製し、平板104の片面に、モリブデンペーストで実施例2と同じパターンの導電膜20を印刷したのち、一体焼成し、実施例2と同じ大きさの一体積層電極ユニット(プラズマ発生電極)を得た(図14(c)参照)。
(Comparative Example 2)
Using the dielectric material of Example 2, the flat plates 101 and 104 and the protrusion members 102 shown in FIG. 14B are produced in the same manner as in Comparative Example 1, and molybdenum paste is used on one side of the flat plate 104 as in Example 2. After printing the conductive film 20 having a pattern, it was integrally fired to obtain an integrated laminated electrode unit (plasma generating electrode) having the same size as that of Example 2 (see FIG. 14C).

実施例2の電極ユニットは、600℃での30G加振試験を100時間行ったが、電極ユニットに破損は認められなかった。一方、比較例2の電極ユニットは、同じ条件で加振試験を行ったが、3時間で突条部端部に微小亀裂が認められた。   The electrode unit of Example 2 was subjected to a 30G vibration test at 600 ° C. for 100 hours, but no damage was found in the electrode unit. On the other hand, the electrode unit of Comparative Example 2 was subjected to a vibration test under the same conditions, but microcracks were observed at the end of the ridge portion in 3 hours.

(実施例3)
図5に示す成形方法で、図4(a)に示すプラズマ電極用成形体17を成形した。更に詳細には、コージェライト原料100重量部に対して、メチルセルロースを5%重量部、MW−17を0.5%重量部混練し、誘電体押出材料(誘電材料)を調整した。
(Example 3)
The plasma electrode molded body 17 shown in FIG. 4A was molded by the molding method shown in FIG. More specifically, 5% by weight of methylcellulose and 0.5% by weight of MW-17 were kneaded with 100 parts by weight of the cordierite raw material to prepare a dielectric extrusion material (dielectric material).

モリブデン75重量%にタングステン25重量%を配合した原料100重量部に対して、コージェライトを1.0%重量部、バインダーであるエチルセルロースを7%重量部、溶剤であるブチルカルビトールを20%重量部加えて、導電膜用ペーストを作製した。   1.0% by weight of cordierite, 7% by weight of ethyl cellulose as a binder, and 20% by weight of butyl carbitol as a solvent with respect to 100 parts by weight of a raw material in which 25% by weight of tungsten is mixed with 75% by weight of molybdenum. In addition to the above, a conductive film paste was prepared.

誘電材料で作製した幅100mm、厚さ0.4mmの押出平板シート(第二の成形シート)に、導電膜用ペーストで幅90mm、長さ45mmの導電膜を等間隔に印刷した。   A conductive film having a width of 90 mm and a length of 45 mm was printed at equal intervals on an extruded flat sheet (second molded sheet) having a width of 100 mm and a thickness of 0.4 mm made of a dielectric material.

図5に示すように、導電膜20が印刷された平板シート(第二の成形シート92)を、(第三の押出成形機60に装着された)押出口金の押出方向に対して後方より、誘電材料の押出速度と同期させた速度で挿入させ、誘電材料からなる第四の成形シート97を一体的に押し出すことにより、片側に櫛状の突条を有する導体埋設一体電極成形体(プラズマ発生電極用成形体)を得た。尚、使用した押出口金は、幅120mmで平板部の厚さが0.8mm、5mm間隔で幅0.5mm、高さ0.5mmの突条部が配設された成形体を押し出す構造を有するものである。   As shown in FIG. 5, the flat sheet (second molded sheet 92) on which the conductive film 20 is printed is rearward with respect to the extrusion direction of the extrusion die (mounted on the third extrusion molding machine 60). The conductor-embedded integral electrode molded body (plasma) having a comb-shaped protrusion on one side is inserted by extruding the fourth molded sheet 97 made of the dielectric material integrally at a speed synchronized with the extrusion speed of the dielectric material. A molded body for generating electrode) was obtained. In addition, the used extrusion die has a structure for extruding a molded body in which protrusions having a width of 120 mm, a flat plate portion thickness of 0.8 mm, and a width of 0.5 mm and a height of 0.5 mm are arranged at intervals of 5 mm. It is what you have.

端面端子を設けるために、片側端面から5mmの位置aを切断し、埋設された導電膜20端部が電極端面に露出させた(図4(a)参照)。側面に導電膜ペーストを塗布し、一体型電極を30個積層し、窒素−水素還元雰囲気で、1400℃で焼成することにより、30段の一体積層電極ユニット(プラズマ発生電極)を得ることができた(図4(c)参照)。   In order to provide the end surface terminal, a position a of 5 mm was cut from one end surface, and the embedded conductive film 20 end was exposed to the electrode end surface (see FIG. 4A). By applying a conductive film paste on the side, stacking 30 integrated electrodes, and firing at 1400 ° C. in a nitrogen-hydrogen reducing atmosphere, a 30-layer integrated stacked electrode unit (plasma generating electrode) can be obtained. (See FIG. 4 (c)).

(比較例3)
実施例3の誘電材料を用い、比較例1と同様に、図14(b)に示す平板101,104及び突条部材102を作製し、平板104の片面に、実施例3と同じ導電材料で、同じパターンの導電膜を印刷したのち、一体焼成し、実施例3と同じ大きさの一体積層電極ユニット(プラズマ発生電極)を得た(図14(c)参照)。
(Comparative Example 3)
Using the dielectric material of Example 3, as in Comparative Example 1, the flat plates 101 and 104 and the protrusion member 102 shown in FIG. 14B were produced, and the same conductive material as in Example 3 was formed on one side of the flat plate 104. After the conductive film having the same pattern was printed, it was integrally fired to obtain an integrated laminated electrode unit (plasma generating electrode) having the same size as that of Example 3 (see FIG. 14C).

実施例3の電極ユニットは、900℃の高温ガスと室温の冷却ガスを3Nm3/minで10分間隔で交互に流す熱サイクル試験を100回行ったが、電極ユニットに破損は認められなかった。一方、比較例2の電極ユニットは、同じ条件で熱サイクル試験を行ったが、15回目で、突条部を破壊起点とする亀裂が、認められた。 The electrode unit of Example 3 was subjected to 100 thermal cycle tests in which a high-temperature gas at 900 ° C. and a cooling gas at room temperature were alternately flowed at 3 Nm 3 / min at intervals of 10 minutes, but no damage was observed in the electrode unit. . On the other hand, the electrode unit of Comparative Example 2 was subjected to a thermal cycle test under the same conditions. However, at the fifteenth time, a crack starting from the ridge was found.

本発明のプラズマ発生電極用成形体及びその成形方法、並びにプラズマ発生電極は、エンジン排ガスや各種の焼却炉排ガスから、それらに含有される、NOx、カーボン微粒子、HC、CO等の有害成分を除去し、外部に排出されるこれらの排ガスを清浄化するために利用することができる。そして、均一かつ安定なプラズマを発生させることが可能であるため、効率的に排ガスの有害成分を除去することが可能であり、耐熱性に優れているため高温で長時間使用することが可能である。   The molded body for plasma generating electrode of the present invention, the molding method thereof, and the plasma generating electrode remove harmful components such as NOx, carbon fine particles, HC and CO contained therein from engine exhaust gas and various incinerator exhaust gases. However, it can be used to clean these exhaust gases discharged to the outside. And because it is possible to generate a uniform and stable plasma, it is possible to efficiently remove harmful components of exhaust gas, and because it has excellent heat resistance, it can be used at high temperatures for a long time. is there.

本発明のプラズマ発生電極用成形体における実施の形態の一例を示すものであり、(a)は成形体の断面図、(b)は(a)の成形体を構成する第一の成形部材及び第二の成形部材の断面図、(c)は(a)の成形体を用いて作製されたプラズマ発生電極(電極ユニット)の断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It shows an example of embodiment in the molded object for plasma generation electrodes of this invention, (a) is sectional drawing of a molded object, (b) is the 1st molded member which comprises the molded object of (a), and Sectional drawing of a 2nd shaping | molding member, (c) is sectional drawing of the plasma generating electrode (electrode unit) produced using the molded object of (a). 本発明のプラズマ発生電極用成形体における実施の形態の他の例を示すものであり、(a)は成形体の断面図、(b)は(a)の成形体を構成する第一の成形部材及び第二の成形部材の断面図、(c)は(a)の成形体を用いて作製されたプラズマ発生電極(電極ユニット)の断面図である。The other example of embodiment in the molded object for plasma generation electrodes of this invention is shown, (a) is sectional drawing of a molded object, (b) is the 1st shaping | molding which comprises the molded object of (a). Sectional drawing of a member and a 2nd molded member, (c) is sectional drawing of the plasma generation electrode (electrode unit) produced using the molded object of (a). 図1及び図2に示す成形体の成形方法の一例を示す説明図である。It is explanatory drawing which shows an example of the shaping | molding method of the molded object shown in FIG.1 and FIG.2. 本発明のプラズマ発生電極用成形体における実施の形態の更に他の例を示すものであり、(a)は成形体の断面図、(b)は(a)の成形体を構成する第一の成形部材及び第二の成形部材の断面図、(c)は(a)の成形体を用いて作製されたプラズマ発生電極(電極ユニット)の断面図である。The further another example of embodiment in the molded object for plasma generation electrodes of this invention is shown, (a) is sectional drawing of a molded object, (b) is the 1st which comprises the molded object of (a). Sectional drawing of a shaping | molding member and a 2nd shaping | molding member, (c) is sectional drawing of the plasma generating electrode (electrode unit) produced using the molded object of (a). 図4に示す成形体の成形方法の一例を示す説明図である。It is explanatory drawing which shows an example of the shaping | molding method of the molded object shown in FIG. 本発明のプラズマ発生電極用成形体における実施の形態の別の例(1)を示すものであり、(a)は成形時に使用する口金の断面図、(b)は成形体の断面図、(c)は(a)の成形体を用いて作製されたプラズマ発生電極(電極ユニット)の断面図である。The other example (1) of embodiment in the molded object for plasma generating electrodes of this invention is shown, (a) is sectional drawing of the nozzle | cap | die used at the time of shaping | molding, (b) is sectional drawing of a molded object, c) is a cross-sectional view of a plasma generating electrode (electrode unit) produced using the molded product of (a). 図6(a)のA−A断面図である。It is AA sectional drawing of Fig.6 (a). 図6(a)のB−B断面図である。It is BB sectional drawing of Fig.6 (a). 図6(a)のC−C断面図である。It is CC sectional drawing of Fig.6 (a). 図6(a)のD−D断面図である。It is DD sectional drawing of Fig.6 (a). 図6(a)のE−E断面図である。It is EE sectional drawing of Fig.6 (a). 本発明のプラズマ発生電極用成形体における実施の形態の別の例(2)を示すものであり、(a)は成形時に使用する口金の断面図、(b)は成形体の断面図、(c)は(b)の成形体を用いて作製されたプラズマ発生電極(電極ユニット)の断面図である。The other example (2) of embodiment in the molded object for plasma generation electrodes of this invention is shown, (a) is sectional drawing of the nozzle | cap | die used at the time of shaping | molding, (b) is sectional drawing of a molded object, ( c) is a cross-sectional view of a plasma generating electrode (electrode unit) produced using the molded article of (b). 本発明のプラズマ発生電極用成形体における実施の形態の別の例(3)を示すものであり、(a)は成形時に使用する口金の断面図、(b)は(a)を用いて作製されたプラズマ発生電極(電極ユニット)の断面図である。Another example (3) of embodiment in the molded object for plasma generation electrodes of this invention is shown, (a) is sectional drawing of the nozzle | cap | die used at the time of shaping | molding, (b) is produced using (a). It is sectional drawing of the made plasma generating electrode (electrode unit). プラズマ発生電極用成形体における実施の形態の一例を示すものであり、(a)は成形体の断面図、(b)は(a)の成形体を構成する平板部と突条部とが別体で形成された第一の成形部材及び第二の成形部材の断面図、(c)は(a)の成形体を用いて作製されたプラズマ発生電極(電極ユニット)の断面図である。1 shows an example of an embodiment of a molded body for a plasma generating electrode, in which (a) is a cross-sectional view of the molded body, and (b) is a separate flat plate portion and protruding portion from the molded body of (a). Sectional drawing of the 1st molded member and the 2nd molded member formed with the body, (c) is sectional drawing of the plasma generation electrode (electrode unit) produced using the molded object of (a).

符号の説明Explanation of symbols

2…突条部、6,8…平板部、10…第一の成形部材、11,12…第二の成形部材、15〜19…プラズマ発生電極用成形体、20…導電膜、30…導電膜が埋設された平板状の成形体、36,40,42,43,44,46,48…プラズマ発生電極(電極ユニット)、50…上部の押出成形機、52…下部の押出成形機、53…導電膜形成装置、54…接合層形成装置、56…第一の搬送ライン(搬送ライン)、57…第二の搬送ライン、58a,58b…双ロール、59a,59b…圧着ロール、60…第三の押出成形機、62,63,64…口金、70…誘電材料供給孔、71…第一の送給流路、72…第二の送給流路、74…導電材料供給孔、76…第三の送給流路、77…排出流路,78…口金出口,80…ブレード、90…第一の成形シート、92…第二の成形シート、94…第三の成形シート、95,96…積層シート、97…第四の成形シート、98…積層シート、100…プラズマ発生電極用成形体、101…平板部(平板)、102…突条部(突条部材)、103…第一の成形部材、104…第二の成形部材(平板)。 DESCRIPTION OF SYMBOLS 2 ... Projection part, 6,8 ... Flat plate part, 10 ... 1st shaping | molding member, 11, 12 ... 2nd shaping | molding member, 15-19 ... Molded object for plasma generating electrodes, 20 ... Conductive film, 30 ... Conductivity Plate-like molded body in which a film is embedded, 36, 40, 42, 43, 44, 46, 48 ... Plasma generating electrode (electrode unit), 50 ... Upper extruder, 52 ... Lower extruder, 53 ... conductive film forming device, 54 ... bonding layer forming device, 56 ... first transport line (transport line), 57 ... second transport line, 58a, 58b ... double roll, 59a, 59b ... crimp roll, 60 ... first Three extruders, 62, 63, 64 ... cap, 70 ... dielectric material supply hole, 71 ... first feed channel, 72 ... second feed channel, 74 ... conductive material feed hole, 76 ... Third feed flow path, 77 ... discharge flow path, 78 ... mouth outlet, 80 ... blade, 90 ... One molded sheet, 92 ... second molded sheet, 94 ... third molded sheet, 95, 96 ... laminated sheet, 97 ... fourth molded sheet, 98 ... laminated sheet, 100 ... molded article for plasma generating electrode, DESCRIPTION OF SYMBOLS 101 ... Flat plate part (flat plate), 102 ... Projection part (projection member), 103 ... 1st shaping | molding member, 104 ... 2nd shaping | molding member (flat plate).

Claims (12)

一方の押出成形機により平板部の表面に櫛形状に突条部が配設された誘電材料からなる第一の成形シートを一体的に押し出して第一の搬送ラインで搬送するとともに、前記押出成形機と平行配置させたもう一方の押出成形機により平板状の誘電材料からなる第二の成形シートを押し出して第二の搬送ラインで搬送する際、前記第一の成形シート又は前記第二の成形シートの平坦面に、導電膜を所定のパターンで形成した後、前記第一の成形シート及び前記第二の成形シートを密着させ、前記第一の成形シートと前記第二の成形シートを前記導電膜を介在させながら、ガイド溝を有するロールを用いて圧着・一体化することにより、前記導電膜が埋設され、且つ平板部の表面に櫛形状に突条部が配設された片櫛状の積層シートを所定の寸法で切断するプラズマ発生電極用成形体の成形方法。 One extrusion molding machine integrally extrudes a first molded sheet made of a dielectric material having comb-shaped protrusions disposed on the surface of the flat plate portion, conveys the first molded sheet on the first conveyance line, and performs the extrusion molding. When the second molding sheet made of a flat plate-like dielectric material is extruded by the other extrusion molding machine arranged in parallel with the machine and conveyed on the second conveyance line, the first molding sheet or the second molding After the conductive film is formed in a predetermined pattern on the flat surface of the sheet, the first molded sheet and the second molded sheet are brought into close contact with each other, and the first molded sheet and the second molded sheet are connected to the conductive film. By pressing and integrating with a roll having a guide groove while interposing a film, the conductive film is embedded, and the surface of the flat plate part is a comb-like protrusion with a ridge part disposed in a comb shape. Cut the laminated sheet to the specified dimensions Method of forming a plasma generating electrode molded body. 前記第一の成形シートと前記第二の成形シートを密着させる方法として、前記櫛形状の突条部が潰れないようにガイド溝を有する双ロールを用いる請求項に記載のプラズマ発生電極用成形体の成形方法。 As a method for adhering said second molding seat of said first molding seat, forming a plasma generating electrode according to claim 1 using a twin roll having a guide groove so that ridges of the comb shape does not collapse Body molding method. 前記一方の押出成形機及びこれに平行に配置された前記もう一方の押出成形機におけるそれぞれの成形シートの押出し速度が、共に同期しているとともに、前記導電膜のパターン形成時間を確保できる速度である請求項又はに記載のプラズマ発生電極用成形体の成形方法。 The extrusion speeds of the respective molded sheets in the one extrusion molding machine and the other extrusion molding machine arranged in parallel therewith are synchronized with each other at a speed that can ensure the pattern formation time of the conductive film. A method for forming a molded body for a plasma generating electrode according to claim 1 or 2 . 一方の押出成形機により平板部の表面に櫛形状に突条部が配設された誘電材料からなる第一の成形シートを一体的に押し出して第一の搬送ラインで搬送するとともに、前記押出成形機と平行に配置されたもう一方の押出成形機により平板部の裏面に櫛形状に突条部が配設された誘電材料からなる第三の成形シートを一体的に押し出して第二の搬送ラインで搬送する際、前記第一の成形シート又は第三の成形シートのいずれか一方の平坦面に導電膜を所定のパターンで形成した後、前記第一の成形シート及び前記第三の成形シートを密着させ、前記導電膜を介在させながら、ガイド溝を有するロールを用いて前記第一の成形シート及び第三の成形シートを圧着・一体化することにより、前記導電膜が埋設された両櫛状の積層シートを所定の寸法で切断するプラズマ発生電極用成形体の成形方法。 One extrusion molding machine integrally extrudes a first molded sheet made of a dielectric material having comb-shaped protrusions disposed on the surface of the flat plate portion, conveys the first molded sheet on the first conveyance line, and performs the extrusion molding. A second conveying line is formed by integrally extruding a third molding sheet made of a dielectric material having a comb-shaped protrusion on the back surface of the flat plate portion by another extrusion molding machine arranged in parallel with the machine. When the conductive film is formed in a predetermined pattern on the flat surface of either the first molded sheet or the third molded sheet, the first molded sheet and the third molded sheet are A comb-like shape in which the conductive film is embedded by pressing and integrating the first molded sheet and the third molded sheet using a roll having guide grooves while closely contacting and interposing the conductive film The laminated sheet of the predetermined dimensions Method of forming a plasma generating electrode molded body cutting. 前記第一の成形シートと前記第三の成形シートを密着させる方法として、前記櫛形状の突条部が潰れないようにガイド溝を有する双ロールを用いる請求項に記載のプラズマ発生電極用成形体の成形方法。 5. The plasma generating electrode molding according to claim 4 , wherein a twin roll having a guide groove is used as a method for bringing the first molded sheet and the third molded sheet into close contact with each other so that the comb-shaped protrusions are not crushed. Body molding method. 前記一方の押出成形機及びこれに平行に配置された前記もう一方の押出成形機におけるそれぞれの成形シートの押出し速度が、共に同期しているとともに、前記導電膜のパターン形成時間を確保できる速度である請求項又はに記載のプラズマ発生電極用成形体の成形方法。 The extrusion speeds of the respective molded sheets in the one extrusion molding machine and the other extrusion molding machine arranged in parallel therewith are synchronized with each other at a speed that can ensure the pattern formation time of the conductive film. A method for forming a molded body for a plasma generating electrode according to claim 4 or 5 . 第一の押出成形機により平板状の誘電材料からなる第二の成形シートを押し出して搬送ラインで搬送する際、前記第二の成形シートの表面に導電膜を所定のパターンで形成した後、第二の押出成形機内に搬送され、前記第二の成形シート上に平板部の表面に櫛形状に突条部が配設された誘電材料からなる第四の成形シートを一体的に押し出しつつ、ガイド溝を有するロールを用いて前記第二の成形シートと圧着・一体化させることにより、前記導電膜が埋設され、且つ平板部の表面に櫛形状に突条部が配設された片櫛状の積層シートを一体的に得、得られた前記積層シートを所定の寸法で切断するプラズマ発生電極用成形体の成形方法。 When the second molding sheet made of a flat dielectric material is extruded by the first extruder and conveyed by the conveying line, the conductive film is formed in a predetermined pattern on the surface of the second molded sheet, A guide is formed by integrally extruding a fourth molded sheet made of a dielectric material , which is conveyed into a second extrusion molding machine, and has a comb-shaped protrusion on the surface of the flat plate portion on the second molded sheet. By pressing and integrating with the second molded sheet using a roll having a groove, the conductive film is embedded, and a comb-like protrusion is disposed on the surface of the flat plate portion. A method for forming a molded body for a plasma generating electrode, wherein a laminated sheet is integrally obtained, and the obtained laminated sheet is cut with a predetermined dimension. それぞれの送給流路から押し出された平板部の表面に櫛形状に突条部が配設された誘電材料と、平板状に配設された誘電材料との間に、所定のパターン及び厚さに配設された導電材料が介在するように配置された口金から、前記誘電材料及び導電材料を同時に押出成形することにより、導電材料が誘電材料に埋設された構造を有し、且つ平板部の片面に櫛形状に突条部が配設されたプラズマ発生電極用成形体を成形する、プラズマ発生電極用成形体の成形方法A predetermined pattern and thickness between the dielectric material in which the protrusions are arranged in a comb shape on the surface of the flat plate portion extruded from each feeding flow path and the dielectric material provided in the flat plate shape. The dielectric material and the conductive material are simultaneously extruded from a base disposed so that the conductive material disposed in the gap is interposed, and the conductive material is embedded in the dielectric material, and the flat plate portion A method for forming a plasma generating electrode molded body, wherein a plasma generating electrode molded body having a comb-shaped protrusion on one side is formed . 請求項に記載の成形方法により成形された成形体同士を、一方の成形体の前記櫛形状に配設された突条部と、もう一方の成形体の平面部との界面や隙間が無いように積層し、得られた積層体の最上面又は最下面に導電膜が埋設された平板状の成形体を載置した後、焼成・一体化する、プラズマ発生電極の製造方法The molded bodies molded by the molding method according to claim 8 do not have an interface or a gap between the protruding portion disposed in the comb shape of one molded body and the flat portion of the other molded body. A method for producing a plasma generating electrode , in which a flat molded body having a conductive film embedded in the uppermost surface or the lowermost surface of the obtained laminate is placed and then fired and integrated. それぞれの送給流路から押し出された平板部の表面に櫛形状に突条部が配設された誘電材料と、平板部の裏面に櫛形状に突条部が配設された誘電材料との間に、所定のパターン及び厚さに配設された導電材料が介在するように配置された口金から、前記誘電材料及び導電材料を同時に押出成形することにより、導電材料が誘電材料に埋設された構造を有し、且つ平板部の両面に櫛形状に突条部が配設されたプラズマ発生電極用成形体を成形する、プラズマ発生電極用成形体の成形方法A dielectric material having a comb-shaped protrusion on the surface of the flat plate portion extruded from each feed flow path, and a dielectric material having a comb-shaped protrusion on the back surface of the flat plate portion. The conductive material is embedded in the dielectric material by simultaneously extruding the dielectric material and the conductive material from a die disposed so that the conductive material arranged in a predetermined pattern and thickness is interposed therebetween. A method for forming a plasma generating electrode molded body, wherein the plasma generating electrode molded body has a structure and is formed with comb-shaped protrusions on both sides of a flat plate portion. 請求項10に記載の成形方法により成形された成形体の片面及び/又は両面に、導電膜が埋設された平板状の成形体を載置しつつ、請求項10に記載の成形方法により成形された成形体の前記櫛形状に配設された突条部と、前記導電膜が埋設された平板状の成形体の平面部との界面や隙間が無いように積層した後、焼成・一体化する、プラズマ発生電極の製造方法On one side and / or both sides of the molded body formed by the molding method according to claim 10, while placing a conductive film buried plate-shaped molded body is molded by the molding method according to claim 10 a protruding portion disposed on the comb shape of the molded article, after the conductive film was laminated such interface or gap is not the flat portion of the buried plate-shaped body is fired and integrated A method for manufacturing a plasma generating electrode. それぞれの送給流路から押し出された平板部の表面に櫛形状に突条部が配設された誘電材料と、平板状の誘電材料又は平板部の裏面に櫛形状に突条部が配設された誘電材料との間に、所定のパターン及び厚さに配設された導電材料が介在するように配置されたものを、更に縦方向に複数個並列させた口金から同時に押出成形することにより、予め複数の成形体を積層させたユニット成形体を得た後、焼成・一体化する、プラズマ発生電極の製造方法Dielectric material with comb-shaped protrusions arranged on the surface of the flat plate part extruded from each feeding flow path, and comb-shaped protrusions arranged on the flat plate dielectric material or the back surface of the flat plate part By simultaneously extruding a plurality of pieces arranged in parallel with each other in the vertical direction, with a conductive material arranged in a predetermined pattern and thickness interposed between the dielectric material and the formed dielectric material. A method for producing a plasma generating electrode , wherein a unit molded body obtained by previously laminating a plurality of molded bodies is obtained and then fired and integrated .
JP2003423556A 2003-12-19 2003-12-19 Method for forming molded body for plasma generating electrode, and method for manufacturing plasma generating electrode Expired - Fee Related JP4524100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003423556A JP4524100B2 (en) 2003-12-19 2003-12-19 Method for forming molded body for plasma generating electrode, and method for manufacturing plasma generating electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003423556A JP4524100B2 (en) 2003-12-19 2003-12-19 Method for forming molded body for plasma generating electrode, and method for manufacturing plasma generating electrode

Publications (2)

Publication Number Publication Date
JP2005177644A JP2005177644A (en) 2005-07-07
JP4524100B2 true JP4524100B2 (en) 2010-08-11

Family

ID=34784050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003423556A Expired - Fee Related JP4524100B2 (en) 2003-12-19 2003-12-19 Method for forming molded body for plasma generating electrode, and method for manufacturing plasma generating electrode

Country Status (1)

Country Link
JP (1) JP4524100B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863743B2 (en) * 2006-03-24 2012-01-25 日本碍子株式会社 Plasma generating electrode, plasma reactor and exhaust gas purification device
JP5309303B2 (en) * 2007-03-02 2013-10-09 ライトグリーン株式会社 Negative ion generation source and generation method using kinetic energy and thermal energy of fluid
SG11201602260SA (en) * 2013-09-24 2016-04-28 Univ Illinois Modular microplasma microchannel reactor devices, miniature reactor modules and ozone generation devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252098A (en) * 1999-03-02 2000-09-14 Kitamura Masahiro Non-equilibrium plasma generator
JP2000285815A (en) * 1999-03-31 2000-10-13 Kyocera Corp Substrate for plasma display device and its manufacture
JP2002289092A (en) * 2001-03-23 2002-10-04 Matsushita Electric Ind Co Ltd Manufacturing method of gas discharge type display apparatus
JP2003286829A (en) * 2002-03-19 2003-10-10 Hyundai Motor Co Ltd Plasma reactor and its manufacturing method and exhaust gas reducing device for vehicle provided with plasma reactor
JP2003302913A (en) * 2002-04-10 2003-10-24 Shin-Etsu Engineering Co Ltd System for bonding substrate for flat panel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3690907B2 (en) * 1997-09-18 2005-08-31 富士通株式会社 Plasma display panel and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252098A (en) * 1999-03-02 2000-09-14 Kitamura Masahiro Non-equilibrium plasma generator
JP2000285815A (en) * 1999-03-31 2000-10-13 Kyocera Corp Substrate for plasma display device and its manufacture
JP2002289092A (en) * 2001-03-23 2002-10-04 Matsushita Electric Ind Co Ltd Manufacturing method of gas discharge type display apparatus
JP2003286829A (en) * 2002-03-19 2003-10-10 Hyundai Motor Co Ltd Plasma reactor and its manufacturing method and exhaust gas reducing device for vehicle provided with plasma reactor
JP2003302913A (en) * 2002-04-10 2003-10-24 Shin-Etsu Engineering Co Ltd System for bonding substrate for flat panel

Also Published As

Publication number Publication date
JP2005177644A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
EP1347476B1 (en) Ceramic electronic device and method of production of same
JP4448095B2 (en) Plasma generating electrode and plasma reactor
EP1838140B1 (en) Plasma generation electrode, plasma reactor, and exhaust gas cleaning apparatus
EP1638377B1 (en) Plasma generating electrode, plasma generation device, and exhaust gas purifying apparatus
EP1638376A1 (en) Plasma generating electrode, plasma generation device, and exhaust gas purifying apparatus
KR20080039813A (en) Closely spaced high-aspect extruded gridlines
CN1023273C (en) Stacked type ceramic device and process of their manufacture
EP3389345A1 (en) Plasma reactor and plasma electrode plate
JP4524100B2 (en) Method for forming molded body for plasma generating electrode, and method for manufacturing plasma generating electrode
JPWO2005055678A1 (en) Plasma generating electrode, manufacturing method thereof, and plasma reactor
JP4994171B2 (en) Discharge element, discharge module using this discharge element, and ozone generator and ion generator using this discharge module
CN115763070A (en) Laminated bubble improvement method for MLCC
US7589296B2 (en) Plasma generating electrode and plasma reactor
JP2005123034A (en) Plasma generating electrode and plasma reactor
JP4342893B2 (en) Plasma generating electrode and plasma reactor
US10596721B2 (en) Apparatus and method of manufacturing ceramic honeycomb body
JP2015185666A (en) Method for manufacturing piezoelectric element
JP2000269074A (en) Multilayer ceramic capacitor and manufacture thereof
JP2002270459A (en) Manufacturing method for laminated ceramic electronic component
EP2003297A9 (en) Exhaust gas purifier
JP4474278B2 (en) Plasma generating electrode and plasma reactor
JP2004014668A (en) Manufacturing method of laminated ceramic electronic part
EP3109028A1 (en) Print head for co-extruding conformal battery separator and electrode
JP4713133B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4614043B2 (en) Manufacturing method of ceramic electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees