JP4523184B2 - Manufacturing method of plate material - Google Patents

Manufacturing method of plate material Download PDF

Info

Publication number
JP4523184B2
JP4523184B2 JP2001045817A JP2001045817A JP4523184B2 JP 4523184 B2 JP4523184 B2 JP 4523184B2 JP 2001045817 A JP2001045817 A JP 2001045817A JP 2001045817 A JP2001045817 A JP 2001045817A JP 4523184 B2 JP4523184 B2 JP 4523184B2
Authority
JP
Japan
Prior art keywords
plate material
temperature
heating
differential thickness
thickness portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001045817A
Other languages
Japanese (ja)
Other versions
JP2002248503A (en
Inventor
卓 土屋
武司 佐野
正慎 沼野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001045817A priority Critical patent/JP4523184B2/en
Publication of JP2002248503A publication Critical patent/JP2002248503A/en
Application granted granted Critical
Publication of JP4523184B2 publication Critical patent/JP4523184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は厚さの異なる差厚部を有する板材の製造方法に関する。
【0002】
【従来の技術】
板材に差厚部を成形する方法として、まず、圧延で板材に差厚部を成形し、その次に、差厚部を成形した板材を焼鈍する方法が知られている。具体的には、圧延では、例えば、特開昭59−189004号公報「差厚板の製造方法およびその圧延機」に示されたものがある。この差厚板の製造用圧延機は、同公報の第3図によれば、上側作業ロール14a(符号は公報記載のものを流用した。以下同様。)と下側作業ロール14bとを独立に駆動制御できるものであり、下側作業ロール14bを逆方向に駆動し、圧延成形することで、差厚板を得ることができるというものである。
次に、圧延後の板材の加熱状態を説明する。
【0003】
図19(a),(b)は従来の板材の加熱を示す図である。
(a)において、板材141は、差厚部142,143を成形したものであり、差厚部142は厚さt2、差厚部143は厚さt3である。t1は板材141の厚さであり、はじめの板の厚さである。
板材141を加熱炉144に入れ、ヒータ145・・・(・・・は複数を示す。以下同様。)で加熱し、板材141の焼鈍を行う。A,B,Cは、温度を測定する測定部を示す。その測定結果の一例を次図に示す。
【0004】
(b)は、板材の加熱状態を示す線図であり、横軸を時間とし、縦軸を板材の温度としたものである。測定部Aは温度T3、測定部Bは温度T2、測定部Cは温度T1である。このように加熱炉144で板材141を加熱することで、板材141を焼鈍することができ、差厚部を成形した板材を得ることができる。
【0005】
【発明が解決しようとする課題】
上記の加熱炉144で加熱した板材141の温度は図18(b)に示す通りで、加熱炉144は、測定部Cの差厚部143を所望の温度T1に加熱するが、それに伴ない、測定部Bの差厚部142を温度T2まで加熱するため、焼鈍する際の板材141の温度のばらつきが大きい。そのため、板材141には、所望の温度で加熱処理した差厚部143の材料の強さと、そうでない温度で加熱処理した差厚部142との間で、材料の強さに違いが発生し、加熱炉144では、材料特性を均一にし難い。
【0006】
また、加熱炉144は、焼鈍を行う必要のない測定部Aの板材141を加熱するとともに、その温度を温度T3まで上げるので、差厚部を成形した板材の材料特性を均一にし難い。
一方、圧延で差厚部142,143を成形した後、圧延装置から加熱炉144へ板材141を搬送する必要があり、板材141の焼鈍の段取りに手間がかかる。
【0007】
そこで、本発明の目的は、差厚部を成形した板材を焼鈍で均一な材料特性を有する板材に調整することができ、且つ差厚部を成形した板材の生産効率の向上を図ることができる板材の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために請求項1は、圧延手段の上下のロール間に板材をセットする板材セット工程と、セットした板材の両端を把持する把持工程と、把持した板材に一定の張力を付与する張力付与工程と、張力を付与しつつ、圧延手段を旋回させ、板材の長手方向に対して上下のロールの軸を非直角に設定し、上下のロールで圧延して差厚部を成形する差厚部成形工程と、成形した板材を連続して搬送ラインに設けた加熱装置に送り、板材を加熱装置内で送りつつ、板材の差厚部を所定の温度に加熱する焼鈍工程と、からなる。
【0009】
焼鈍工程では、加熱装置内で板材を送りつつ、板材の差厚部を所定の温度に加熱するので、厚さの違いによる温度のばらつきを極めて小さくすることができ、材料特性がばらつく心配はない。
また、焼鈍工程では、成形した板材を連続して搬送ラインに設けた加熱装置に送るので、焼鈍前の段取りに手間がかからない。
【0010】
請求項2では、焼鈍工程は、差厚部への加熱と同時に非圧延部への加熱を遮断して焼鈍を行うことを特徴とする。
焼鈍工程では、差厚部を所定の温度条件で加熱し易くなり、差厚部を成形した板材の材料特性はより均一になる。
【0011】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に係る板材の製造方法に用いる板材製造装置の平面図である。図左上に示すYは圧延の際の搬送方向、XはYに直交する軸である。
板材製造装置10は、切断機11と、圧延装置12と、搬送台13と、加熱装置14とをこの順に配置したものである。15,16,17,18はローラコンベヤ、21は制御盤、22は油圧ユニット、23は圧延装置12の操作盤、24は加熱装置14の操作盤である。137は圧延後の板材を示す。
操作盤24は、条件設定手段26と、制御手段27と、を備えるものである。
搬送台13は、位置決めガイド28aと、コンベヤ28bとからなる。
【0012】
図2は本発明に係る板材の製造方法に用いる板材製造装置の側面図である。
切断機11は、図左側から搬入した帯板を切り、所定長さの板材を形成するものである。
圧延装置12は、テンション装置30と、圧延手段60とからなる。
【0013】
テンション装置30は、X軸方向(図1参照)に移動できるものであり、X軸移動ガイド30a、30aと、これらのX軸移動ガイド30a、30aに載せたX軸移動ベース30bと、このX軸移動ベース30bをX軸方向に移動させる、図1に示すX軸駆動手段30c,30cと、X軸移動位置検出器30dと、次図で説明する要素とを有する。
【0014】
図3は本発明に係る板材の製造方法に用いるテンション装置の斜視図であり、テンション装置30は、移動台31上に左クランプ手段32、右クランプ手段33並びに張力付与手段34,35を有する。
移動台31は、ベース36に第1ガイド37を介してY軸移動ベース38を取付けたものである。
【0015】
左クランプ手段32は、Y軸移動ベース38の左側にハウジング41を取付け、このハウジング41の中央にガイドを介して上押圧部42を上下移動可能に取付けるとともに、この上押圧部42に対向する下押圧部43を固定し、ハウジング41の上部に油圧シリンダ44,44を取付けたものであり、油圧シリンダ44のロッド45を上押圧部42に取付けて、油圧によって上押圧部42を下押圧部43側へ押し付けるものである。
【0016】
一方、右クランプ手段33は、Y軸移動ベース38の右側に第2ガイド46を介して取付けたハウジング47に左クランプ手段32と同様の上・下押圧部42,43、油圧シリンダ44,44を設けたものである。48は左クランプ位置検出器、49は右クランプ位置検出器であり、これら左・右クランプ位置検出器48,49は、例えば、リニアエンコーダやリニア位置センサである。
【0017】
また、張力付与手段34は、油圧シリンダ51であり、油圧シリンダ51の取付け部52をベース36に取付け、ロッド53をY軸移動ベース38に取付けた。張力付与手段35は、油圧シリンダ55であり、油圧シリンダ55の取付け部56をY軸移動ベース38に取付け、ロッド57を右クランプ手段33に取付けた。
【0018】
図4は本発明に係る板材の製造方法に用いる圧延手段の斜視図であり、圧延手段60は、スタンド61に第3ガイド62,62(手前は図示していない)を介して昇降自在に軸受箱63,63を嵌合し、これらの軸受箱63,63に図示せぬ軸受を介して上ロールとしてのワークロール64、バックアップロール65,65を嵌合し、これらのロール64,65,65に対称に、スタンド61に図示せぬ軸受を介して下ロールとしてのワークロール66、バックアップロール67,67を嵌合し、スタンド61の上部に圧下油圧シリンダ68,68を取付け、この圧下油圧シリンダ68,68のロッドを軸受箱63,63に取付け、ワークロール64,66をロール駆動部69,69に嵌合したものであり、ロールが6重で、単一の圧延機である。71はワークロール位置検出器、72は左クランプ移動限検出器、73は右クランプ移動限検出器、74,74は加熱手段、90はターンテーブルである。
【0019】
ワークロール位置検出器71は、例えばリニアエンコーダやリニア位置センサであり、左・右クランプ移動限検出器72,73は、例えばリミットスイッチである。また、加熱手段74は、電磁誘導加熱(誘導加熱)の熱源(ヒーター)であり、ワークロール64,66の左右に設けたものである。
【0020】
ターンテーブル90は、据え付け台91の中央に回転支持部92を設け、端部に駆動部93を設けたものである。駆動部93は、据え付け台91に取付けたガイド94と、このガイド94を駆動するウオーム減速機95とからなる。
【0021】
すなわち、ターンテーブル90の回転支持部92に圧延手段60を嵌合するとともに、圧延手段60にガイド94の一端を取付けることで、ターンテーブル90に圧延手段60を載せたことになる。96は原点位置検出器、97は右回転限検出器、98は左回転限検出器である。
【0022】
図5は本発明に係る板材の製造方法に用いる加熱装置の斜視図である。
加熱装置14は、電気加熱であり、圧延後の板材137(図1参照)を連続的に水平搬送する搬送手段101と、この搬送手段101の上方に搬送方向(X軸方向)に対して直交方向(Y軸方向)に移動自在に設けた加熱手段102と、この加熱手段102を移動させる熱源移動手段103と、板材137(図10参照)の差厚部としての第1差厚部83並びに第2差厚部136に応じて加熱条件を設定する条件設定手段26(図1参照)と、加熱条件に基づいて加熱手段102及び熱源移動手段103を制御する制御手段27(図1参照)と、Y軸方向へ移動可能に取付けた遮蔽板104と、炉本体105と、炉本体105を支持する支持台106と、からなるものである。
【0023】
炉本体105は、壁内に断熱材107を取付け、一方に入口108を形成し、他方に出口109を形成したものである。
加熱手段102は、ブラケット111・・・に入口108側から順に熱源としての近赤外線の第1〜第7放射源121、122、123、124、125、126、127を取付けたもので、入口108にワークの搬入を検知するワーク搬入検出器128を有するものである。
【0024】
熱源移動手段103は、7個のボールねじユニット131(モータ132、ねじ軸133、ナット134)・・・からなる。ナット134はブラケット111を取付けるものである。
遮蔽板104は、加熱手段102の熱伝達を遮るものである。遮蔽板104の材質は、断熱材であるが、断熱材以外の材質を用いることも可能である。
【0025】
図6は図5の6−6線断面図であり、ワークを搬送する搬送手段101の上方に加熱手段102の第1〜第7放射源121〜127を直交方向(Y軸方向)に移動自在に設け、加熱手段102と搬送手段101との間に遮蔽板104を配置したことを示す。
第1〜第7放射源121〜127は、例えば、石英管形赤外線電球である。
搬送手段101は、炉本体105外に配置したモータ138aと、炉本体105内に配置したローラ138bとからなる。
【0026】
次に本発明に係る板材の製造方法を説明する。
図7は本発明に係る板材の製造方法のフローチャートであり、STはステップを示す。
ST01:圧延手段の上下のロール間に板材をセットする。
ST02:セットした板材の両端を把持する。
ST03:把持した板材に一定の張力を付与する。
ST04:張力を付与しつつ、ロールで圧延して差厚部を成形する。
ST05:成形した板材を連続して加熱装置に送り、加熱装置内で送りつつ、所定の温度に加熱する。
次に、ST01〜ST05を具体的に説明する。
【0027】
図8(a),(b)は本発明に係る板材の製造方法の第1説明図である。
(a):まず、圧延装置12に板材81を通す。具体的には、油圧シリンダ51(ロッド53)の前進(矢印▲1▼の方向)によって左クランプ手段32は所定位置に至る。この際、左クランプ手段32の行過ぎを左クランプ移動限検出器72によって防止する。
【0028】
左・右クランプ手段32,33上の油圧シリンダ44,44(ロッド)が後退(矢印▲2▼,▲2▼の方向)すると、上押圧部42が上昇する。一方、圧延手段60の圧下油圧シリンダ68によって、軸受箱63とともに、ワークロール64、バックアップロール65,65が上昇する。
【0029】
左クランプ手段32まで圧延前の板材81を矢印▲3▼の如く通した後、左クランプ手段32の上押圧部42を下降させて板材81の厚肉部82を把持する。一方、圧下油圧シリンダ68で板材81にワークロール64、バックアップロール65,65を圧下する。
【0030】
(b):その次に、ワークロール64を所定のロール速度で駆動回転させることで、第1差厚部83を成形する。同時に、左クランプ手段32を張力方向(矢印▲4▼の方向)に移動させることにより、板材81に一定の張力tを掛けつつ、第1差厚部83を成形する。左クランプ手段32が所定位置に至ると、停止する。
【0031】
続けて、圧延手段60を逆回転せさるために、圧延手段60の近傍まで右クランプ手段33を寄せ、右クランプ手段33上の油圧シリンダ44で上押圧部42を下降させて板材81の厚肉部82を把持する。その際の右クランプ手段33の位置は右クランプ移動限検出器73によって検出する。
【0032】
図9(a),(b)は本発明に係る板材の製造方法の第2説明図である。
(a):圧延手段60のワークロール64を逆回転させ、第1差厚部83をより薄く延ばす。その際、圧下油圧シリンダ68でワークロール64をさらに圧下し、ロール間隔を制御する。同時に、油圧シリンダ51でY軸移動ベース38を逆移動させる。
【0033】
(b):Y軸移動ベース38を逆移動しつつ、Y軸移動ベース38上の油圧シリンダ55によって右クランプ手段33を移動することで、板材81に一定の張力tを掛ける。その際、右クランプ手段33の位置は右クランプ位置検出器49によって行う。
この後、図8,図9に示した第1差厚部83の成形をさらに繰り返し、所望の厚さの第1差厚部83を成形する。
【0034】
すなわち、板材81を左・右のクランプ手段32,33で把持し、板材81に張力tを掛けながら圧延する。第1差厚部83に張力tが作用すると、極めて容易に板材81の厚肉部82の一部に第1差厚部83を成形することができる。
また、張力tによって、第1差厚部83に発生しやすい「しわ」や曲りを防止することができる。
【0035】
図10(a),(b)は本発明に係る板材の製造方法の第3説明図である。
(a):ターンテーブル90によって圧延手段60を旋回し、板材81の長手方向に対してワークロール66の軸を非直角に設定する。すなわち、ワークロール66を旋回角θに設定する。
【0036】
(b):ワークロール64,66を駆動し、旋回角θのワークロール64,66の回転で往復する板材81に一定の張力を左・右クランプ手段32,33で掛ける。ワークロール64,66は正転、逆転を繰り返して第1差厚部83を往復させることで、第1差厚部83は次第に薄く延び、境界ライン86は角度θを形成することができる。
【0037】
また、ターンテーブル90(a参照)によって圧延手段60を旋回角θだけ戻すとともに、連続して旋回角βだけ旋回させ、同様に往復させて、第1差厚部83を成形するとともに、境界ライン85の角度をβに形成することができる。第1差厚部83の厚さはt2である。
【0038】
なお、X軸方向の延びが大きい場合は、一旦、上押圧部42を仮想線のように上昇させ、左クランプ手段32を原点に戻す。原点に戻すことで、X軸駆動手段(油圧シリンダ)のストロク量の不足を防止する。
【0039】
図11(a),(b)は本発明に係る板材の製造方法の第4説明図である。
(a):圧延手段60で第2差厚部136を成形する。具体的には、右クランプ手段33の上押圧部42を上昇させて開放し、左クランプ手段32で張力を掛けつつ、板材81の一方81aをワークロール64,66で延ばし、第2差厚部136を成形する。81bは板材81の他方であり、非圧延部である。
第2差厚部136の厚さはt3であり、第2差厚部136の加工度は、第1差厚部83の加工度より小さい。
【0040】
ここでは、加工度は圧下率に相当する。圧下率をr、第1差厚部83の圧下率をr1、第2差厚部136の圧下率をr2、入口側板厚をh1、出口側板厚をh2としたときに、圧下率r,r1,r2は次式で定めることができる。
r(%)=〔(h1−h2)/h1〕×100、
r1(%)=〔(t1−t2)/t1〕×100、
r2(%)=〔(t1−t3)/t1〕×100
【0041】
(b)は、厚さの異なる第1・第2差厚部83,136を成形し、圧延が完了した板材137を示す。
板材137は、加工度の違いにより、引張り強さなど材料特性が非圧延部81b、第1・第2差厚部83,136で各々異なる。そのために、次に板材137の焼鈍を実施する。
【0042】
図12(a),(b)は本発明に係る板材の製造方法の第5説明図である。
(a):板材137を加熱装置14で焼鈍する。具体的には、予め焼鈍に必要な加熱条件を板材137の第1・第2差厚部83,136並びにその他の条件に応じて条件設定手段26(例えば、キーボード)で設定する。
加熱条件は、搬送手段101を制御するワーク搬送速度Vwと、熱源移動手段103を制御する移動速度Vh並びにタイマ設定値S1,S2と、加熱手段102を制御する設定温度Th1〜Th7とを主とする。
制御手段27は、ワーク速度制御部27aと、熱源速度制御部27bと、タイマTM1,TM2と、温度制御部27cと、を備えるものである。
【0043】
加熱装置14は、条件設定手段26の所定のボタンを「ON」することによって、予め設定した条件に基づいて加熱手段102が矢印のように移動し、待機状態になるとともに、近赤外線の第1〜第7放射源121〜127は設定温度Th1〜Th7の状態でワークを待つ。
【0044】
予め設定を済ませた後、まず、圧延装置12を出た板材137をローラコンベヤ17で搬送台13へ搬送し、搬送台13から矢印▲5▼の如く位置決めガイド28aで位置決めしつつ、加熱装置14の入口108へ移動させる。
位置決めガイド28aを設けたので、板材137の角度θの境界ライン86に第1〜第7放射源121〜127の開始位置を一致させることができるとともに、角度βの境界ライン85に遮蔽板104の端を一致させることができる。
【0045】
このように、圧延装置12と、ローラコンベヤ17と、搬送台13と、加熱装置14と、加熱装置14の搬送手段101をこの順に連続的に配置したので、圧延装置12から加熱装置14へ第1・第2差厚部83,136を成形した板材137を連続して短時間に搬送することができ、加熱装置14への搬送に手間がかからず、且つ焼鈍の段取りに手間がかからない。従って、第1・第2差厚部83,136を成形した板材137の生産効率の向上を図ることができる。
【0046】
(b):板材137が入口108に達すると、ワーク搬入検出器128に信号によって搬送手段101のローラ138bが回転し、所定のワーク搬送速度VwでX軸方向に板材137を矢印▲6▼の如く搬送する。
また、ワーク搬入検出器128に信号によって第1放射源121の熱源移動手段103は作動し、所定の移動速度VhでY軸方向に第1放射源121を矢印▲7▼の如く送る。その結果、第1放射源121は第1差厚部83を加熱することができる。
【0047】
図13(a),(b)は本発明に係る板材の製造方法の第6説明図である。
(a):板材137を搬送しつつ、加熱する。ここでは、板材137の移動量に応じて、第2・第3放射源122,123の熱源移動手段103が作動する。すなわち、角度θの境界ライン86に倣って第2放射源122並びに第3放射源123を移動速度VhでY軸方向に送るとともに、第1放射源121の移動を継続するので、第1・第3放射源121,123で第1差厚部83をより加熱することができるとともに、第2・第4放射源122,124で第2差厚部136を加熱することができる。
【0048】
(b)は、(a)のb−b線断面図であり、第1放射源121及び第2放射源122、遮蔽板104を示す。
第1放射源121を設定温度Th1に設定し、第3放射源123を設定温度Th3に設定し、矢印▲8▼の如く加熱しながら、且つY軸方向に送ることで、所定の昇温速度Tvで第1差厚部83を昇温することができる。
【0049】
また、第2放射源122を設定温度Th2に設定し、第4放射源124を設定温度Th4に設定し、矢印▲9▼の如く加熱しながら、且つY軸方向に送ることで、所定の昇温速度Tvで第2差厚部136を昇温することができる。
一方、遮蔽板104を設けて、遮蔽板104を非圧延部81bの上方に配置したので、第1・第3放射源121,123の熱伝達を矢印aの如く遮ることができ、非圧延部81bの温度を低くすることができる。
【0050】
図14(a),(b)は本発明に係る板材の製造方法の第7説明図である。
(a):板材137を搬送しつつ、加熱を続ける。板材137の搬送に応じて、第2〜第7放射源122〜127の熱源移動手段103が作動し、第2〜第7放射源122〜127を移動速度VhでY軸方向に送りながら、且つ第5放射源125の設定温度Th5並びに第7放射源127の設定温度Th7で第1差厚部83を加熱するので、第1差厚部83を所定の保持温度で一定に保持することができる。
同様に、第6放射源126の設定温度Th6で第2差厚部136の温度保持を行うことができる。
【0051】
(b):板材137を搬送しつつ、冷却する。板材137の搬送に応じて、第5〜第7放射源125〜127を移動速度VhでY軸方向に送りながら、板材137の温度保持を行う。
一方、炉本体105の出口109から炉外に板材137を送り出すことで、板材137を徐冷することができる。
【0052】
次に、本発明に係る板材の製造方法に用いる加熱装置を線図で簡単に補足説明する。
図15は本発明に係る加熱装置のタイムチャートである。
まず、加熱装置の入口に板材が接近すると、ワーク搬入検出器128の信号によってタイマTM1,TM2がカウントを開始(波線で示す。)する。そして、タイマTM1の各々のタイムアップ信号で第1〜第7リレーL1〜L7が順にON作動して熱源移動手段103の7個のボールねじユニット131(モータ132)が順に作動し、加熱手段102は移動する。
【0053】
一方、タイマTM2の各々のタイムアップ信号で第1〜第7リレーL1〜L7が順にOFF作動して熱源移動手段103の7個のボールねじユニット131(モータ132)が順に停止し、加熱手段102が停止する。従って、加熱条件に基づいて制御手段27で熱源移動手段103を制御することができる。
このように、板材137の第1・第2差厚部83,136に応じて、搬送方向(X軸方向)に対して直交方向(Y軸方向)に移動自在に設けた加熱手段102を移動させることができる。
【0054】
図16は本発明に係る板材の製造方法に用いる設定温度の一例を示すグラフであり、横軸を第1〜第7放射源121〜127とし、縦軸を温度としたものである。なお、横軸に時間を併記し、二点鎖線は所定の焼鈍温度のチャートを示し、Tvは昇温速度、T1は保持温度、Kmは保持時間を示す。
【0055】
第1放射源121の設定温度はTh1であり、この温度Th1は、第1放射源121の近傍の雰囲気下の温度であり、雰囲気が温度Th1になるよに出力を設定する。また、第2〜第7放射源122〜127の設定温度はTh2〜Th7であり、同様に各々の出力を設定する。
【0056】
すなわち、第1・第3・第5・第7放射源121,123,125,127は近赤外線の放射出力が小さいので、薄い第1差厚部83の温度を上げ過ぎることはなく、図の昇温速度Tvにほぼ一致させつつ、薄い第1差厚部83を昇温することができる。
一方、第2・第4・第6放射源122,124,126は近赤外線の放射出力が大きいので、厚い第2差厚部136の温度を上げることができ、図の昇温速度Tvにほぼ一致させつつ、厚い第2差厚部136を昇温することができる。
【0057】
また、第1・第3放射源121,123の設定温度は、Th1<Th3とし、第2・第4放射源122,124の設定温度は、Th2<Th4としたので、図の昇温速度Tvを確保することができる。
さらに、第5・第7放射源125,127の設定温度をTh5,Th7とし、Th3に対して少し温度を下げることで、薄い第1差厚部83の温度をT1で一定に保つことができる。
同様に、第6放射源126の設定温度をTh6とし、Th4に対して少し温度を下げることで、厚い第2差厚部136の温度をT1で一定に保つことができる。
【0058】
図17(a),(b)は焼鈍温度を比較したグラフであり、一例を示す。
(a)は、比較例で、図19(b)を写したもので、従来の板材の製造方法で焼鈍した板材の温度チャートを示す。測定部Cに示す厚さt3の差厚部143の温度T1に対して、測定部Bに示す厚さt2の差厚部142の温度T2は高い。また、焼鈍の必要がない厚さt1の板材141の温度もT3まで上昇する。
【0059】
(b)は、実施例で、本発明の板材の製造方法で焼鈍した板材の温度チャートを示す。
グラフから明らかなように、測定部Bに示す厚さt2の第1差厚部83の温度はT4で、測定部Cに示す厚さt3の第2差厚部136の温度T1にほぼ一致する。また、測定部Aに示す厚さt1の非圧延部81bの温度はT5で、温度T3に対して低い。
従って、本発明の板材の製造方法では、第1・第2差厚部83,136を成形した板材137の温度のばらつきを小さくすることができ、第1・第2差厚部83,136を成形した板材137を均一な材料特性を有する板材に調整することができる。
また、非圧延部81bの加熱温度を低くすることができ、第1・第2差厚部83,136を成形した板材137をより均一な材料特性を有する板材に調整することができる。
【0060】
次に、本発明に係る板材の製造方法の別実施の形態を示す。
図18は図17(b)の別実施の形態を示すグラフであり、上記図17(b)に示す実施の形態と同じものについては、同一符号を付し説明を省略する。
ここでは、第1差厚部83の温度を変えたことを特徴とする。すなわち、第1差厚部83の加熱条件を変更することで、加熱装置14(図5参照)は、第1差厚部83を、例えば、昇温速度をTv1とし、保持温度をT6とし、保持時間をKm1として焼鈍することができ、より高度な温度管理を行うことができる。従って、第1・第2差厚部83,136を成形した板材137を焼鈍で均一な材料特性を有する板材に調整することができるとともに、第1・第2差厚部83,136を成形した板材137に対して所望の材料特性を与えることができる。
【0061】
尚、本発明の実施の形態に示した図17(b)並びに図18の温度は一例である。
図5の加熱手段102の熱源は第1〜第7放射源の近赤外線に限定するものではなく、誘導加熱でもよい。
帯板を切断した後に、板材を圧延装置12で圧延したが、逆に、圧延後に板材を切断機11で帯板から切り離してもよい。その場合は、切断機11の配置位置を変更する。
加熱装置14では、板材を搬送しつつ、加熱したが、板材を止めて加熱することも可能である。
【0062】
加熱装置14の出入口109,108に扉など封じ手段を開閉可能に取付けてもよい。
加熱装置14には示していないが、機器類の温度上昇を避けるために冷却手段を設けてもよい。
搬送台13に押込み手段を設け、全自動で板材を加熱装置14に搬入してもよい。
【0063】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1では、圧延手段の上下のロール間に板材をセットする板材セット工程と、セットした板材の両端を把持する把持工程と、把持した板材に一定の張力を付与する張力付与工程と、張力を付与しつつ、圧延手段を旋回させ、板材の長手方向に対して上下のロールの軸を非直角に設定し、上下のロールで圧延して差厚部を成形する差厚部成形工程と、成形した板材を連続して搬送ラインに設けた加熱装置に送り、板材を加熱装置内で送りつつ、板材の差厚部を所定の温度に加熱する焼鈍工程と、からなる。
焼鈍工程では、加熱装置内で板材を送りつつ、板材の差厚部を所定の温度に加熱するので、差厚部の厚みによる温度差は生じ難く、板材の温度のばらつきを小さくすることができる。従って、差厚部を成形した板材を焼鈍で均一な材料特性を有する板材に調整することができる。
【0064】
また、焼鈍工程では、成形した板材を連続して搬送ラインに設けた加熱装置に送るので、工程間の搬送時間を極めて短くすることができ、差厚部を有する板材の焼鈍の段取りに手間がかからない。従って、差厚部を成形した板材の生産効率の向上を図ることができる
【0065】
請求項2では、焼鈍工程は、差厚部への加熱と同時に非圧延部への加熱を遮断して焼鈍を行うので、差厚部を所定の温度条件で加熱し易くなり、差厚部を成形した板材の材料特性をより均一することができる。
【図面の簡単な説明】
【図1】本発明に係る板材の製造方法に用いる板材製造装置の平面図
【図2】本発明に係る板材の製造方法に用いる板材製造装置の側面図
【図3】本発明に係る板材の製造方法に用いるテンション装置の斜視図
【図4】本発明に係る板材の製造方法に用いる圧延手段の斜視図
【図5】本発明に係る板材の製造方法に用いる加熱装置の斜視図
【図6】図5の6−6線断面図
【図7】本発明に係る板材の製造方法のフローチャート
【図8】本発明に係る板材の製造方法の第1説明図
【図9】本発明に係る板材の製造方法の第2説明図
【図10】本発明に係る板材の製造方法の第3説明図
【図11】本発明に係る板材の製造方法の第4説明図
【図12】本発明に係る板材の製造方法の第5説明図
【図13】本発明に係る板材の製造方法の第6説明図
【図14】本発明に係る板材の製造方法の第7説明図
【図15】本発明に係る加熱装置のタイムチャート
【図16】本発明に係る板材の製造方法に用いる設定温度の一例を示すグラフ
【図17】焼鈍温度を比較したグラフ
【図18】別実施の形態を示すグラフ
【図19】従来の板材の加熱を示す図
【符号の説明】
14…加熱装置、60…圧延手段、64…上のロール(ワークロール)、66…下のロール(ワークロール)、81…圧延前の板材、81b…非圧延部、82…板材の両端(厚肉部)、83…第1差厚部、136…第2差厚部、t…張力、T1…所定の温度。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a plate having differential thickness portions having different thicknesses.
[0002]
[Prior art]
As a method of forming the differential thickness portion on the plate material, first, a method of forming the differential thickness portion on the plate material by rolling and then annealing the plate material formed with the differential thickness portion is known. Specifically, for example, rolling is disclosed in Japanese Patent Application Laid-Open No. 59-189004 “Differential Thick Plate Manufacturing Method and Rolling Machine”. According to FIG. 3 of the publication, the rolling mill for manufacturing the differential thickness plate independently uses the upper work roll 14a (the reference sign is the same as that described in the publication. The same applies hereinafter) and the lower work roll 14b. It can be driven and controlled, and the lower work roll 14b is driven in the reverse direction and rolled to form a differential thickness plate.
Next, the heating state of the plate after rolling will be described.
[0003]
19 (a) and 19 (b) are diagrams illustrating heating of a conventional plate material.
In (a), the plate member 141 is formed by forming the differential thickness portions 142 and 143, the differential thickness portion 142 has a thickness t2, and the differential thickness portion 143 has a thickness t3. t1 is the thickness of the plate 141, which is the thickness of the first plate.
The plate material 141 is put in the heating furnace 144 and heated by the heaters 145 (... indicates a plurality. The same applies hereinafter), and the plate material 141 is annealed. A, B, and C indicate measurement units that measure temperature. An example of the measurement results is shown in the following figure.
[0004]
(B) is a diagram which shows the heating state of a board | plate material, A horizontal axis is made into time and the vertical axis | shaft is made into the temperature of a board | plate material. Measuring unit A is temperature T3, measuring unit B is temperature T2, and measuring unit C is temperature T1. Thus, by heating the board | plate material 141 with the heating furnace 144, the board | plate material 141 can be annealed and the board | plate material which shape | molded the difference thickness part can be obtained.
[0005]
[Problems to be solved by the invention]
The temperature of the plate material 141 heated in the heating furnace 144 is as shown in FIG. 18B, and the heating furnace 144 heats the difference thickness part 143 of the measurement part C to a desired temperature T1, and accordingly, Since the difference thickness part 142 of the measurement part B is heated to the temperature T2, the temperature variation of the plate 141 during annealing is large. Therefore, the plate material 141 has a difference in material strength between the strength of the material of the differential thickness portion 143 heat-treated at a desired temperature and the thickness of the differential thickness portion 142 heat-treated at a temperature other than that, In the heating furnace 144, it is difficult to make the material characteristics uniform.
[0006]
In addition, the heating furnace 144 heats the plate 141 of the measurement part A that does not need to be annealed and raises the temperature to the temperature T3, so that it is difficult to make the material properties of the plate formed with the differential thickness portion uniform.
On the other hand, after forming the differential thickness portions 142 and 143 by rolling, it is necessary to transport the plate material 141 from the rolling device to the heating furnace 144, and it takes time to set up the plate material 141 for annealing.
[0007]
Accordingly, an object of the present invention is to adjust the plate material formed with the differential thickness portion to a plate material that is annealed and has uniform material properties, and to improve the production efficiency of the plate material formed with the differential thickness portion. It is providing the manufacturing method of a board | plate material.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a plate material setting step for setting a plate material between upper and lower rolls of a rolling means, a gripping step for gripping both ends of the set plate material, and applying a constant tension to the gripped plate material. A tension applying step, and while applying tension, the rolling means is turned, the axis of the upper and lower rolls is set non-perpendicular to the longitudinal direction of the plate material, and the difference thickness part is formed by rolling with the upper and lower rolls. From the differential thickness portion forming step, and an annealing step of heating the differential thickness portion of the plate material to a predetermined temperature while feeding the formed plate material continuously to the heating device provided in the conveyance line and feeding the plate material in the heating device. Become.
[0009]
In the annealing process, while feeding the plate material in the heating device, the difference thickness part of the plate material is heated to a predetermined temperature, so the temperature variation due to the difference in thickness can be made extremely small, and there is no concern about variations in material properties .
Further, in the annealing process, the formed plate material is continuously sent to the heating device provided in the transport line, so that it does not take time for setup before annealing.
[0010]
According to a second aspect of the present invention, the annealing step is characterized in that the annealing is performed while the heating to the non-rolled portion is interrupted simultaneously with the heating to the differential thickness portion.
In the annealing step, the differential thickness portion can be easily heated under a predetermined temperature condition, and the material properties of the plate material formed with the differential thickness portion become more uniform.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is a plan view of a plate material manufacturing apparatus used in a plate material manufacturing method according to the present invention. Y shown in the upper left of the figure is the conveying direction during rolling, and X is an axis orthogonal to Y.
The plate material manufacturing apparatus 10 includes a cutting machine 11, a rolling device 12, a transport table 13, and a heating device 14 arranged in this order. Reference numerals 15, 16, 17, and 18 denote roller conveyors, 21 denotes a control panel, 22 denotes a hydraulic unit, 23 denotes an operation panel of the rolling device 12, and 24 denotes an operation panel of the heating device 14. Reference numeral 137 denotes a plate material after rolling.
The operation panel 24 includes condition setting means 26 and control means 27.
The transport table 13 includes a positioning guide 28a and a conveyor 28b.
[0012]
FIG. 2 is a side view of a plate material manufacturing apparatus used in the plate material manufacturing method according to the present invention.
The cutting machine 11 cuts the strip loaded from the left side of the drawing to form a plate material having a predetermined length.
The rolling device 12 includes a tension device 30 and rolling means 60.
[0013]
The tension device 30 is movable in the X-axis direction (see FIG. 1), and includes X-axis movement guides 30a and 30a, an X-axis movement base 30b mounted on the X-axis movement guides 30a and 30a, and the X-axis movement base 30b. The X-axis drive means 30c and 30c shown in FIG. 1, the X-axis movement position detector 30d shown in FIG. 1, and the elements described in the next figure are used to move the axis movement base 30b in the X-axis direction.
[0014]
FIG. 3 is a perspective view of a tension device used in the plate material manufacturing method according to the present invention. The tension device 30 has a left clamp means 32, a right clamp means 33 and tension applying means 34 and 35 on a moving table 31.
The moving table 31 is obtained by attaching a Y-axis moving base 38 to a base 36 via a first guide 37.
[0015]
The left clamp means 32 has a housing 41 attached to the left side of the Y-axis moving base 38, and an upper pressing portion 42 is attached to the center of the housing 41 via a guide so as to be movable up and down. The pressing portion 43 is fixed, and hydraulic cylinders 44, 44 are attached to the upper portion of the housing 41. The rod 45 of the hydraulic cylinder 44 is attached to the upper pressing portion 42, and the upper pressing portion 42 is hydraulically pressed to the lower pressing portion 43. It pushes to the side.
[0016]
On the other hand, the right clamp means 33 has upper and lower pressing portions 42 and 43 and hydraulic cylinders 44 and 44 similar to the left clamp means 32 attached to a housing 47 attached to the right side of the Y-axis movement base 38 via a second guide 46. It is provided. 48 is a left clamp position detector, 49 is a right clamp position detector, and these left and right clamp position detectors 48 and 49 are, for example, a linear encoder or a linear position sensor.
[0017]
Further, the tension applying means 34 is a hydraulic cylinder 51, the attachment portion 52 of the hydraulic cylinder 51 is attached to the base 36, and the rod 53 is attached to the Y-axis movement base 38. The tension applying means 35 is a hydraulic cylinder 55, the attachment portion 56 of the hydraulic cylinder 55 is attached to the Y-axis movement base 38, and the rod 57 is attached to the right clamp means 33.
[0018]
FIG. 4 is a perspective view of rolling means used in the plate material manufacturing method according to the present invention. The rolling means 60 is supported by a stand 61 so as to be movable up and down via third guides 62 and 62 (not shown). Boxes 63 and 63 are fitted, work rolls 64 and backup rolls 65 and 65 as upper rolls are fitted to these bearing boxes 63 and 63 via bearings (not shown), and these rolls 64, 65 and 65 are fitted. Symmetrically, a work roll 66 as a lower roll and backup rolls 67, 67 are fitted to the stand 61 via a bearing (not shown), and a reduction hydraulic cylinder 68, 68 is attached to the upper portion of the stand 61, and this reduction hydraulic cylinder 68 and 68 rods are attached to the bearing boxes 63 and 63, and the work rolls 64 and 66 are fitted to the roll driving units 69 and 69. That. 71 is a work roll position detector, 72 is a left clamp movement limit detector, 73 is a right clamp movement limit detector, 74 and 74 are heating means, and 90 is a turntable.
[0019]
The work roll position detector 71 is, for example, a linear encoder or a linear position sensor, and the left / right clamp movement limit detectors 72, 73 are, for example, limit switches. The heating means 74 is a heat source (heater) for electromagnetic induction heating (induction heating), and is provided on the left and right of the work rolls 64 and 66.
[0020]
The turntable 90 is provided with a rotation support portion 92 at the center of the mounting base 91 and a drive portion 93 at the end. The drive unit 93 includes a guide 94 attached to the mounting base 91 and a worm speed reducer 95 that drives the guide 94.
[0021]
That is, the rolling means 60 is mounted on the turntable 90 by fitting the rolling means 60 to the rotation support portion 92 of the turntable 90 and attaching one end of the guide 94 to the rolling means 60. 96 is an origin position detector, 97 is a right rotation limit detector, and 98 is a left rotation limit detector.
[0022]
FIG. 5 is a perspective view of a heating device used in the plate material manufacturing method according to the present invention.
The heating device 14 is electric heating, and a conveying unit 101 that continuously and horizontally conveys the rolled plate material 137 (see FIG. 1), and a direction perpendicular to the conveying direction (X-axis direction) above the conveying unit 101. Heating means 102 provided movably in the direction (Y-axis direction), a heat source moving means 103 for moving the heating means 102, a first differential thickness portion 83 as a differential thickness portion of the plate material 137 (see FIG. 10), and Condition setting means 26 (see FIG. 1) for setting the heating conditions according to the second differential thickness portion 136, and control means 27 (see FIG. 1) for controlling the heating means 102 and the heat source moving means 103 based on the heating conditions. , A shield plate 104 movably attached in the Y-axis direction, a furnace body 105, and a support base 106 that supports the furnace body 105.
[0023]
The furnace body 105 has a heat insulating material 107 attached to a wall, an inlet 108 formed on one side, and an outlet 109 formed on the other side.
The heating means 102 is obtained by attaching first to seventh near-infrared radiation sources 121, 122, 123, 124, 125, 126, 127 as heat sources in order from the inlet 108 side to the brackets 111. A workpiece carry-in detector 128 for detecting the workpiece carry-in is provided.
[0024]
The heat source moving means 103 includes seven ball screw units 131 (motor 132, screw shaft 133, nut 134). The nut 134 is for attaching the bracket 111.
The shielding plate 104 shields heat transfer from the heating means 102. The material of the shielding plate 104 is a heat insulating material, but a material other than the heat insulating material may be used.
[0025]
6 is a cross-sectional view taken along line 6-6 in FIG. 5, and the first to seventh radiation sources 121 to 127 of the heating unit 102 are movable in the orthogonal direction (Y-axis direction) above the conveying unit 101 that conveys the workpiece. It shows that the shielding plate 104 is disposed between the heating means 102 and the conveying means 101.
The first to seventh radiation sources 121 to 127 are, for example, quartz tube type infrared light bulbs.
The conveying means 101 includes a motor 138 a arranged outside the furnace body 105 and a roller 138 b arranged inside the furnace body 105.
[0026]
Next, the manufacturing method of the board | plate material which concerns on this invention is demonstrated.
FIG. 7 is a flowchart of a method for manufacturing a plate material according to the present invention, and ST indicates a step.
ST01: A plate material is set between the upper and lower rolls of the rolling means.
ST02: Grasp both ends of the set plate.
ST03: A constant tension is applied to the gripped plate material.
ST04: Rolling with a roll to form a differential thickness portion while applying tension.
ST05: The formed plate material is continuously sent to the heating device and heated to a predetermined temperature while being sent in the heating device.
Next, ST01 to ST05 will be specifically described.
[0027]
FIGS. 8A and 8B are first explanatory views of the plate material manufacturing method according to the present invention.
(A): First, the plate material 81 is passed through the rolling device 12. Specifically, the left clamp means 32 reaches a predetermined position by the advance of the hydraulic cylinder 51 (rod 53) (in the direction of arrow (1)). At this time, the left clamp movement limit detector 72 prevents the left clamp means 32 from being excessively moved.
[0028]
When the hydraulic cylinders 44 and 44 (rods) on the left and right clamping means 32 and 33 are retracted (in the directions of arrows (2) and (2)), the upper pressing portion 42 is raised. On the other hand, the work roll 64 and the backup rolls 65 and 65 are lifted together with the bearing box 63 by the rolling hydraulic cylinder 68 of the rolling means 60.
[0029]
After passing the plate material 81 before rolling to the left clamp means 32 as indicated by the arrow (3), the upper pressing portion 42 of the left clamp means 32 is lowered and the thick portion 82 of the plate material 81 is gripped. On the other hand, the work roll 64 and the backup rolls 65 and 65 are pressed down on the plate member 81 by the reduction hydraulic cylinder 68.
[0030]
(B): Next, the first differential thickness portion 83 is formed by driving and rotating the work roll 64 at a predetermined roll speed. At the same time, by moving the left clamp means 32 in the tension direction (the direction of arrow (4)), the first differential thickness portion 83 is formed while applying a constant tension t to the plate material 81. When the left clamp means 32 reaches a predetermined position, it stops.
[0031]
Subsequently, in order to reversely rotate the rolling means 60, the right clamp means 33 is brought close to the vicinity of the rolling means 60, and the upper pressing portion 42 is lowered by the hydraulic cylinder 44 on the right clamp means 33 to thicken the plate 81. The part 82 is gripped. The position of the right clamp means 33 at that time is detected by the right clamp movement limit detector 73.
[0032]
FIGS. 9A and 9B are second explanatory views of the plate material manufacturing method according to the present invention.
(A): The work roll 64 of the rolling means 60 is reversely rotated to extend the first differential thickness portion 83 thinner. At that time, the work roll 64 is further reduced by the reduction hydraulic cylinder 68 to control the roll interval. At the same time, the Y-axis movement base 38 is reversely moved by the hydraulic cylinder 51.
[0033]
(B): A constant tension t is applied to the plate 81 by moving the right clamp means 33 by the hydraulic cylinder 55 on the Y-axis movement base 38 while moving the Y-axis movement base 38 in the reverse direction. At that time, the right clamp means 33 is positioned by the right clamp position detector 49.
Thereafter, the molding of the first differential thickness portion 83 shown in FIGS. 8 and 9 is further repeated to form the first differential thickness portion 83 having a desired thickness.
[0034]
That is, the plate material 81 is gripped by the left and right clamping means 32 and 33 and rolled while applying a tension t to the plate material 81. When the tension t acts on the first differential thickness portion 83, the first differential thickness portion 83 can be formed on a part of the thick portion 82 of the plate 81 very easily.
Further, it is possible to prevent “wrinkles” and bends that are likely to occur in the first differential thickness portion 83 due to the tension t.
[0035]
FIGS. 10A and 10B are third explanatory views of the plate material manufacturing method according to the present invention.
(A): The rolling means 60 is turned by the turntable 90, and the axis of the work roll 66 is set at a non-right angle with respect to the longitudinal direction of the plate 81. That is, the work roll 66 is set to the turning angle θ.
[0036]
(B): The work rolls 64 and 66 are driven, and a fixed tension is applied to the plate material 81 reciprocated by the rotation of the work rolls 64 and 66 having the turning angle θ by the left and right clamp means 32 and 33. The work rolls 64 and 66 repeat forward and reverse rotations to reciprocate the first differential thickness portion 83, so that the first differential thickness portion 83 gradually extends and the boundary line 86 can form an angle θ.
[0037]
In addition, the rolling means 60 is returned by the turning angle θ by the turntable 90 (see a), continuously turned by the turning angle β, and reciprocated in the same manner to form the first differential thickness portion 83, and the boundary line An angle of 85 can be formed in β. The thickness of the first differential thickness portion 83 is t2.
[0038]
When the extension in the X-axis direction is large, the upper pressing portion 42 is once raised like a virtual line and the left clamp means 32 is returned to the origin. By returning to the origin, shortage of the stroke amount of the X-axis drive means (hydraulic cylinder) is prevented.
[0039]
FIGS. 11A and 11B are fourth explanatory views of the plate material manufacturing method according to the present invention.
(A): The second differential thickness portion 136 is formed by the rolling means 60. Specifically, the upper pressing portion 42 of the right clamp means 33 is raised and released, and one of the plate members 81a is extended by the work rolls 64 and 66 while applying tension by the left clamp means 32, and the second differential thickness portion. 136 is formed. 81b is the other of the board | plate material 81, and is a non-rolling part.
The thickness of the second differential thickness portion 136 is t3, and the processing degree of the second differential thickness portion 136 is smaller than that of the first differential thickness portion 83.
[0040]
Here, the degree of processing corresponds to the rolling reduction. When the reduction ratio is r, the reduction ratio of the first differential thickness portion 83 is r1, the reduction ratio of the second differential thickness portion 136 is r2, the inlet side plate thickness is h1, and the outlet side plate thickness is h2, the reduction rates r and r1 , R2 can be determined by the following equation.
r (%) = [(h1-h2) / h1] × 100,
r1 (%) = [(t1-t2) / t1] × 100,
r2 (%) = [(t1-t3) / t1] × 100
[0041]
(B) shows the plate material 137 in which the first and second differential thickness portions 83 and 136 having different thicknesses are formed and rolled.
The plate material 137 has different material properties such as tensile strength in the non-rolled portion 81b and the first and second differential thickness portions 83 and 136 depending on the degree of processing. Therefore, the plate material 137 is then annealed.
[0042]
12A and 12B are fifth explanatory views of the plate material manufacturing method according to the present invention.
(A): The plate material 137 is annealed by the heating device 14. Specifically, the heating conditions necessary for annealing are set in advance by the condition setting means 26 (for example, a keyboard) according to the first and second differential thickness portions 83 and 136 of the plate material 137 and other conditions.
The heating conditions mainly include a workpiece conveyance speed Vw for controlling the conveyance means 101, a movement speed Vh for controlling the heat source movement means 103, timer set values S1 and S2, and set temperatures Th1 to Th7 for controlling the heating means 102. To do.
The control means 27 includes a work speed control unit 27a, a heat source speed control unit 27b, timers TM1 and TM2, and a temperature control unit 27c.
[0043]
When the heating device 14 turns on a predetermined button of the condition setting means 26, the heating means 102 moves as indicated by an arrow based on a preset condition, enters a standby state, and the first near infrared ray -Seventh radiation sources 121-127 wait for a work in the state of preset temperature Th1-Th7.
[0044]
After the presetting is completed, first, the plate material 137 exiting the rolling device 12 is conveyed to the conveying table 13 by the roller conveyor 17 and positioned by the positioning guide 28a as indicated by the arrow (5) from the conveying table 13, while the heating device 14 is moved. To the entrance 108 of the.
Since the positioning guide 28a is provided, the start positions of the first to seventh radiation sources 121 to 127 can coincide with the boundary line 86 of the angle θ of the plate member 137, and the shielding plate 104 can be aligned with the boundary line 85 of the angle β. The edges can be matched.
[0045]
As described above, the rolling device 12, the roller conveyor 17, the conveying table 13, the heating device 14, and the conveying means 101 of the heating device 14 are continuously arranged in this order. The plate material 137 formed with the first and second differential thickness portions 83 and 136 can be continuously transported in a short time, so that the transport to the heating device 14 is not time-consuming and the setup of annealing is not time-consuming. Therefore, it is possible to improve the production efficiency of the plate material 137 formed with the first and second differential thickness portions 83 and 136.
[0046]
(B): When the plate material 137 reaches the entrance 108, the roller 138b of the conveying means 101 is rotated by a signal to the workpiece carry-in detector 128, and the plate material 137 is moved in the X-axis direction at the predetermined workpiece conveyance speed Vw by the arrow (6). Transport as follows.
Further, the heat source moving means 103 of the first radiation source 121 is actuated by a signal to the work carry-in detector 128, and the first radiation source 121 is sent in the Y-axis direction as indicated by an arrow (7) at a predetermined moving speed Vh. As a result, the first radiation source 121 can heat the first differential thickness portion 83.
[0047]
13 (a) and 13 (b) are sixth explanatory views of the plate material manufacturing method according to the present invention.
(A): The plate material 137 is heated while being conveyed. Here, the heat source moving means 103 of the second and third radiation sources 122 and 123 operates according to the amount of movement of the plate material 137. That is, the second radiation source 122 and the third radiation source 123 are sent in the Y-axis direction at the moving speed Vh along the boundary line 86 of the angle θ, and the movement of the first radiation source 121 is continued. The first differential thickness portion 83 can be further heated by the three radiation sources 121 and 123, and the second differential thickness portion 136 can be heated by the second and fourth radiation sources 122 and 124.
[0048]
(B) is the bb sectional drawing of (a), and shows the 1st radiation source 121, the 2nd radiation source 122, and the shielding board 104. FIG.
The first radiation source 121 is set to the set temperature Th1, the third radiation source 123 is set to the set temperature Th3, and the heating is performed as indicated by the arrow (8) and is sent in the Y-axis direction, so that a predetermined rate of temperature increase is achieved. The first differential thickness portion 83 can be heated at Tv.
[0049]
In addition, the second radiation source 122 is set to the set temperature Th2, the fourth radiation source 124 is set to the set temperature Th4, and it is sent in the Y-axis direction while being heated as indicated by the arrow (9). The second differential thickness portion 136 can be heated at the temperature rate Tv.
On the other hand, since the shielding plate 104 is provided and the shielding plate 104 is disposed above the non-rolled portion 81b, the heat transfer of the first and third radiation sources 121 and 123 can be blocked as indicated by the arrow a, and the non-rolled portion The temperature of 81b can be lowered.
[0050]
14 (a) and 14 (b) are seventh explanatory views of the plate material manufacturing method according to the present invention.
(A): Continue heating while conveying the plate material 137. The heat source moving means 103 of the second to seventh radiation sources 122 to 127 operates in accordance with the conveyance of the plate material 137, and the second to seventh radiation sources 122 to 127 are sent in the Y-axis direction at the moving speed Vh, and Since the first differential thickness portion 83 is heated at the set temperature Th5 of the fifth radiation source 125 and the preset temperature Th7 of the seventh radiation source 127, the first differential thickness portion 83 can be held constant at a predetermined holding temperature. .
Similarly, the temperature of the second differential thickness portion 136 can be maintained at the set temperature Th6 of the sixth radiation source 126.
[0051]
(B): The plate material 137 is cooled while being conveyed. In accordance with the conveyance of the plate material 137, the temperature of the plate material 137 is maintained while sending the fifth to seventh radiation sources 125 to 127 in the Y-axis direction at the moving speed Vh.
On the other hand, the plate material 137 can be gradually cooled by feeding the plate material 137 out of the furnace from the outlet 109 of the furnace body 105.
[0052]
Next, the heating apparatus used in the plate material manufacturing method according to the present invention will be briefly supplemented with a diagram.
FIG. 15 is a time chart of the heating apparatus according to the present invention.
First, when the plate material approaches the inlet of the heating device, the timers TM1 and TM2 start counting (indicated by a wavy line) in response to a signal from the work carry-in detector 128. Then, the first to seventh relays L1 to L7 are sequentially turned on by the time-up signals of the timer TM1, and the seven ball screw units 131 (motors 132) of the heat source moving unit 103 are sequentially operated to heat the heating unit 102. Move.
[0053]
On the other hand, the first to seventh relays L1 to L7 are sequentially turned OFF by the time-up signals of the timer TM2, and the seven ball screw units 131 (motors 132) of the heat source moving means 103 are stopped in order, and the heating means 102 Stops. Therefore, the heat source moving means 103 can be controlled by the control means 27 based on the heating conditions.
In this manner, the heating means 102 provided to be movable in the direction orthogonal to the transport direction (X-axis direction) (Y-axis direction) is moved in accordance with the first and second differential thickness portions 83 and 136 of the plate material 137. Can be made.
[0054]
FIG. 16 is a graph showing an example of a set temperature used in the plate material manufacturing method according to the present invention, in which the horizontal axis is the first to seventh radiation sources 121 to 127 and the vertical axis is the temperature. The horizontal axis indicates time, the two-dot chain line indicates a chart of a predetermined annealing temperature, Tv indicates a heating rate, T1 indicates a holding temperature, and Km indicates a holding time.
[0055]
The set temperature of the first radiation source 121 is Th1, and this temperature Th1 is a temperature under the atmosphere in the vicinity of the first radiation source 121, and the output is set so that the atmosphere becomes the temperature Th1. The set temperatures of the second to seventh radiation sources 122 to 127 are Th2 to Th7, and the respective outputs are similarly set.
[0056]
That is, since the first, third, fifth, and seventh radiation sources 121, 123, 125, and 127 have a small near-infrared radiation output, the temperature of the thin first differential thickness portion 83 is not increased excessively. The temperature of the thin first differential thickness portion 83 can be increased while substantially matching the temperature increase rate Tv.
On the other hand, since the second, fourth, and sixth radiation sources 122, 124, and 126 have a large near-infrared radiation output, the temperature of the thick second differential thickness portion 136 can be raised, and the temperature rise rate Tv in FIG. The temperature of the thick second differential thickness portion 136 can be raised while matching.
[0057]
Further, the set temperatures of the first and third radiation sources 121 and 123 are Th1 <Th3, and the set temperatures of the second and fourth radiation sources 122 and 124 are Th2 <Th4. Can be secured.
Furthermore, by setting the set temperatures of the fifth and seventh radiation sources 125 and 127 to Th5 and Th7 and slightly lowering the temperature with respect to Th3, the temperature of the thin first differential thickness portion 83 can be kept constant at T1. .
Similarly, by setting the set temperature of the sixth radiation source 126 to Th6 and slightly lowering the temperature with respect to Th4, the temperature of the thick second differential thickness portion 136 can be kept constant at T1.
[0058]
FIGS. 17A and 17B are graphs comparing the annealing temperatures, and show an example.
(A) is a comparative example, which is a copy of FIG. 19 (b), and shows a temperature chart of a plate material annealed by a conventional plate material manufacturing method. The temperature T2 of the difference thickness part 142 of the thickness t2 shown in the measurement part B is higher than the temperature T1 of the difference thickness part 143 of the thickness t3 shown in the measurement part C. In addition, the temperature of the plate material 141 having a thickness t1 that does not require annealing rises to T3.
[0059]
(B) is an Example and shows the temperature chart of the board | plate material annealed with the manufacturing method of the board | plate material of this invention.
As is apparent from the graph, the temperature of the first differential thickness portion 83 having the thickness t2 shown in the measurement portion B is T4, which substantially matches the temperature T1 of the second differential thickness portion 136 having the thickness t3 shown in the measurement portion C. . Moreover, the temperature of the non-rolled part 81b with the thickness t1 shown in the measurement part A is T5, which is lower than the temperature T3.
Therefore, in the manufacturing method of the board | plate material of this invention, the dispersion | variation in the temperature of the board | plate material 137 which shape | molded the 1st, 2nd difference thickness part 83,136 can be made small, and the 1st, 2nd difference thickness part 83,136 is reduced. The formed plate material 137 can be adjusted to a plate material having uniform material characteristics.
Further, the heating temperature of the non-rolled portion 81b can be lowered, and the plate material 137 formed with the first and second differential thickness portions 83 and 136 can be adjusted to a plate material having more uniform material characteristics.
[0060]
Next, another embodiment of the plate material manufacturing method according to the present invention will be described.
FIG. 18 is a graph showing another embodiment of FIG. 17B, and the same components as those of the embodiment shown in FIG.
Here, the temperature of the first differential thickness portion 83 is changed. That is, by changing the heating conditions of the first differential thickness portion 83, the heating device 14 (see FIG. 5) sets the first differential thickness portion 83 to, for example, a temperature increase rate of Tv1, a holding temperature of T6, The holding time can be annealed to Km1, and more advanced temperature management can be performed. Accordingly, the plate material 137 formed with the first and second differential thickness portions 83 and 136 can be adjusted to a plate material that is annealed and has uniform material characteristics, and the first and second differential thickness portions 83 and 136 are formed. Desired material characteristics can be given to the plate material 137.
[0061]
In addition, the temperature of FIG.17 (b) shown in embodiment of this invention and FIG. 18 is an example.
The heat source of the heating means 102 in FIG. 5 is not limited to the near infrared rays of the first to seventh radiation sources, but may be induction heating.
After the strip is cut, the plate is rolled by the rolling device 12, but conversely, the plate may be separated from the strip by the cutting machine 11 after rolling. In that case, the arrangement position of the cutting machine 11 is changed.
Although the heating device 14 is heated while conveying the plate material, the plate material can be stopped and heated.
[0062]
Sealing means such as a door may be attached to the entrances 109 and 108 of the heating device 14 so as to be openable and closable.
Although not shown in the heating device 14, a cooling means may be provided in order to avoid an increase in the temperature of the equipment.
Pushing means may be provided on the transport table 13 and the plate material may be carried into the heating device 14 fully automatically.
[0063]
【The invention's effect】
The present invention exhibits the following effects by the above configuration.
In claim 1, a plate material setting step for setting a plate material between upper and lower rolls of a rolling means, a gripping step for gripping both ends of the set plate material, a tension applying step for applying a constant tension to the gripped plate material, and a tension The difference thickness part forming step of turning the rolling means, setting the axis of the upper and lower rolls non-perpendicular to the longitudinal direction of the plate material, and rolling the upper and lower rolls to form the difference thickness part, And an annealing process in which the formed plate material is continuously sent to a heating device provided in the conveyance line, and the difference thickness portion of the plate material is heated to a predetermined temperature while the plate material is sent in the heating device.
In the annealing process, the thickness difference portion of the plate material is heated to a predetermined temperature while feeding the plate material in the heating device, so that a temperature difference due to the thickness of the difference thickness portion hardly occurs and variation in the temperature of the plate material can be reduced. . Therefore, the plate material formed with the differential thickness portion can be adjusted to a plate material that is annealed and has uniform material characteristics.
[0064]
Moreover, in the annealing process, since the formed plate material is continuously sent to the heating device provided in the conveyance line, the conveyance time between the processes can be extremely shortened, and it takes time to set up the annealing of the plate material having the differential thickness portion. It does not take. Therefore, it is possible to improve the production efficiency of the plate material formed with the differential thickness portion.
[0065]
In claim 2, since the annealing step is performed by annealing to the non-rolled part simultaneously with the heating to the differential thickness part, the differential thickness part can be easily heated under a predetermined temperature condition. The material characteristics of the formed plate material can be made more uniform.
[Brief description of the drawings]
FIG. 1 is a plan view of a plate manufacturing apparatus used in a plate manufacturing method according to the present invention.
FIG. 2 is a side view of a plate manufacturing apparatus used in a plate manufacturing method according to the present invention.
FIG. 3 is a perspective view of a tension device used in the plate manufacturing method according to the present invention.
FIG. 4 is a perspective view of rolling means used in the plate manufacturing method according to the present invention.
FIG. 5 is a perspective view of a heating device used in the plate manufacturing method according to the present invention.
6 is a sectional view taken along line 6-6 in FIG.
FIG. 7 is a flowchart of a plate manufacturing method according to the present invention.
FIG. 8 is a first explanatory view of a method for manufacturing a plate material according to the present invention.
FIG. 9 is a second explanatory view of the plate manufacturing method according to the present invention.
FIG. 10 is a third explanatory view of the plate material manufacturing method according to the present invention.
FIG. 11 is a fourth explanatory diagram of a method for manufacturing a plate material according to the present invention.
FIG. 12 is a fifth explanatory view of the plate material manufacturing method according to the present invention.
FIG. 13 is a sixth explanatory view of the plate material manufacturing method according to the present invention.
FIG. 14 is a seventh explanatory view of the plate material manufacturing method according to the present invention.
FIG. 15 is a time chart of the heating apparatus according to the present invention.
FIG. 16 is a graph showing an example of a set temperature used in the plate manufacturing method according to the present invention.
FIG. 17 is a graph comparing annealing temperatures.
FIG. 18 is a graph showing another embodiment.
FIG. 19 is a diagram showing heating of a conventional plate material
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 14 ... Heating apparatus, 60 ... Rolling means, 64 ... Upper roll (work roll), 66 ... Lower roll (work roll), 81 ... Plate material before rolling, 81b ... Non-rolling part, 82 ... Both ends (thickness) Meat part), 83 ... first difference thickness part, 136 ... second difference thickness part, t ... tension, T1 ... predetermined temperature.

Claims (2)

圧延手段の上下のロール間に板材をセットする板材セット工程と、セットした板材の両端を把持する把持工程と、把持した板材に一定の張力を付与する張力付与工程と、張力を付与しつつ、前記圧延手段を旋回させ、板材の長手方向に対して上下のロールの軸を非直角に設定し、上下のロールで圧延して差厚部を成形する差厚部成形工程と、成形した板材を連続して搬送ラインに設けた加熱装置に送り、板材を加熱装置内で送りつつ、板材の差厚部を所定の温度に加熱する焼鈍工程と、からなる板材の製造方法。A plate material setting step for setting a plate material between upper and lower rolls of the rolling means, a gripping step for gripping both ends of the set plate material, a tension applying step for applying a constant tension to the gripped plate material, The rolling means is swiveled, the axis of the upper and lower rolls is set non-perpendicular with respect to the longitudinal direction of the plate material, and the differential thickness portion forming step of rolling with the upper and lower rolls to form the differential thickness portion, and the formed plate material A method for producing a plate material, comprising: an annealing step in which a difference thickness portion of the plate material is heated to a predetermined temperature while being continuously sent to a heating device provided in the conveying line and the plate material is sent in the heating device. 前記焼鈍工程は、前記差厚部への加熱と同時に非圧延部への加熱を遮断して焼鈍を行うことを特徴とする請求項1記載の板材の製造方法。2. The method for manufacturing a plate material according to claim 1, wherein in the annealing step, the heating to the non-rolled portion is interrupted simultaneously with the heating to the differential thickness portion.
JP2001045817A 2001-02-21 2001-02-21 Manufacturing method of plate material Expired - Fee Related JP4523184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001045817A JP4523184B2 (en) 2001-02-21 2001-02-21 Manufacturing method of plate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001045817A JP4523184B2 (en) 2001-02-21 2001-02-21 Manufacturing method of plate material

Publications (2)

Publication Number Publication Date
JP2002248503A JP2002248503A (en) 2002-09-03
JP4523184B2 true JP4523184B2 (en) 2010-08-11

Family

ID=18907543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001045817A Expired - Fee Related JP4523184B2 (en) 2001-02-21 2001-02-21 Manufacturing method of plate material

Country Status (1)

Country Link
JP (1) JP4523184B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116230143B (en) 2023-04-27 2023-07-11 燕山大学 Design method for improving elongation of variable-thickness metal plate strip

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001150003A (en) * 1999-11-26 2001-06-05 Honda Motor Co Ltd Rolling device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001150003A (en) * 1999-11-26 2001-06-05 Honda Motor Co Ltd Rolling device

Also Published As

Publication number Publication date
JP2002248503A (en) 2002-09-03

Similar Documents

Publication Publication Date Title
US9539635B2 (en) Gripper head for gripping arrangements for manipulating long workpieces, device for feeding long workpieces into and removing same from a processing machine and method for bend-straightening long workpieces
CN102218814B (en) Automatic thermal forming device for automobile interior parts
JP3555751B2 (en) Rolling equipment
CN205343776U (en) Plastic film V shape automatic molding equipment
CN110438420B (en) Semi-closed tubular aluminum profile heat treatment equipment
JP4523184B2 (en) Manufacturing method of plate material
JP4603181B2 (en) Board manufacturing equipment
CN212449200U (en) Section bar traction device
KR101739862B1 (en) Method and apparatus for controlling tension of strip in furnace for manufacturing non-oriented electrical steel sheets
CN111922115B (en) Aluminum pipe drawing production line
US7045086B2 (en) Twinsheet thermoforming system and method
JP4603193B2 (en) Body panel manufacturing method
CA2934838C (en) Steel sheet heating method and steel sheet heating apparatus
US6361304B1 (en) Adjustable clamp frame for a thermo-forming machine
KR101435056B1 (en) Heating apparatus of material
CN112888662A (en) Glass forming device
CN211490842U (en) Glass chamfering machine and glass conveying device thereof
JP2002332520A (en) Sheet manufacturing device
US20200141650A1 (en) Glass heating furnace
CN214521488U (en) Composite double-belt type continuous press heating device
CN117625914B (en) High-performance aluminum alloy conductor production device
CN220270036U (en) Lifting hanger for heating body of roller furnace
CN218893576U (en) Hot bending forming equipment
JP2905135B2 (en) Thermoplastic sheet molding equipment
CN220503122U (en) Heat treatment device for welded steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees