JP4521682B2 - Crystal grain size controller for crystallizer - Google Patents

Crystal grain size controller for crystallizer Download PDF

Info

Publication number
JP4521682B2
JP4521682B2 JP2002214906A JP2002214906A JP4521682B2 JP 4521682 B2 JP4521682 B2 JP 4521682B2 JP 2002214906 A JP2002214906 A JP 2002214906A JP 2002214906 A JP2002214906 A JP 2002214906A JP 4521682 B2 JP4521682 B2 JP 4521682B2
Authority
JP
Japan
Prior art keywords
crystallization
crystal
grain size
crystal grain
crystallizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002214906A
Other languages
Japanese (ja)
Other versions
JP2004050147A (en
Inventor
健司 清水
克己 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Chemical Equipment Mfg Ltd
Original Assignee
Satake Chemical Equipment Mfg Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Chemical Equipment Mfg Ltd filed Critical Satake Chemical Equipment Mfg Ltd
Priority to JP2002214906A priority Critical patent/JP4521682B2/en
Publication of JP2004050147A publication Critical patent/JP2004050147A/en
Application granted granted Critical
Publication of JP4521682B2 publication Critical patent/JP4521682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、医療品関係、食品関係、光学品関係、電気デバイス素材、テープフィラー素材等の材料関係において適用される晶析装置の結晶粒度制御装置に関する。
【0002】
【従来の技術】
この種の従来の晶析装置として、図10の如く上方に配設した蒸発部aと下方に配設した晶析部bとからなり、該晶析部bに、原料液を対流させて結晶の成長を促進させるための所定の固定速度で撹拌する撹拌手段cを設けたものが知られている。
【0003】
【発明が解決しようとする課題】
晶析の生成過程においては通常晶析の核となる初期の種晶過程から該種晶が基となって更に結晶が成長する結晶成長過程となって結晶が大きくなってゆくが、前記従来の晶析装置によれば、撹拌手段により過飽和状態の原料液に結晶の成長を促進させるための比較的速い一定の回転速度のまま撹拌を単に行うと、大きな結晶まで成長しても速い撹拌流によって結晶同士の衝突や撹拌翼、槽壁との衝突で破壊するものがあり、又速い撹拌流によって成長が促進状態のままであると前記の種晶過程と結晶成長過程とが分離せず同時に混在して生じ、かくて晶析された結晶の粒度は小さいものから大きいものまで多分散して巾広い分布形成となり、用途に適した粒度の揃った単峰性分布に晶析させることが困難な問題点があった。
【0004】
本発明はこれらの問題点を解消し、結晶粒径が揃った結晶粒度の単峰性分布形成を可能とする晶析装置の結晶粒度制御装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は上記の目的を達成すべく晶析装置の晶析部に回転速度可変可能な撹拌手段を設け、該晶析部内の溶液の濁度及び濃度の情報信号を入力し前記撹拌手段の回転速度を高速にして溶液の活性化により晶析の核となる種晶の発生を促進する過程と、該回転速度を速から低速に下げて種晶の生成の割合を増加させる過程と、該回転速度を低速から中速に上げて種晶や成長結晶の成長を促進する過程の制御プログラムによって制御する制御手段を備えたことを特徴とする。
【0006】
【発明の実施の形態】
本発明の第1の実施の形態を図1により説明する。
【0007】
図1において、1は晶析装置の晶析部を示し、該晶析部1の容器1a内で原料液1bから晶析反応により結晶を生成し、又、図示していないが該晶析部1の上方に溶液濃度を高めるための蒸発部を設けているが、用途に応じて該蒸発部を設けなくてもよい。
【0008】
2は該晶析部1に設けられている撹拌手段を示し、該撹拌手段2は撹拌翼2aと、該撹拌翼2aを回転させる駆動モータ2bとその駆動回路部2cとからなり、該撹拌翼2aの回転速度を次に述べる制御手段の制御指令により可変させて撹拌流を可変させることができる。
【0009】
3はマイコンなどの制御ユニットからなる制御手段、4は前記晶析部1に設けられ発光部4aと受光部4bとの組合せの光センサからなる濁度検出手段を示し、該濁度検出手段4が検出する濁度は光センサ4a、4b間に通過する結晶の数によって電圧や電流の出力が変化して結晶の分散状態を検知することができるようになっている。
【0010】
5は前記晶析部1に設けられている電気伝導度計からなる電気伝導度検出手段を示し、該電気伝導度計により溶液の電気伝導度を検出することにより溶液濃度を検知することができる。
【0011】
6は制御プログラムを記憶する記憶部を示し、前記制御手段3は該記憶部6に接続されていると共に前記撹拌手段2の駆動回路部2cに接続されており、更に前記濁度検出手段4と電気伝導度検出手段5にも接続されている。
【0012】
7は前記晶析部1に設けられているサーミスタ温度センサー等からなる温度検出手段、8は電熱ヒータ等からなる温度調節手段を示し、これら温度検出手段7及び温度調節手段8は前記制御手段3に接続されている。
【0013】
次に本発明の第1の実施の形態の作用を図1乃至図6により説明する。
【0014】
晶析反応は前記図1に示す晶析部1の容器1a内の原料液1bを特定温度となる様に温度検出手段7と制御手段3と温度調節手段8との温度制御系により制御すると共に、溶質の濃度を上げて過飽和状態となって結晶が形成され、この結晶の粒度は撹拌速度と撹拌時間に大きく関係し、図2は前記撹拌手段2を制御する制御プログラムの1例を示し、縦軸に高速から低速までの回転速度を、横軸は飽和濃度や過飽和濃度などの濃度に応じた生成反応の各時点の時間軸を示し、前記制御手段3は前記濁度検出手段4及び電気伝導度検出手段5からの結晶の分散状態と溶質の濃度の情報を検知して該制御プログラムに沿うように前記撹拌手段2の回転速度と撹拌時間を可変制御して後述の図3に示す単峰性の結晶粒度分布を得ることができる。
【0015】
図3は結晶粒度分布のグラフを示し、縦軸に結晶粒径別の重量、横軸に結晶粒径をとり、図4は前記図2の制御プログラムによる制御時に対応する各時点の濁度のグラフを示し、図5は同じく各時点の電気伝導度を示す。
【0016】
尚、図6は晶析生成過程における溶質の溶解度曲線のグラフを示し、縦軸に濃度、横軸に時間軸をとり原点C、飽和濃度CのA、G点、核が自発的に生成される過飽和状態の自発的核生成濃度CのB、E点、最大過飽和濃度Cに近いD点の各時点を示し、濃度がB点を超えると晶析の核となる種晶が発生し、B点からE点までは撹拌などの成長促進の条件により、種晶と核種晶を基に結晶が成長する成長過程とが同時に発生し、E点からはこれら種晶や成長結晶が更に大きくなり、溶質の濃度が飽和濃度Cに限りなく近いG点まで下がると晶析反応は終息する。
【0017】
ここで、前記図2に示す制御プログラムに沿う様に制御するために、制御手段3は前記図4及び図5に示す濁度検出手段4及び電気伝導度検出手段5の情報信号により前記図6に示すA、B、D、E、Gの各時点に見合う設定点を検知して、A、B間は撹拌の回転速度を高速にして溶液の活性化により種晶の発生を促進し、もしB、D間は高速のままであると種晶と該種晶を基に結晶が成長する過程が同時に進行するので速から低速に下げて種晶の生成の割合を増加させ、D点からE点迄は低速として結晶粒の破損を抑え、E点からは低速から中速に上げて種晶や成長結晶の成長を促進させ、電気伝導度の数値の変化が殆ど無くなることにより飽和濃度C1に近づき晶析反応が終息するG点と定め、特に前記のB、D間及びD、E間の撹拌制御により前記図3に示す単峰性の結晶粒度分布を得ることができる。
【0018】
次に本発明の第2の実施の形態を図7及び図8により説明する。
【0019】
本発明の第2の実施の形態は、前記第1の実施の形態において単峰性の結晶粒度分布を得ることができたが、前記図6の晶析反応過程のグラフのB、E間で生成される結晶の核となる種晶生成過程と該種晶を基に結晶が成長する結晶成長過程を2段階の温度帯に分離して晶析制御することにより結晶の粒度の揃った用途に最適な結晶粒を得ることができることが特徴である。
【0020】
本発明の第2の実施の形態で使用する装置は前記図1に示したものと全く同様であり、晶析反応濃度を特定温度帯と該特定温度帯より例えば10℃低く冷却した冷却温度帯の2段階に調節して晶析する。
【0021】
先ず種晶生成のために、原料液を特定の温度に調節して前記第1の実施の形態の場合と同様に撹拌を制御して晶析反応させ、前記図6の晶析反応過程のグラフのB、D、E間においては晶析の核となる種晶と一部は核種晶を基に結晶が成長する成長結晶とが生成され、溶質の濃度が自発的核生成濃度Cに下がり、更に飽和濃度Cに近づくG点より手前の時点から、次は、例えば10℃温度が低くなる様に中高速から高速回転で撹拌しつつ冷却すると前記飽和濃度Cに近い濃度に下がった溶質の濃度は再び過飽和状態となり、前記図6に示すA、B、D、E、G点までの晶析反応過程を撹拌制御しつつ繰り返し、前記特定温度帯で形成された図7の結晶粒度分布のグラフに示す種晶と一部の成長結晶は、該冷却温度帯において、これらの種晶と成長結晶とを新たな種晶として図8に示す結晶粒度分布グラフの如く特に数本の粒径区分の結晶重量が増加した成長結晶となり、この2段階の温度帯に分離して晶析反応の制御を行うことにより結晶の粒度の揃った用途に適した結晶粒を得ることができる。
【0022】
更に、本発明の第3の実施の形態を図9により説明する。
【0023】
本発明の第3の実施の形態は、前記第1或いは第2の実施の形態において晶析反応が終息する溶液濃度になっても、この溶液の濃度を大にする制御を継続して結晶粒径をより大きくできることが特徴である。
【0024】
本発明の第3の実施の形態で使用する装置は前記図1に示したものと全く同様であり、晶析反応が終息する飽和濃度となっても晶析部1内の溶液温度
を低下させるか、或いは蒸発部が設けられている場合では溶剤を蒸発させることにより、再び濃度を晶析反応が可能な過飽和濃度とすることができ、前記図6の溶質の溶解度曲線グラフの飽和濃度CのG点で一旦は晶析反応が終息するが、前記温度低下や蒸発により図9において追加したグラフの飽和濃度はC´まで下がり、G´点が新しい飽和濃度となり、晶析された結晶は更にG´点まで粒径が大きく成長する。
【0025】
又、G´点まで行ったら、再び濃度を大にして新しい飽和濃度はC´´まで下がってG´´点まで晶析反応が繰り返されて更に結晶粒が大きくなる。
【0026】
この様に濃度を高める制御を継続することにより更に結晶粒径を大きくすることができる。
【0027】
尚、濃度を高める制御は飽和濃度のG点のみでなく、A点からG点までの過飽和濃度状態の時点で行ってもよい。
【0028】
【発明の効果】
このように本発明によると、晶析部内の濁度と濃度の情報信号を入力し、制御手段が撹拌手段の回転速度と撹拌時間を制御することにより、単峰性分布の結晶粒度となり、結晶粒径が揃った結晶粒を得る効果を有する。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態のシステム構成図である。
【図2】その撹拌手段の制御指令プログラムのグラフである。
【図3】結晶粒度の分布グラフである。
【図4】その濁度の検出信号のグラフである。
【図5】その電気伝導度の検出信号のグラフである。
【図6】晶析生成過程の溶質の溶解度曲線のグラフである。
【図7】本発明の第2の実施の形態の特定温度帯における晶析粒度の分布グラフである。
【図8】その冷却温度帯における結晶粒度の分布グラフである。
【図9】本発明の第3の実施の形態における溶質の溶解度曲線のグラフである。
【図10】従来の晶析装置の説明図である。
【符号の説明】
1 晶析部
1a 容器
1b 原料液
2 撹拌手段
2a 撹拌翼
2b 駆動モータ
2c 駆動回路部
3 制御手段
4 濁度検出手段
4a 発光部
4b 受光部
5 電気伝導度検出手段
6 記憶部
7 温度検出手段
8 加熱手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crystal grain size control device for a crystallizer applied in relation to materials such as medical products, foods, optical products, electrical device materials, tape filler materials, and the like.
[0002]
[Prior art]
As a conventional crystallizer of this type, it comprises an evaporating part a disposed above and a crystallizing part b disposed below as shown in FIG. 10, and crystallized by convection of the raw material liquid into the crystallizing part b. There is known a device provided with a stirring means c for stirring at a predetermined fixed speed for promoting the growth.
[0003]
[Problems to be solved by the invention]
In the crystallization generation process, the crystal grows from the initial seed crystal process, which is the core of crystallization, to a crystal growth process in which the crystal grows further based on the seed crystal. According to the crystallizer, if stirring is simply performed at a relatively fast constant rotational speed for promoting the growth of crystals in the supersaturated raw material liquid by the stirring means, even if growing up to a large crystal, Some crystals break when collided with each other, with impingement blades, and with the tank wall, and when the growth is still accelerated by a fast stirring flow, the seed crystal process and the crystal growth process are not separated and mixed at the same time. The resulting crystallized crystals are polydispersed from small to large to form a wide distribution, making it difficult to crystallize into a unimodal distribution with a uniform particle size suitable for the application. There was a problem.
[0004]
An object of the present invention is to provide a crystal grain size control device for a crystallizer that solves these problems and enables formation of a unimodal distribution of crystal grain sizes with uniform crystal grain sizes.
[0005]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention provides a stirring means capable of changing the rotation speed in the crystallization part of the crystallizer, and inputs information signals of the turbidity and concentration of the solution in the crystallizing part to rotate the stirring means. a step of promoting the generation of seed crystals to be crystallized nuclear activation solution to the speed to high speed, the steps of increasing the rate of production of seed by lowering the rotational speed to a high speed to low speed, the It is characterized by comprising control means for controlling by a control program of a process for promoting the growth of seed crystals and grown crystals by increasing the rotation speed from low speed to medium speed .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to FIG.
[0007]
In FIG. 1, reference numeral 1 denotes a crystallization part of a crystallization apparatus, in which a crystal is produced from a raw material liquid 1b in a container 1a of the crystallization part 1 by a crystallization reaction. Although an evaporation unit for increasing the solution concentration is provided above 1, the evaporation unit may not be provided depending on the application.
[0008]
Reference numeral 2 denotes a stirring means provided in the crystallization unit 1, and the stirring means 2 includes a stirring blade 2a, a drive motor 2b for rotating the stirring blade 2a, and a drive circuit portion 2c thereof. The agitation flow can be varied by varying the rotational speed 2a by a control command of the control means described below.
[0009]
3 is a control means comprising a control unit such as a microcomputer, and 4 is a turbidity detecting means provided in the crystallization part 1 and comprising a light sensor in combination with a light emitting part 4a and a light receiving part 4b. The turbidity detected by is that the output of voltage or current varies depending on the number of crystals passing between the optical sensors 4a and 4b, so that the dispersed state of the crystals can be detected.
[0010]
Reference numeral 5 denotes an electric conductivity detecting means comprising an electric conductivity meter provided in the crystallization unit 1, and the concentration of the solution can be detected by detecting the electric conductivity of the solution with the electric conductivity meter. .
[0011]
Reference numeral 6 denotes a storage unit that stores a control program. The control unit 3 is connected to the storage unit 6 and to the drive circuit unit 2c of the stirring unit 2, and further includes the turbidity detection unit 4 The electrical conductivity detecting means 5 is also connected.
[0012]
Reference numeral 7 denotes a temperature detecting means including a thermistor temperature sensor provided in the crystallization unit 1, and 8 denotes a temperature adjusting means including an electric heater, etc. These temperature detecting means 7 and temperature adjusting means 8 are the control means 3. It is connected to the.
[0013]
Next, the operation of the first embodiment of the present invention will be described with reference to FIGS.
[0014]
The crystallization reaction is controlled by the temperature control system of the temperature detection means 7, the control means 3, and the temperature adjustment means 8 so that the raw material liquid 1b in the container 1a of the crystallization part 1 shown in FIG. , The concentration of the solute is increased to become supersaturated, and crystals are formed. The particle size of the crystals is greatly related to the stirring speed and the stirring time. FIG. 2 shows an example of a control program for controlling the stirring means 2. The vertical axis represents the rotational speed from high speed to low speed, the horizontal axis represents the time axis of each time point of the production reaction according to the concentration such as the saturated concentration or the supersaturated concentration, and the control means 3 includes the turbidity detection means 4 and the electric power The information on the dispersion state of the crystal and the concentration of the solute from the conductivity detecting means 5 is detected, and the rotational speed and stirring time of the stirring means 2 are variably controlled so as to follow the control program. A peak grain size distribution can be obtained.
[0015]
FIG. 3 shows a graph of the crystal grain size distribution, the vertical axis represents the weight for each crystal grain size, the horizontal axis represents the crystal grain size, and FIG. 4 shows the turbidity at each time point corresponding to the control by the control program of FIG. A graph is shown, and FIG. 5 also shows the electrical conductivity at each time point.
[0016]
FIG. 6 is a graph of the solubility curve of the solute in the crystallization formation process. The concentration is plotted on the vertical axis, the time axis is plotted on the horizontal axis, and the origin C 0 , saturation concentration C 1 points A, G, and nuclei are spontaneous. Spontaneous nucleation concentration in the supersaturated state generated C 2 point B, E point, each point of D point near the maximum supersaturation concentration C 3 shows the seed crystal that becomes the nucleus of crystallization when the concentration exceeds B point From the point B to the point E, a growth process in which a crystal grows based on the seed crystal and the nuclei seed crystal occurs at the same time depending on the conditions of growth promotion such as stirring. further increases, decreases the crystallization reaction the concentration of the solute to the G point as close as possible to saturation concentration C 1 is ceased.
[0017]
Here, in order to control in accordance with the control program shown in FIG. 2, the control means 3 uses the information signals of the turbidity detection means 4 and the electrical conductivity detection means 5 shown in FIGS. If the set points corresponding to each time point A, B, D, E, and G shown in FIG. 5 are detected, the rotation speed of stirring is increased between A and B, and the activation of the solution promotes the generation of seed crystals. B, D between the increasing proportions of production of seed crystals is lowered because the high speed to the low speed traveling process of growing crystals on the basis of seed and seed crystal if there remains a high speed at the same time, from point D Slow concentration up to point E suppresses breakage of crystal grains, and from point E increases from low to medium speed to promote growth of seed crystals and growth crystals, and the change in the value of electrical conductivity is almost eliminated, so that saturation concentration C1 Is determined as the G point at which the crystallization reaction ends, especially between B and D and between D and E. It is possible to obtain a crystal grain size distribution of the unimodal shown in FIG. 3 by your.
[0018]
Next, a second embodiment of the present invention will be described with reference to FIGS.
[0019]
The second embodiment of the present invention was able to obtain a monomodal crystal grain size distribution in the first embodiment, but between B and E in the graph of the crystallization reaction process of FIG. For use in which the grain size of crystals is uniform by controlling the crystallization by separating the seed crystal generation process that forms the nucleus of the crystal to be generated and the crystal growth process in which the crystal grows based on the seed crystal into two temperature zones. It is a feature that optimum crystal grains can be obtained.
[0020]
The apparatus used in the second embodiment of the present invention is exactly the same as that shown in FIG. 1, and the crystallization reaction concentration is cooled to a specific temperature zone and, for example, 10 ° C. lower than the specific temperature zone. Crystallize by adjusting to the two stages.
[0021]
First, in order to produce a seed crystal, the raw material liquid is adjusted to a specific temperature, and the crystallization reaction is performed by controlling the stirring as in the case of the first embodiment, and the graph of the crystallization reaction process of FIG. Between B, D, and E, a seed crystal that is the nucleus of crystallization and a part of the crystal that grows based on the nuclear seed crystal are formed, and the solute concentration is lowered to the spontaneous nucleation concentration C 2 . Further, from the point before the point G approaching the saturated concentration C 1 , next, for example, when cooling with stirring at medium to high speed rotation so as to lower the temperature by 10 ° C., the concentration decreased to the concentration close to the saturated concentration C 1 . The solute concentration again becomes supersaturated, and the crystallization reaction process up to points A, B, D, E, and G shown in FIG. 6 is repeated with stirring control, and the crystal grain size of FIG. The seed crystals and some of the grown crystals shown in the distribution graph are As a new seed crystal, the seed crystal and the growth crystal are used as a crystal grain size distribution graph shown in FIG. 8 to obtain a growth crystal in which the crystal weights of several grain sizes are increased. The crystal is separated into these two temperature zones. By controlling the deposition reaction, it is possible to obtain crystal grains suitable for applications having uniform crystal grain sizes.
[0022]
Further, a third embodiment of the present invention will be described with reference to FIG.
[0023]
In the third embodiment of the present invention, even when the solution concentration at which the crystallization reaction ends in the first or second embodiment, the control for increasing the concentration of the solution is continued. The feature is that the diameter can be further increased.
[0024]
The apparatus used in the third embodiment of the present invention is exactly the same as that shown in FIG. 1, and lowers the solution temperature in the crystallization part 1 even when the saturation concentration at which the crystallization reaction ends is reached. Alternatively, in the case where an evaporation section is provided, the solvent can be evaporated to make the concentration again a supersaturated concentration at which crystallization reaction is possible, and the saturation concentration C 1 of the solubility curve graph of the solute of FIG. The crystallization reaction once stops at the G point of the crystal, but the saturation concentration of the graph added in FIG. 9 decreases to C 1 ′ due to the temperature decrease or evaporation, and the G ′ point becomes a new saturation concentration, and the crystallized crystal Further grows to a large particle size up to the point G ′.
[0025]
When the process is performed up to the point G ′, the concentration is increased again, the new saturation concentration is decreased to C 1 ″, and the crystallization reaction is repeated up to the point G ″ to further increase the crystal grains.
[0026]
Thus, the crystal grain size can be further increased by continuing the control for increasing the concentration.
[0027]
The control for increasing the concentration may be performed not only at the saturated concentration point G but also at the time of the supersaturated concentration state from the point A to the point G.
[0028]
【The invention's effect】
Thus, according to the present invention, the turbidity and concentration information signal in the crystallization part is input, and the control means controls the rotation speed and the stirring time of the stirring means, so that the grain size of the unimodal distribution is obtained. It has the effect of obtaining crystal grains with uniform grain sizes.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a first embodiment of this invention.
FIG. 2 is a graph of a control command program for the stirring means.
FIG. 3 is a distribution graph of crystal grain size.
FIG. 4 is a graph of the turbidity detection signal.
FIG. 5 is a graph of a detection signal of the electrical conductivity.
FIG. 6 is a graph of a solubility curve of a solute during a crystallization generation process.
FIG. 7 is a distribution graph of crystallization particle size in a specific temperature zone according to the second embodiment of the present invention.
FIG. 8 is a distribution graph of crystal grain size in the cooling temperature zone.
FIG. 9 is a graph of a solubility curve of a solute in the third embodiment of the present invention.
FIG. 10 is an explanatory diagram of a conventional crystallization apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Crystallization part 1a Container 1b Raw material liquid 2 Stirring means 2a Stirring blade 2b Drive motor 2c Drive circuit part 3 Control means 4 Turbidity detection means 4a Light emission part 4b Light reception part 5 Conductivity detection means 6 Storage part 7 Temperature detection means 8 Heating means

Claims (5)

晶析装置の晶析部に回転速度可変可能な撹拌手段を設け、該晶析部内の溶液の濁度及び濃度の情報信号を入力し前記撹拌手段の回転速度を高速にして溶液の活性化により晶析の核となる種晶の発生を促進する過程と、該回転速度を速から低速に下げて種晶の生成の割合を増加させる過程と、該回転速度を低速から中速に上げて種晶や成長結晶の成長を促進する過程の制御プログラムによって制御する制御手段を備えた晶析装置の結晶粒度制御装置。A stirrer capable of varying the rotation speed is provided in the crystallization part of the crystallizer, and the information signal of the turbidity and concentration of the solution in the crystallizer is input to increase the rotation speed of the stirrer and activate the solution. a step of promoting the generation of seed crystals serving as crystallization nuclei, and the process of increasing the rate of production of seed by lowering the rotational speed to a high speed to low speed, raising the medium speed the rotational speed from a low speed A crystal grain size control device for a crystallizer equipped with a control means for controlling by a control program for a process for promoting the growth of seed crystals and grown crystals. 前記晶析部に光センサからなる濁度検出手段を設けたことを特徴とする請求項1に記載の晶析装置の結晶粒度制御装置。2. The crystal grain size control device for a crystallization apparatus according to claim 1, wherein a turbidity detection means comprising an optical sensor is provided in the crystallization part. 前記晶析部に電気伝導度検出手段を設け、前記制御手段は該電気伝導度検出手段の検出信号を入力して該晶析部内の溶液濃度を検知することを特徴とする請求項1に記載の晶析装置の結晶粒度制御装置。The electrical conductivity detection means is provided in the crystallization part, and the control means inputs a detection signal of the electrical conductivity detection means to detect the solution concentration in the crystallization part. The crystal grain size control device of the crystallizer. 前記晶析部に温度検出手段と温度調節手段とを設け、前記制御手段は、晶析の核となる種晶を生成する所定の種晶生成温度帯と該種晶を基に結晶を成長させる所定の結晶成長温度帯との二段階の異なる温度帯で分離晶析して結晶粒度を制御することを特徴とする請求項1乃至請求項3のいずれか1に記載の晶析装置の結晶粒度制御装置。The crystallization part is provided with a temperature detecting means and a temperature adjusting means, and the control means grows a crystal based on a predetermined seed crystal generation temperature zone for generating a seed crystal serving as a nucleus of crystallization and the seed crystal. The crystal grain size of the crystallizer according to any one of claims 1 to 3, wherein the crystal grain size is controlled by separating and crystallizing in two different temperature zones from a predetermined crystal growth temperature zone. Control device. 前記制御手段は、前記晶析部内の溶液の濃度を温度調節或いは溶剤の蒸発により大にする制御を継続して晶析の結晶粒径を大にする制御を行うことを特徴とする請求項1乃至請求項4のいずれか1に記載の晶析装置の結晶粒度制御装置。The control means performs control to increase the crystal grain size of the crystallization by continuing control to increase the concentration of the solution in the crystallization part by adjusting the temperature or evaporating the solvent. The crystal grain size control apparatus of the crystallizer of any one of thru | or 4.
JP2002214906A 2002-07-24 2002-07-24 Crystal grain size controller for crystallizer Expired - Fee Related JP4521682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002214906A JP4521682B2 (en) 2002-07-24 2002-07-24 Crystal grain size controller for crystallizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002214906A JP4521682B2 (en) 2002-07-24 2002-07-24 Crystal grain size controller for crystallizer

Publications (2)

Publication Number Publication Date
JP2004050147A JP2004050147A (en) 2004-02-19
JP4521682B2 true JP4521682B2 (en) 2010-08-11

Family

ID=31937074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002214906A Expired - Fee Related JP4521682B2 (en) 2002-07-24 2002-07-24 Crystal grain size controller for crystallizer

Country Status (1)

Country Link
JP (1) JP4521682B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280292A (en) * 2007-05-10 2008-11-20 Matsushita Electric Ind Co Ltd Apparatus for preparing protein crystal and method for preparing protein crystal
CN102423542B (en) * 2011-08-29 2014-02-12 中北大学 Melt crystallizer
JP5941329B2 (en) * 2012-04-17 2016-06-29 オルガノ株式会社 Crystallization reactor and crystallization reaction method
EP3214672B1 (en) 2014-10-28 2019-06-19 LG Chem, Ltd. Anode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising anode active material
CN116088382B (en) * 2023-01-14 2024-05-10 中国地质大学(武汉) Device capable of automatically adjusting and stabilizing turbid liquid in output concentration range

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611802U (en) * 1992-07-03 1994-02-15 コニカ株式会社 Concentration measuring device in crystallizer
WO2002026709A1 (en) * 2000-09-25 2002-04-04 Eisai Co., Ltd. Process for producing multiform crystal of donepezil hydrochloride

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292748A (en) * 1986-06-11 1987-12-19 Hitachi Plant Eng & Constr Co Ltd Recovering apparatus for edta from solution thereof
JPH0592102A (en) * 1991-09-30 1993-04-16 Idemitsu Petrochem Co Ltd Crystallization method for organic acid or organic acid ester
JPH08192036A (en) * 1994-11-18 1996-07-30 Yokohama Rubber Co Ltd:The Agitation and mixing control method of liquid and paste materials and device therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611802U (en) * 1992-07-03 1994-02-15 コニカ株式会社 Concentration measuring device in crystallizer
WO2002026709A1 (en) * 2000-09-25 2002-04-04 Eisai Co., Ltd. Process for producing multiform crystal of donepezil hydrochloride

Also Published As

Publication number Publication date
JP2004050147A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US7611580B2 (en) Controlling melt-solid interface shape of a growing silicon crystal using a variable magnetic field
US10151045B2 (en) Method for producing crystal
US7608145B2 (en) Method and apparatus of growing silicon single crystal and silicon wafer fabricated thereby
US4973377A (en) Crystal diameter controlling method
JP4521682B2 (en) Crystal grain size controller for crystallizer
EP0992618B1 (en) Method of manufacturing compound semiconductor single crystal
JP5117671B2 (en) High quality single crystal and growth method thereof
JPH05194083A (en) Method for manufacture of silicon rod
JP4894848B2 (en) Method for producing silicon single crystal
JP2001019588A (en) Method for controlling diameter of single crystal and device for growing crystal
US4267154A (en) Apparatus for manufacturing high quality crystals
EP0619387B1 (en) Pull method for growth of Si single crystal using density detector and apparatus therefor
JP2018177542A (en) Production method of oxide single crystal, and oxide single crystal pulling-up device
JP3203343B2 (en) Cooling control cylinder for single crystal production
JPH07133185A (en) Production of single crystal
CN115094518A (en) Heater, crystal pulling furnace and method for controlling diameter of large-diameter monocrystalline silicon rod
JP6401673B2 (en) Single crystal growth method and apparatus
CN116103750A (en) Temperature control method for Czochralski silicon, electronic equipment and Czochralski silicon furnace
JPH05105579A (en) Method for growing crystal
CN117822093A (en) Method and system for controlling shouldering and cooling in process of pulling single crystal
RU2058441C1 (en) Method for growing of single crystals from solid solutions of antimony and bismuth chalgogenides
KR20130130964A (en) High quality silicon monocrystalline ingot and wafer for semiconductor
JP2011001241A (en) Apparatus and method for producing single crystal
JPH08259371A (en) Method for growing single crystal excellent in sr uniformization
JPH04164889A (en) Production of single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees