JP4521295B2 - Organic light emitting display device and method for manufacturing the same - Google Patents

Organic light emitting display device and method for manufacturing the same Download PDF

Info

Publication number
JP4521295B2
JP4521295B2 JP2005042917A JP2005042917A JP4521295B2 JP 4521295 B2 JP4521295 B2 JP 4521295B2 JP 2005042917 A JP2005042917 A JP 2005042917A JP 2005042917 A JP2005042917 A JP 2005042917A JP 4521295 B2 JP4521295 B2 JP 4521295B2
Authority
JP
Japan
Prior art keywords
region
pixel electrode
light emitting
electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005042917A
Other languages
Japanese (ja)
Other versions
JP2005340168A (en
Inventor
昌秀 徐
泰旭 姜
▲ムン▼熙 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Samsung Mobile Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Mobile Display Co Ltd filed Critical Samsung Mobile Display Co Ltd
Publication of JP2005340168A publication Critical patent/JP2005340168A/en
Application granted granted Critical
Publication of JP4521295B2 publication Critical patent/JP4521295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate

Description

本発明は、有機電界発光表示素子及びその製造方法に係り、さらに詳細には銀(Ag)で形成された反射膜が介在した画素電極を具備する有機電界発光表示素子及びその製造方法に関する。   The present invention relates to an organic light emitting display device and a method for manufacturing the same, and more particularly to an organic light emitting display device including a pixel electrode having a reflective film formed of silver (Ag) and a method for manufacturing the same.

一般に有機電界発光表示素子は、蛍光性有機化合物を電気的に励起させて発光するようにする自発光型表示素子である。これはマトリックス形態で配置されたN×M個の画素(pixel)を駆動する方式によってパッシブマトリックス(passive matrix)方式とアクティブマトリックス(active matrix)方式に分けられる。前記アクティブマトリックス方式の有機電界発光表示(AMOLED)素子はパッシブマトリックス方式に比べて電力消費が少なく、大面積を実現するのに適し、高解像度を有するという長所がある。   In general, an organic electroluminescent display element is a self-luminous display element that emits light by electrically exciting a fluorescent organic compound. This may be divided into a passive matrix method and an active matrix method according to a method of driving N × M pixels arranged in a matrix form. The active matrix organic light emitting display (AMOLED) device has advantages in that it consumes less power than the passive matrix method, is suitable for realizing a large area, and has high resolution.

前記有機電界発光表示素子は、有機化合物から発光した光の放出方向によって前面発光型または背面発光型の有機電界発光表示素子と、前記前面発光型及び背面発光型が同時に具備される有機電界発光表示素子に分けられる。前記前面発光型有機電界発光表示素子は、前記背面発光型とは違って前記単位画素が位置した基板反対方向に光を放出させる装置で開口率が大きいという長所がある。   The organic light emitting display device includes a front light emitting type or a back light emitting type organic light emitting display device according to a light emission direction of light emitted from an organic compound, and an organic light emitting display having the front light emitting type and the back light emitting type at the same time. Divided into elements. Unlike the back-light-emitting type, the front-emitting organic light-emitting display device has an advantage in that it has a large aperture ratio in a device that emits light in the direction opposite to the substrate where the unit pixel is located.

素子の小型化及び低電力化にしたがって前面発光型である主表示窓と背面発光型である補助表示窓が同時に具備される有機電界発光表示素子の需要が増加している。このような有機電界発光表示素子は主に携帯電話に使われており、外側には補助表示窓が設けられて、内側には主表示窓が設けられる。特に前記補助表示窓は、主表示窓に比べて電力が少なくて済み、携帯電話の通話待機状態時に連続してオン(on)状態を維持するため、受信状態、バッテリー残余量及び時間などを随時に観察することができる。   With the miniaturization and low power consumption of the device, there is an increasing demand for an organic electroluminescence display device having a front display type main display window and a back emission type auxiliary display window at the same time. Such an organic light emitting display device is mainly used in a mobile phone, and an auxiliary display window is provided on the outside and a main display window is provided on the inside. In particular, the auxiliary display window requires less power than the main display window, and continuously maintains an on state when the mobile phone is in a call waiting state. Can be observed.

図1Aは、従来技術により形成された有機電界発光表示素子を示した断面図である。   FIG. 1A is a cross-sectional view illustrating an organic light emitting display device formed according to a conventional technique.

先に、透明絶縁基板100上部に所定厚さの緩衝膜110を形成して、多結晶シリコンパターン122、ゲート電極132及びソース/ドレイン電極150、152を具備する薄膜トランジスタを形成する。この時、前記多結晶シリコンパターン122の両側に不純物が注入されたソース/ドレイン領域120が具備される。そして、前記多結晶シリコンパターン122を含んだ全体表面上部にはゲート絶縁膜130が具備される。   First, a buffer film 110 having a predetermined thickness is formed on the transparent insulating substrate 100 to form a thin film transistor having a polycrystalline silicon pattern 122, a gate electrode 132, and source / drain electrodes 150 and 152. At this time, source / drain regions 120 into which impurities are implanted are provided on both sides of the polycrystalline silicon pattern 122. A gate insulating layer 130 is provided on the entire surface including the polycrystalline silicon pattern 122.

その次に、全体表面上部に所定厚さの保護膜160を形成する。続いて、フォトエッチング工程で前記保護膜160をエッチングして前記ソース/ドレイン電極150、152のうちいずれか一つ、例えばドレイン電極152を露出させる第1ビアコンタクトホール(図示せず)を形成する。前記保護膜160は、無機絶縁膜としてシリコン窒化物、シリコン酸化物またはその積層構造を使うことができる。   Next, a protective film 160 having a predetermined thickness is formed on the entire surface. Subsequently, the passivation layer 160 is etched by a photoetching process to form a first via contact hole (not shown) that exposes one of the source / drain electrodes 150 and 152, for example, the drain electrode 152. . The protective layer 160 may use silicon nitride, silicon oxide, or a laminated structure as an inorganic insulating layer.

次に、全体表面上部に第1絶縁膜170を形成する。前記第1絶縁膜170はポリイミド(polyimide)、ベンゾシクロブテン系樹脂(benzocyclobutene series resin)、SOG(spin on glass)及びアクリレイト(acrylate)で構成された群から選択される1種の物質で形成することができて、画素領域の平坦化のために形成されたのである。   Next, a first insulating film 170 is formed on the entire surface. The first insulating layer 170 is formed of one material selected from the group consisting of polyimide, benzocyclobutene series resin, SOG (spin on glass), and acrylate. It is possible to form the pixel region.

続いて、フォトエッチング工程で前記第1絶縁膜170をエッチングして前記第1ビアコンタクトホールを露出させる第2ビアコンタクトホール(図示せず)を形成する。   Subsequently, the first insulating film 170 is etched by a photoetching process to form a second via contact hole (not shown) exposing the first via contact hole.

次に、全体表面上部に反射膜(図示せず)と画素電極用薄膜(図示せず)の積層構造を形成する。この時、前記反射膜はアルミニウム(Al)、モリブデン(Mo)、チタン(Ti)、金(Au)、銀(Ag)、パラジウム(Pd)、またはこれら金属の合金等のように反射率が高い金属のうち一つを用いて形成される。前記のように反射膜を形成する場合、前面発光型有機電界発光素子が形成され、前記反射膜を後続工程で形成する場合には背面発光型有機電界発光素子が形成される。   Next, a laminated structure of a reflective film (not shown) and a pixel electrode thin film (not shown) is formed on the entire surface. At this time, the reflective film has high reflectivity such as aluminum (Al), molybdenum (Mo), titanium (Ti), gold (Au), silver (Ag), palladium (Pd), or an alloy of these metals. It is formed using one of the metals. When the reflective film is formed as described above, a front light emitting organic electroluminescent element is formed. When the reflective film is formed in a subsequent process, a back light emitting organic electroluminescent element is formed.

そして、前記画素電極用薄膜はITO(Indium Tin Oxide)のように透明な金属物質を用いて10〜300Å厚さに形成される。   The pixel electrode thin film is formed to a thickness of 10 to 300 mm using a transparent metal material such as ITO (Indium Tin Oxide).

続いて、フォトエッチング工程で前記積層構造をエッチングして画素電極182及び反射膜パターン180aを形成する。   Subsequently, the stacked structure is etched by a photoetching process to form the pixel electrode 182 and the reflective film pattern 180a.

その後、全体表面上部に発光領域を定義する第2絶縁膜パターン190を形成する。前記第2絶縁膜パターン190はポリイミド(polyimide)、ベンゾシクロブテン系樹脂(benzocyclobutene series resin)、フェノール系樹脂(phenol resin)及びアクリレイト(acrylate)で構成された群から選択される1種の物質で形成することができる。   Thereafter, a second insulating film pattern 190 defining a light emitting region is formed on the entire surface. The second insulating layer pattern 190 is a material selected from the group consisting of polyimide, benzocyclobutene series resin, phenol resin, and acrylate. Can be formed.

続いて、前記第2絶縁膜パターン190により定義された画素領域に低分子蒸着法またはレーザー熱転写法で発光層192を形成する。その後対向電極(図示せず)などを形成して有機電界発光表示素子を形成する。この時、前面発光型有機電界発光素子である場合、前記対向電極は、透明電極または透明金属電極で形成されて、背面発光型有機電界発光素子である場合、反射膜を具備する金属電極または反射電極で形成される。   Subsequently, a light emitting layer 192 is formed on the pixel region defined by the second insulating film pattern 190 by a low molecular vapor deposition method or a laser thermal transfer method. Thereafter, a counter electrode (not shown) or the like is formed to form an organic electroluminescence display element. At this time, in the case of a front emission type organic electroluminescence device, the counter electrode is formed of a transparent electrode or a transparent metal electrode, and in the case of a rear emission type organic electroluminescence device, a metal electrode or a reflection electrode provided with a reflective film. Formed with electrodes.

上述したように、前面発光型有機電界発光表示素子は、反射膜パターンと画素電極を積層構造で形成する場合、フォトエッチング工程に使われる電解質溶液に同時に露出して前記積層構造のうち起電力が大きい物質が腐蝕されるガルバニック現象が発生して画素電極を損傷させる。これによって輝度が低下する等光特性が低下する問題点が発生した。   As described above, in the case of forming the reflective film pattern and the pixel electrode in a laminated structure, the front light emitting organic light emitting display device is exposed to the electrolyte solution used in the photoetching process and has an electromotive force in the laminated structure. A galvanic phenomenon in which a large material is corroded occurs to damage the pixel electrode. As a result, there has been a problem in that the light characteristics are degraded, such as a decrease in luminance.

図1Bは、他の従来技術により形成された有機電界発光表示素子の断面図で、前記有機電界発光表示素子は、上記の問題点を解決するために反射膜パターン180bをアイランド(island)構造で形成したものになっている。これによって反射膜パターン180bと画素電極182がフォトエッチング工程に使われる電解質溶液に同時に露出することを防止することができる。   FIG. 1B is a cross-sectional view of an organic light emitting display device formed according to another conventional technique. The organic light emitting display device has a reflective film pattern 180b having an island structure in order to solve the above problems. It has been formed. Accordingly, the reflective film pattern 180b and the pixel electrode 182 can be prevented from being simultaneously exposed to the electrolyte solution used in the photoetching process.

上述したように、前面発光型有機電界発光表示素子は、光の共振効果を利用するので画素電極の厚さを可能な限り薄く形成して色座標調節を容易にすることが重要である。しかし、画素電極を薄く形成する場合、ビアコンタクトホールの段差で短絡が起きるという不良が発生する可能性がある。また、前面発光型有機電界発光表示素子と背面発光型有機電界発光表示素子とを同時に具備する有機電界発光表示素子の製造時、前面発光型と背面発光型の有機電界発光素子に同じ厚さの画素電極を用いるようになれば、抵抗増加により光特性が低下する問題がある。   As described above, since the front light emitting organic light emitting display element utilizes the resonance effect of light, it is important to form the pixel electrode as thin as possible to facilitate the color coordinate adjustment. However, when the pixel electrode is formed thin, there is a possibility that a short circuit occurs at the step of the via contact hole. In addition, when manufacturing an organic light emitting display device having a front light emitting organic electroluminescent display device and a back light emitting organic electroluminescent display device at the same time, the front light emitting organic electroluminescent device and the back light emitting organic electroluminescent device have the same thickness. If a pixel electrode is used, there is a problem that optical characteristics are degraded due to an increase in resistance.

本発明は、上記のような問題点を解決するためになされたものであって、下部画素電極、銀を利用した反射膜パターン及び上部画素電極の積層構造を具備する第1領域と、下部画素電極及び上部画素電極の積層構造を具備する第2領域が同時に具備されて素子の信頼性を向上させることができる有機電界発光表示素子及びその製造方法を提供することを目的とする。   The present invention has been made to solve the above problems, and includes a first pixel region having a lower pixel electrode, a reflective film pattern using silver, and a stacked structure of upper pixel electrodes, and a lower pixel. It is an object of the present invention to provide an organic light emitting display device and a method of manufacturing the same that can simultaneously improve the reliability of the device by providing a second region having a stacked structure of an electrode and an upper pixel electrode.

前記のような目的を達成するための本発明による有機電界発光表示素子は、
透明絶縁基板上部の第1領域及び第2領域にゲート電極及びソース/ドレイン電極を含む複数個の薄膜トランジスタと、
前記透明絶縁基板上部の絶縁膜内に形成された複数個のビアコンタクトホールを介して前記第1領域及び第2領域ソース/ドレイン電極のうちいずれか一つにそれぞれ接続される下部画素電極と、
前記第1領域の下部画素電極上部全面に具備される反射膜パターンと、
前記第1領域の反射膜パターン上部と前記第2領域の下部画素電極上部に具備される上部画素電極と、
前記上部画素電極上部に具備されて少なくとも発光層を具備する有機膜層と、
前記有機膜層上部に具備される対向電極を含むことを特徴とする。
In order to achieve the above object, an organic light emitting display device according to the present invention is provided.
A plurality of thin film transistors including a gate electrode and a source / drain electrode in a first region and a second region on the transparent insulating substrate;
A lower pixel electrode connected to any one of the first and second region source / drain electrodes through a plurality of via contact holes formed in an insulating film on the transparent insulating substrate;
A reflective film pattern provided on the entire upper surface of the lower pixel electrode of the first region;
An upper pixel electrode provided above the reflective film pattern in the first region and an upper part of the lower pixel electrode in the second region;
An organic film layer provided on the upper pixel electrode and including at least a light emitting layer;
A counter electrode provided on the organic film layer is included.

また、本発明による有機電界発光表示素子は、前記絶縁膜は保護膜と平坦化膜の積層構造であることを特徴とする。   The organic light emitting display device according to the present invention is characterized in that the insulating film has a laminated structure of a protective film and a planarizing film.

また、本発明による有機電界発光表示素子は、前記絶縁膜は無機絶縁膜と有機絶縁膜の積層構造であることを特徴とする。   In the organic light emitting display device according to the present invention, the insulating film has a laminated structure of an inorganic insulating film and an organic insulating film.

また、本発明による有機電界発光表示素子は、前記下部画素電極の厚さは100〜1000Åであることを特徴とする。   The organic light emitting display device according to the present invention is characterized in that a thickness of the lower pixel electrode is 100 to 1000 mm.

また、本発明による有機電界発光表示素子は、前記反射膜パターンは銀(Ag)、プラチナ(Pt)及びパラジウム(Pd)で構成される群から選択される一つで形成されることを特徴とする。   The organic light emitting display device according to the present invention is characterized in that the reflective film pattern is formed of one selected from the group consisting of silver (Ag), platinum (Pt) and palladium (Pd). To do.

また、本発明による有機電界発光表示素子は、前記反射膜パターンは銀(Ag)で形成されることを特徴とする。   In the organic light emitting display device according to the present invention, the reflective film pattern is formed of silver (Ag).

また、本発明による有機電界発光表示素子は、前記反射膜パターンの厚さは500〜3000Åであることを特徴とする。   In the organic light emitting display device according to the present invention, the thickness of the reflective film pattern is 500 to 3000 mm.

また、本発明による有機電界発光表示素子は、前記上部画素電極の厚さは10〜300Åであることを特徴とする。   The organic light emitting display device according to the present invention is characterized in that the upper pixel electrode has a thickness of 10 to 300 mm.

また、本発明による有機電界発光表示素子は、前記上部画素電極の厚さは20〜100Åであることを特徴とする。   The organic light emitting display device according to the present invention is characterized in that the upper pixel electrode has a thickness of 20 to 100 mm.

また、本発明による有機電界発光表示素子は、前記第1領域の対向電極は透明電極であって、第2領域の対向電極は透明電極または反射電極であることを特徴とする。   In the organic light emitting display device according to the present invention, the counter electrode in the first region is a transparent electrode, and the counter electrode in the second region is a transparent electrode or a reflective electrode.

また、前記のような目的を達成するための本発明による有機電界発光表示素子の製造方法は、
第1領域及び第2領域で構成される透明絶縁基板上部にゲート電極及びソース/ドレイン電極を含む薄膜トランジスタを形成する工程と、
全体表面上部に絶縁膜を形成する工程と、
フォトエッチング工程で前記絶縁膜をエッチングして前記第1領域及び第2領域のソース/ドレイン電極のうちいずれか一つの電極をそれぞれ露出させる複数個のビアコンタクトホールを形成する工程と、
前記ビアコンタクトホールを介して前記ソース/ドレイン電極のうちいずれか一つに接続される下部画素電極を形成する工程と、
前記第1領域の下部画素電極上部全面に反射膜パターンを形成する工程と、
前記第1領域の反射膜パターン上部及び第2領域の下部画素電極上部に上部画素電極を形成する工程と、
前記上部画素電極上部に少なくとも発光層を含む有機膜を形成する工程と、
前記有機膜上部に対向電極を形成する工程を含むことを特徴とする。
In addition, a method for manufacturing an organic light emitting display device according to the present invention for achieving the above-described object is as follows.
Forming a thin film transistor including a gate electrode and a source / drain electrode on a transparent insulating substrate formed of a first region and a second region;
Forming an insulating film on the entire surface; and
Etching the insulating film in a photo-etching step to form a plurality of via contact holes exposing each one of the source / drain electrodes of the first and second regions;
Forming a lower pixel electrode connected to any one of the source / drain electrodes through the via contact hole;
Forming a reflective film pattern on the entire upper surface of the lower pixel electrode in the first region;
Forming an upper pixel electrode on the reflective film pattern in the first region and on the lower pixel electrode in the second region;
Forming an organic film including at least a light emitting layer on the upper pixel electrode;
The method includes a step of forming a counter electrode on the organic film.

また、本発明による有機電界発光表示素子の製造方法は、前記絶縁膜を保護膜と平坦化膜の積層構造で形成することを特徴とする。   The method for manufacturing an organic light emitting display device according to the present invention is characterized in that the insulating film is formed of a laminated structure of a protective film and a planarizing film.

また、本発明による有機電界発光表示素子の製造方法は、前記絶縁膜を無機絶縁膜と有機絶縁膜の積層構造で形成することを特徴とする。   The method for manufacturing an organic light emitting display device according to the present invention is characterized in that the insulating film is formed of a laminated structure of an inorganic insulating film and an organic insulating film.

また、本発明による有機電界発光表示素子の製造方法は、前記ビアコンタクトホールを2回にわたるフォトエッチング工程で形成することを特徴とする。   The method for manufacturing an organic light emitting display device according to the present invention is characterized in that the via contact hole is formed by two photoetching steps.

また、本発明による有機電界発光表示素子の製造方法は、前記下部画素電極を100〜1000Å厚さに形成することを特徴とする。   The method of manufacturing an organic light emitting display device according to the present invention is characterized in that the lower pixel electrode is formed to a thickness of 100 to 1000 mm.

また、本発明による有機電界発光表示素子の製造方法は、前記反射膜パターンを銀(Ag)、プラチナ(Pt)及びパラジウム(Pd)で構成される群から選択した一つで形成することを特徴とする。   The method for manufacturing an organic light emitting display device according to the present invention is characterized in that the reflective film pattern is formed of one selected from the group consisting of silver (Ag), platinum (Pt) and palladium (Pd). And

また、本発明による有機電界発光表示素子の製造方法は、前記反射膜パターンを銀(Ag)で形成することを特徴とする。   The method for manufacturing an organic light emitting display device according to the present invention is characterized in that the reflective film pattern is formed of silver (Ag).

また、本発明による有機電界発光表示素子の製造方法は、前記反射膜パターンの厚さを500〜3000Åで形成することを特徴とする。   The method for manufacturing an organic light emitting display device according to the present invention is characterized in that the thickness of the reflective film pattern is 500 to 3000 mm.

また、本発明による有機電界発光表示素子の製造方法は、前記上部画素電極の厚さを10〜300Åで形成することを特徴とする。   The method of manufacturing an organic light emitting display device according to the present invention is characterized in that the upper pixel electrode is formed with a thickness of 10 to 300 mm.

また、本発明による有機電界発光表示素子の製造方法は、前記上部画素電極の厚さを20〜100Åで形成することを特徴とする。   The method of manufacturing an organic light emitting display device according to the present invention is characterized in that the upper pixel electrode is formed with a thickness of 20 to 100 mm.

また、本発明による有機電界発光表示素子の製造方法は、前記第1領域の対向電極を透明電極で形成し、第2領域の対向電極を透明電極または反射電極で形成することを特徴とする。   The method for manufacturing an organic light emitting display device according to the present invention is characterized in that the counter electrode in the first region is formed of a transparent electrode and the counter electrode in the second region is formed of a transparent electrode or a reflective electrode.

以上説明してきた特徴によれば、本発明は、二重構造の画素電極間に銀(Ag)を利用した反射膜パターンを介装して反射度を向上させ、画素電極の接合領域で抵抗が増加する現象を防止して、段差部分で画素電極が断線される等の不良を防止して素子の特性及び信頼性を向上できるという利点がある。
すなわち、本発明によれば、透明基板上部の絶縁膜内に形成されたビアコンタクトホールを介して透明絶縁基板上部の第1領域及び第2領域の各薄膜トランジスタのソース/ドレイン電極のうちいずれか一つに接続される下部画素電極と、第1領域の下部画素電極上部全面に具備される反射膜パターンと、第1領域の下部画素電極及び反射膜パターンの上部と第2領域の下部画素電極上部に具備される上部画素電極と、上部画素電極上部に具備されて少なくとも発光層を具備する有機膜層と、有機膜層上部に具備される対向電極を含んで形成された有機電界発光表示素子では、下部画素電極と上部画素電極間に銀を利用して反射膜パターンを形成することによって反射膜パターンと絶縁膜間の界面特性を向上させて、コンタクト領域での電気的特性を向上させることができる。
According to the characteristics described above, the present invention improves the reflectivity by interposing a reflective film pattern using silver (Ag) between the pixel electrodes having a double structure, and the resistance is reduced in the junction region of the pixel electrodes. There is an advantage that the phenomenon of increasing can be prevented, and defects such as disconnection of the pixel electrode at the stepped portion can be prevented to improve the characteristics and reliability of the element.
That is, according to the present invention, any one of the source / drain electrodes of the thin film transistors in the first region and the second region on the transparent insulating substrate through the via contact hole formed in the insulating film on the transparent substrate. A lower pixel electrode connected to the first region, a reflective film pattern provided on the entire upper surface of the lower pixel electrode in the first region, an upper portion of the lower pixel electrode and the reflective film pattern in the first region, and an upper portion of the lower pixel electrode in the second region An organic light emitting display device including an upper pixel electrode, an organic film layer provided on the upper pixel electrode and having at least a light emitting layer, and a counter electrode provided on the organic film layer. By forming a reflective film pattern using silver between the lower pixel electrode and the upper pixel electrode, the interface characteristics between the reflective film pattern and the insulating film are improved, and the Thereby improving the characteristics.

以下、本発明の実施形態を添付図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図2A及び図2Bは、本発明による有機電界発光表示素子の断面図であって、透明絶縁基板200は、第1領域Aと第2領域Bで構成されていてそれぞれ相異なる構造の画素電極が具備されている。   2A and 2B are cross-sectional views of an organic light emitting display device according to the present invention. The transparent insulating substrate 200 includes a first region A and a second region B, and pixel electrodes having different structures from each other. It is equipped.

前記第1領域Aには、下部画素電極282aと、前記下部画素電極282a上部全面に形成された反射膜パターン280と前記下部画素電極282a及び反射膜パターン280上に形成された上部画素電極282bの積層構造が具備される。この時、前記下部画素電極282aは上部画素電極282bより厚く形成されて、前記反射膜パターン280は銀(Ag)で形成されかつ前記下部画素電極282a及び上部画素電極282bのような領域に形成される。   The first region A includes a lower pixel electrode 282a, a reflective film pattern 280 formed on the entire upper surface of the lower pixel electrode 282a, and an upper pixel electrode 282b formed on the lower pixel electrode 282a and the reflective film pattern 280. A laminated structure is provided. At this time, the lower pixel electrode 282a is formed thicker than the upper pixel electrode 282b, and the reflective film pattern 280 is formed of silver (Ag) and is formed in a region such as the lower pixel electrode 282a and the upper pixel electrode 282b. The

そして、前記第2領域Bには、下部画素電極282aと上部画素電極282bの積層構造が具備される。この時、前記下部画素電極282aは抵抗が増加して光特性を低下させない程度の厚さで形成する。   The second region B includes a stacked structure of a lower pixel electrode 282a and an upper pixel electrode 282b. At this time, the lower pixel electrode 282a is formed with a thickness that does not increase the resistance and deteriorate the optical characteristics.

本発明による有機電界発光表示素子は次のような方法で形成される。   The organic light emitting display device according to the present invention is formed by the following method.

先に、ガラス、石英、サファイアなどの透明絶縁基板200に第1領域A及び第2領域Bを定義する。参考に、前記第1領域Aの反射膜形成工程を除外した以後すべての工程は第1領域A及び第2領域Bに同時に実施される。   First, the first region A and the second region B are defined in the transparent insulating substrate 200 such as glass, quartz, or sapphire. For reference, all processes after the step of forming the reflective film in the first area A are performed simultaneously in the first area A and the second area B.

次に、前記透明絶縁基板200の全面にシリコン酸化物をプラズマ−強化化学気相蒸着(plasma−enhanced chemical vapor deposition、PECVD)方法で所定厚さの緩衝膜210を形成する。この時、前記緩衝膜210は、後続工程で形成される非晶質シリコン層の結晶化工程時に、前記透明絶縁基板200内の不純物が拡散することを防止する。   Next, a buffer film 210 having a predetermined thickness is formed on the entire surface of the transparent insulating substrate 200 using a plasma-enhanced chemical vapor deposition (PECVD) method. At this time, the buffer layer 210 prevents the impurities in the transparent insulating substrate 200 from diffusing during a crystallization process of an amorphous silicon layer formed in a subsequent process.

次に、前記緩衝膜210上部に、所定厚さの非晶質シリコン層(図示せず)を蒸着して、前記非晶質シリコン層をELA(Excimer Laser Annealing)、SLS(Sequential Lateral Solidification)、MIC(Metal Induced Crystallization)またはMILC(Metal Induced Lateral Crystallization)法を用いて結晶化する。その後フォトエッチング工程でパターニングして単位画素内の薄膜トランジスタ領域に多結晶シリコンパターン222を形成する。前記多結晶シリコンパターン222の領域は、後続工程で形成されるソース/ドレイン領域220まで含む。   Next, an amorphous silicon layer (not shown) having a predetermined thickness is deposited on the buffer film 210, and the amorphous silicon layer is deposited by ELA (Excimer Laser Annealing), SLS (Sequential Lateral Solidification), Crystallization is performed using MIC (Metal Induced Crystallization) or MILC (Metal Induced Lateral Crystallization). Thereafter, patterning is performed by a photoetching process to form a polycrystalline silicon pattern 222 in the thin film transistor region in the unit pixel. The region of the polycrystalline silicon pattern 222 includes source / drain regions 220 formed in a subsequent process.

その次に、全体表面上部に所定厚さのゲート絶縁膜230を形成する。前記ゲート絶縁膜230は、シリコン酸化物、シリコン窒化物またはその積層構造で形成することができる。   Next, a gate insulating film 230 having a predetermined thickness is formed on the entire surface. The gate insulating layer 230 may be formed of silicon oxide, silicon nitride, or a stacked structure thereof.

前記ゲート絶縁膜230上部にゲート電極物質で使われる金属膜(図示せず)を形成する。この時、前記金属膜はアルミニウム(Al)またはアルミニウム−ネオジム(AlNd)のようなアルミニウム合金の単一層や、クロム(Cr)またはモリブデン(Mo)合金上にアルミニウム合金が積層された多重層で形成されることができる。続いて、フォトエッチング工程で前記金属膜をエッチングしてゲート電極232を形成する。その後、前記ゲート電極232両側下部の多結晶シリコンパターン222に不純物をイオン注入してソース/ドレイン領域220を形成する。   A metal layer (not shown) used as a gate electrode material is formed on the gate insulating layer 230. At this time, the metal film is formed of a single layer of an aluminum alloy such as aluminum (Al) or aluminum-neodymium (AlNd), or a multiple layer in which an aluminum alloy is laminated on a chromium (Cr) or molybdenum (Mo) alloy. Can be done. Subsequently, the metal film is etched by a photoetching process to form a gate electrode 232. After that, impurities are ion-implanted into the polycrystalline silicon pattern 222 on both lower sides of the gate electrode 232 to form source / drain regions 220.

次に、全体表面上部に所定厚さの層間絶縁膜240を形成する。一般に前記層間絶縁膜240はシリコン窒化膜が使われる。   Next, an interlayer insulating film 240 having a predetermined thickness is formed on the entire upper surface. In general, a silicon nitride film is used for the interlayer insulating film 240.

その次に、フォトエッチング工程で前記層間絶縁膜240及びゲート絶縁膜230をエッチングして前記ソース/ドレイン領域220を露出させるコンタクトホール(図示せず)を形成する。前記コンタクトホールを含んだ全体表面上部に電極物質を形成して、フォトエッチング工程で前記電極物質をエッチングして前記ソース/ドレイン領域220に接続されるソース/ドレイン電極250、252を形成する。この時、前記電極物質としてはモリブデンータングステン(MoW)またはアルミニウム−ネオジム(AlNd)が利用でき、その積層構造を使うことができる。   Next, a contact hole (not shown) exposing the source / drain region 220 is formed by etching the interlayer insulating layer 240 and the gate insulating layer 230 in a photoetching process. An electrode material is formed on the entire surface including the contact hole, and the electrode material is etched by a photoetching process to form source / drain electrodes 250 and 252 connected to the source / drain region 220. At this time, molybdenum-tungsten (MoW) or aluminum-neodymium (AlNd) can be used as the electrode material, and a laminated structure thereof can be used.

その次に、全体表面上部にシリコン窒化膜、シリコン酸化膜またはその積層構造を所定厚さ蒸着して保護膜260を形成する。   Next, a protective film 260 is formed by vapor-depositing a silicon nitride film, a silicon oxide film, or a laminated structure thereof to a predetermined thickness on the entire surface.

続いて、フォトエッチング工程で前記保護膜260をエッチングして前記ソース/ドレイン電極250、252のうちいずれか一つ、例えばドレイン電極252を露出させる第1ビアコンタクトホール(図示せず)を形成する。   Subsequently, the passivation layer 260 is etched by a photoetching process to form a first via contact hole (not shown) that exposes one of the source / drain electrodes 250 and 252, for example, the drain electrode 252. .

全体表面上部に第1絶縁膜270を形成する。前記第1絶縁膜270は、薄膜トランジスタ領域が完全に平坦化される程度の厚さに形成される。そして、前記第1絶縁膜270は、ポリイミド(polyimide)、ベンゾシクロブテン系樹脂(benzocyclobutene series resin)、SOG(spin on glass)及びアクリレイト(acrylate)で構成された群から選択される1種の物質で形成されることができる。   A first insulating film 270 is formed on the entire surface. The first insulating layer 270 is formed to have a thickness such that the thin film transistor region is completely planarized. The first insulating layer 270 is a material selected from a group consisting of polyimide, benzocyclobutene series resin, SOG (spin on glass), and acrylate. Can be formed.

次に、フォトエッチング工程で前記第1絶縁膜270をエッチングして前記第1ビアコンタクトホールを介してソース/ドレイン電極250、252のうちいずれか一つを露出させる第2ビアコンタクトホール(図示せず)を形成する。   Next, a second via contact hole (not shown) is formed by etching the first insulating layer 270 in a photoetching process to expose one of the source / drain electrodes 250 and 252 through the first via contact hole. Z).

その次に、全体表面上部に下部画素電極用薄膜(図示せず)を形成する。前記下部画素電極用薄膜はITO(Indium Tin Oxide)、IZO、InまたはSnのように透明な金属電極を用いて100〜1000Å厚さに形成する。前記下部画素電極用薄膜は、第1領域では反射膜と第1絶縁膜270間の界面特性、すなわち接着性を向上させて、第2領域では抵抗増加を防止するために形成される。 Next, a lower pixel electrode thin film (not shown) is formed on the entire surface. The thin film for the lower pixel electrode is formed to a thickness of 100 to 1000 mm using a transparent metal electrode such as ITO (Indium Tin Oxide), IZO, In 2 O 3 or Sn 2 O 3 . The thin film for the lower pixel electrode is formed to improve the interface characteristic between the reflective film and the first insulating film 270 in the first region, that is, the adhesion, and to prevent the resistance increase in the second region.

次に、フォトエッチング工程で前記下部画素電極用薄膜をエッチングして下部画素電極282aを形成する。前記下部画素電極282aは、第2ビアコンタクトホールを介して前記ソース/ドレイン電極250、252のうちいずれか一つ、例えばドレイン電極252に接続される。   Next, the lower pixel electrode thin film is etched by a photoetching process to form a lower pixel electrode 282a. The lower pixel electrode 282a is connected to one of the source / drain electrodes 250 and 252 such as the drain electrode 252 through a second via contact hole.

その次に、全体表面上部に反射膜(図示せず)を形成する。この時、前記反射膜は、反射度が80%である銀(Ag)、パラジウム(Pd)またはプラチナ(Pt)などで形成することができて、望ましくは銀(Ag)で形成する。前記反射膜は500〜3000Å厚さに形成される。   Next, a reflective film (not shown) is formed on the entire surface. At this time, the reflective film may be formed of silver (Ag), palladium (Pd), or platinum (Pt) having a reflectivity of 80%, and is preferably formed of silver (Ag). The reflective film is formed to a thickness of 500 to 3000 mm.

次に、フォトエッチング工程で前記反射膜をエッチングして前記第1領域Aの下部画素電極282a上部全面に反射膜パターン280を形成する。前記反射膜パターン280は、第1領域Aで光を反射する役割をし、輝度と光効率を増加させる目的で形成されたもので、第2領域Bには形成しない。(図2A参照)   Next, the reflective film is etched by a photoetching process to form a reflective film pattern 280 on the entire upper surface of the lower pixel electrode 282a in the first region A. The reflective film pattern 280 serves to reflect light in the first region A and is formed for the purpose of increasing luminance and light efficiency, and is not formed in the second region B. (See Figure 2A)

その次に、全体表面上部に上部画素電極用薄膜(図示せず)を形成する。前記上部画素電極用薄膜は10〜300Å厚さに形成され、望ましくは20〜100Å厚さに形成して色座標調節を容易にする。   Next, an upper pixel electrode thin film (not shown) is formed on the entire surface. The upper pixel electrode thin film is formed to a thickness of 10 to 300 mm, preferably 20 to 100 mm to facilitate color coordinate adjustment.

次に、フォトエッチング工程で前記上部画素電極用薄膜をエッチングして上部画素電極282bを形成する。前記上部画素電極282bは、前記第1領域Aで反射膜パターン280の上部及び側面に形成され、第2領域Bでは前記下部画素電極282a上部に形成される。すなわち、前記第1領域Aには下部画素電極282a、反射膜パターン280及び上部画素電極282bで形成された三重構造の画素電極が形成されて、前記第2領域Bには下部画素電極282aと上部画素電極282bで形成された二重構造の画素電極が形成される。   Next, the upper pixel electrode thin film is etched to form an upper pixel electrode 282b in a photoetching process. The upper pixel electrode 282b is formed on the upper and side surfaces of the reflective film pattern 280 in the first region A, and is formed on the lower pixel electrode 282a in the second region B. That is, a pixel electrode having a triple structure formed by the lower pixel electrode 282a, the reflective film pattern 280, and the upper pixel electrode 282b is formed in the first region A, and the lower pixel electrode 282a and the upper pixel electrode are formed in the second region B. A double-structured pixel electrode formed by the pixel electrode 282b is formed.

その次に、全体表面上部に第2絶縁膜(図示せず)を形成する。   Next, a second insulating film (not shown) is formed on the entire surface.

その後、フォトエッチング工程で前記第2絶縁膜をエッチングして発光領域を定義する第2絶縁膜パターン290を形成する。   Thereafter, a second insulating film pattern 290 defining a light emitting region is formed by etching the second insulating film in a photoetching process.

続いて、前記第2絶縁膜パターン290により露出した発光領域に発光層292を形成する。前記発光層292は低分子蒸着法またはレーザー熱転写法により形成される。前記発光層292は、電子注入層、電子輸送層、正孔注入層、正孔輸送層、正孔阻止層及び有機発光層から選択される少なくとも一つ以上の薄膜で形成できる。(図2B参照)   Subsequently, a light emitting layer 292 is formed in the light emitting region exposed by the second insulating film pattern 290. The light emitting layer 292 is formed by a low molecular vapor deposition method or a laser thermal transfer method. The light emitting layer 292 may be formed of at least one thin film selected from an electron injection layer, an electron transport layer, a hole injection layer, a hole transport layer, a hole blocking layer, and an organic light emitting layer. (See Figure 2B)

図示していないが、対向電極を形成して有機電界発光素子を完成する。この時、前記対向電極は、第1領域Aでは透明電極または透明金属電極で形成でき、第2領域Bでは反射膜が積層された透明電極または反射電極で形成できる。そして、前記第2領域Bの対向電極を前記第1領域Aの対向電極のように透明電極または透明金属電極で形成することもできる。   Although not shown, a counter electrode is formed to complete the organic electroluminescent element. At this time, the counter electrode may be formed of a transparent electrode or a transparent metal electrode in the first region A, and may be formed of a transparent electrode or a reflective electrode in which a reflective film is laminated in the second region B. The counter electrode in the second region B can be formed of a transparent electrode or a transparent metal electrode like the counter electrode in the first region A.

図3は、反射膜の種類による反射度を示したグラフ図であって、反射膜としてAlNdを用いた場合(X)、反射膜であるAlNd上部にITOを形成した場合(Y)、そして反射膜で銀(Ag)を用いた場合(Z)の、光の波長による反射度を示す。ここで、前記反射膜で銀(Ag)が使われた場合(Z)では、銀(Ag)としては、銀の合金の一つであるATD−30(商品名)が用いられた。グラフに示したように反射膜で銀(Ag)を用いた場合(Z)、光の波長に関係なく反射度が、反射膜としてAlNdを用いた場合(X)と、反射膜であるAlNd上部にITOを形成した場合(Y)に比べて、15%程度高いことが分かる。   FIG. 3 is a graph showing the reflectivity according to the type of the reflection film. When AlNd is used as the reflection film (X), ITO is formed on the AlNd as the reflection film (Y), and reflection is performed. When silver (Ag) is used for the film (Z), the reflectivity according to the wavelength of light is shown. Here, when silver (Ag) was used in the reflective film (Z), ATD-30 (trade name) which is one of silver alloys was used as the silver (Ag). As shown in the graph, when silver (Ag) is used in the reflective film (Z), the reflectance is regardless of the wavelength of light, and when AlNd is used as the reflective film (X), the upper part of the AlNd as the reflective film It can be seen that it is about 15% higher than the case where ITO is formed on (Y).

そして、図4は、反射膜の種類と画素電極の厚さによる反射度を示したグラフ図であって、反射膜で銀(Ag)を用いた場合(X′、Y′)と、AlNdを用いた場合(Z′)の、光の波長による反射度を示す。この図で、前記銀(Ag)上部に形成される画素電極の厚さが125Åである場合(X′)と、250Åである場合(Y′)の光の波長による反射度が表されている。反射膜上部に形成される画素電極の厚さが250Åである場合、光の波長が500以下程度である短波長領域で反射度が顕著に低下する。このことから、反射膜として銀(Ag)を用いる場合、前記反射膜上部に形成される画素電極の厚さが薄いほど光の波長によって反射度の変化が少ないことが分かる。   FIG. 4 is a graph showing the reflectivity depending on the type of the reflective film and the thickness of the pixel electrode. When silver (Ag) is used in the reflective film (X ′, Y ′), AlNd is expressed as follows. When used (Z ′), the reflectivity according to the wavelength of light is shown. This figure shows the reflectivity according to the wavelength of light when the pixel electrode formed on the silver (Ag) has a thickness of 125 mm (X ') and 250 mm (Y'). . When the thickness of the pixel electrode formed on the reflective film is 250 mm, the reflectivity is remarkably lowered in a short wavelength region where the wavelength of light is about 500 or less. From this, it can be seen that when silver (Ag) is used as the reflective film, the change in reflectivity with the wavelength of light decreases as the thickness of the pixel electrode formed on the reflective film decreases.

従来技術により形成された有機電界発光表示素子を示した断面図である。1 is a cross-sectional view illustrating an organic light emitting display device formed according to a conventional technique. 他の従来技術により形成された有機電界発光表示素子を示した断面図である。It is sectional drawing which showed the organic electroluminescent display element formed by the other prior art. 本発明による有機電界発光表示素子の製造方法を示した断面図である。1 is a cross-sectional view illustrating a method for manufacturing an organic light emitting display device according to the present invention. 本発明による有機電界発光表示素子の製造方法を示した断面図である。1 is a cross-sectional view illustrating a method for manufacturing an organic light emitting display device according to the present invention. 反射膜の種類によった反射度を示したグラフの図である。It is the figure which showed the reflectivity by the kind of reflective film. 反射膜の種類と画素電極の厚さによる反射度を示したグラフの図である。It is the figure which showed the reflectance by the kind of reflection film, and the thickness of a pixel electrode.

符号の説明Explanation of symbols

100、200:透明絶縁基板
110、210:緩衝膜
120、220:ソース/ドレイン領域
122、222:多結晶シリコンパターン
130、230:ゲート絶縁膜
132、232:ゲート電極
140、240:層間絶縁膜
150、250:ソース電極
152、252:ドレイン電極
160、260:保護膜
170、270:第1絶縁膜
180a、180b、280:反射膜パターン
182:画素電極
282a:下部画素電極
282b:上部画素電極
190、290:第2絶縁膜パターン
192、292:発光層
100, 200: Transparent insulating substrate 110, 210: Buffer film 120, 220: Source / drain region 122, 222: Polycrystalline silicon pattern 130, 230: Gate insulating film 132, 232: Gate electrode 140, 240: Interlayer insulating film 150 250, source electrode 152, 252: drain electrode 160, 260: protective film 170, 270: first insulating film 180a, 180b, 280: reflective film pattern 182: pixel electrode 282a: lower pixel electrode 282b: upper pixel electrode 190, 290: Second insulating film pattern 192, 292: Light emitting layer

Claims (21)

第1領域と第2領域とを有する透明絶縁基板と、
前記透明絶縁基板上部の第1領域に形成され、ゲート電極及びソース/ドレイン電極を含む薄膜トランジスタと、前記透明絶縁基板上部の第2領域に形成され、ゲート電極及びソース/ドレイン電極を含む薄膜トランジスタと、
前記複数個の薄膜トランジスタを含んで前記透明絶縁基板上に形成される絶縁膜と、
前記絶縁膜内に形成されたビアコンタクトホールを介して前記第1領域のソース/ドレイン電極のうちいずれか一つに接続される下部画素電極と、前記絶縁膜内に形成されたビアコンタクトホールを介して前記第2領域のソース/ドレイン電極のうちいずれか一つに接続され、前記第1領域に形成される下部画素電極と同一の材料で形成される下部画素電極と、
前記第1領域の下部画素電極上部全面に具備される反射膜パターンと、
前記第1領域の反射膜パターン上部に具備される上部画素電極と、前記第2領域の下部画素電極上部に具備され、前記第1領域に形成される上部画素電極と同一の材料で形成される上部画素電極と、
前記第1領域の上部画素電極上部に具備されて少なくとも発光層を具備する有機膜層と、前記第2領域の上部画素電極上部に具備されて少なくとも発光層を具備する有機膜層と、
前記第1領域の有機膜層上部に具備される対向電極と、前記第2領域の有機膜層上部に具備される対向電極と、を含むことを特徴とする有機電界発光表示素子。
A transparent insulating substrate having a first region and a second region;
A thin film transistor including a gate electrode and a source / drain electrode formed in a first region above the transparent insulating substrate; and a thin film transistor including a gate electrode and a source / drain electrode formed in a second region above the transparent insulating substrate;
An insulating film formed on the transparent insulating substrate including the plurality of thin film transistors;
A lower pixel electrode connected to any one of the source / drain electrodes of the first region via a via contact hole formed in the insulating film; and a via contact hole formed in the insulating film. is connected to one of the source / drain electrode of the second region through a lower pixel electrode that will be formed of the same material as the lower pixel electrode formed on the first region,
A reflective film pattern provided on the entire upper surface of the lower pixel electrode of the first region;
An upper pixel electrode provided in the reflective layer pattern over the first region, is provided on the lower pixel electrode above the second region, Ru is formed of the same material as the upper pixel electrode formed on the first region An upper pixel electrode;
An organic film layer provided on the upper pixel electrode of the first region and including at least a light emitting layer; an organic film layer provided on the upper pixel electrode of the second region and including at least a light emitting layer;
An organic light emitting display device comprising: a counter electrode provided on an organic film layer in the first region; and a counter electrode provided on an organic film layer in the second region.
前記絶縁膜は、保護膜と平坦化膜の積層構造であることを特徴とする請求項1に記載の有機電界発光表示素子。   The organic electroluminescent display device according to claim 1, wherein the insulating film has a laminated structure of a protective film and a planarizing film. 前記絶縁膜は、無機絶縁膜と有機絶縁膜の積層構造であることを特徴とする請求項1に記載の有機電界発光表示素子。   The organic light emitting display device according to claim 1, wherein the insulating film has a laminated structure of an inorganic insulating film and an organic insulating film. 前記下部画素電極の厚さは、100〜1000Åであることを特徴とする請求項1に記載の有機電界発光表示素子。   The organic light emitting display device of claim 1, wherein the lower pixel electrode has a thickness of 100 to 1000 mm. 前記反射膜パターンは、銀(Ag)、プラチナ(Pt)及びパラジウム(Pd)で構成される群から選択される一つで形成されることを特徴とする請求項1に記載の有機電界発光表示素子。   The organic electroluminescent display according to claim 1, wherein the reflective film pattern is formed of one selected from the group consisting of silver (Ag), platinum (Pt), and palladium (Pd). element. 前記反射膜パターンは、銀(Ag)で形成されることを特徴とする請求項5に記載の有機電界発光表示素子。   The organic light emitting display device according to claim 5, wherein the reflective film pattern is made of silver (Ag). 前記反射膜パターンの厚さは、500〜3000Åであることを特徴とする請求項1に記載の有機電界発光表示素子。   The organic light emitting display device according to claim 1, wherein the reflective film pattern has a thickness of 500 to 3000 mm. 前記上部画素電極の厚さは、10〜300Åであることを特徴とする請求項1に記載の有機電界発光表示素子。   The organic light emitting display device of claim 1, wherein the upper pixel electrode has a thickness of 10 to 300 mm. 前記上部画素電極の厚さは、20〜100Åであることを特徴とする請求項8に記載の有機電界発光表示素子。   The organic light emitting display device of claim 8, wherein the upper pixel electrode has a thickness of 20 to 100 mm. 前記第1領域の対向電極は透明電極であって、第2領域の対向電極は透明電極または反射電極であることを特徴とする請求項1に記載の有機電界発光表示素子。   The organic light emitting display device according to claim 1, wherein the counter electrode of the first region is a transparent electrode, and the counter electrode of the second region is a transparent electrode or a reflective electrode. 第1領域及び第2領域を有する透明絶縁基板を提供する工程と、
前記透明絶縁基板上部の第1領域にゲート電極及びソース/ドレイン電極を含む薄膜トランジスタと、前記透明絶縁基板上部の第2領域にゲート電極及びソース/ドレイン電極を含む薄膜トランジスタと、を形成する工程と、
前記複数の薄膜トランジスタを含んで前記透明絶縁基板上に絶縁膜を形成する工程と、
前記絶縁膜をフォトエッチング工程でエッチングして、前記第1領域に形成されたソース/ドレイン電極のうちいずれか一つの電極を露出させるビアコンタクトホールと、前記第2領域に形成されたソース/ドレイン電極のうちいずれか一つの電極を露出させるビアコンタクトホールと、を形成する工程と、
前記第1領域に形成されたビアコンタクトホールを介して前記ソース/ドレイン電極のうちいずれか一つに接続される下部画素電極と、前記第2領域に形成されたビアコンタクトホールを介して前記ソース/ドレイン電極のうちいずれか一つに接続される下部画素電極と、を同時に形成する工程と、
前記第1領域の下部画素電極上部全面に反射膜パターンを形成する工程と、
前記第1領域の反射膜パターン上部に上部画素電極と、前記第2領域の下部画素電極上部に上部画素電極と、を同時に形成する工程と、
前記第1領域の上部画素電極上部に少なくとも発光層を含む有機膜と、前記第2領域の上部画素電極上部に少なくとも発光層を含む有機膜と、を形成する工程と、
前記第1領域の有機膜上部に対向電極と、前記第2領域の有機膜上部に対向電極と、を形成する工程を含むことを特徴とする有機電界発光表示素子の製造方法。
Providing a transparent insulating substrate having a first region and a second region;
Forming a thin film transistor including a gate electrode and a source / drain electrode in a first region above the transparent insulating substrate; and a thin film transistor including a gate electrode and a source / drain electrode in a second region above the transparent insulating substrate;
Forming an insulating film on the transparent insulating substrate including the plurality of thin film transistors;
The insulating film is etched by a photoetching process to expose one of the source / drain electrodes formed in the first region, and the source / drain formed in the second region. Forming a via contact hole exposing any one of the electrodes;
A lower pixel electrode connected to any one of the source / drain electrodes through a via contact hole formed in the first region; and the source through a via contact hole formed in the second region. Forming a lower pixel electrode connected to any one of the / drain electrodes at the same time ;
Forming a reflective film pattern on the entire upper surface of the lower pixel electrode in the first region;
Simultaneously forming an upper pixel electrode on the reflective film pattern of the first region and an upper pixel electrode on the lower pixel electrode of the second region;
Forming an organic film including at least a light emitting layer on the upper pixel electrode of the first region, and an organic film including at least a light emitting layer on the upper pixel electrode of the second region;
A method of manufacturing an organic light emitting display device, comprising: forming a counter electrode on the organic film in the first region; and forming a counter electrode on the organic film in the second region.
前記絶縁膜は、保護膜と平坦化膜の積層構造であることを特徴とする請求項11に記載の有機電界発光表示素子の製造方法。   12. The method of manufacturing an organic light emitting display device according to claim 11, wherein the insulating film has a laminated structure of a protective film and a planarizing film. 前記絶縁膜は、無機絶縁膜と有機絶縁膜の積層構造であることを特徴とする請求項11に記載の有機電界発光表示素子の製造方法。   The method of manufacturing an organic light emitting display device according to claim 11, wherein the insulating film has a laminated structure of an inorganic insulating film and an organic insulating film. 前記ビアコンタクトホールは、2回にわたるフォトエッチング工程で形成されることを特徴とする請求項11ないし13のうちいずれか一つの項に記載の有機電界発光表示素子の製造方法。   14. The method of manufacturing an organic light emitting display device according to claim 11, wherein the via contact hole is formed by two photo-etching steps. 前記下部画素電極は、100〜1000Å厚さに形成されることを特徴とする請求項11に記載の有機電界発光表示素子の製造方法。   The method of claim 11, wherein the lower pixel electrode is formed to a thickness of 100 to 1000 mm. 前記反射膜パターンは、銀(Ag)、プラチナ(Pt)及びパラジウム(Pd)で構成される群から選択される一つであることを特徴とする請求項11に記載の有機電界発光表示素子の製造方法。   The organic light emitting display device of claim 11, wherein the reflective film pattern is one selected from the group consisting of silver (Ag), platinum (Pt), and palladium (Pd). Production method. 前記反射膜パターンは、銀(Ag)であることを特徴とする請求項16に記載の有機電界発光表示素子の製造方法。   The method of claim 16, wherein the reflective film pattern is silver (Ag). 前記反射膜パターンの厚さは、500〜3000Åであることを特徴とする請求項11に記載の有機電界発光表示素子の製造方法。   The method of claim 11, wherein the reflective film pattern has a thickness of 500 to 3000 mm. 前記上部画素電極の厚さは、10〜300Åであることを特徴とする請求項11に記載の有機電界発光表示素子の製造方法。   12. The method of claim 11, wherein the upper pixel electrode has a thickness of 10 to 300 mm. 前記上部画素電極の厚さは、20〜100Åであることを特徴とする請求項19に記載の有機電界発光表示素子の製造方法。   The method of claim 19, wherein the upper pixel electrode has a thickness of 20-100mm. 前記第1領域の対向電極は透明電極であって、第2領域の対向電極は透明電極または反射電極であることを特徴とする請求項11に記載の有機電界発光表示素子の製造方法。   The method according to claim 11, wherein the counter electrode in the first region is a transparent electrode, and the counter electrode in the second region is a transparent electrode or a reflective electrode.
JP2005042917A 2004-05-24 2005-02-18 Organic light emitting display device and method for manufacturing the same Active JP4521295B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040037052A KR20050112031A (en) 2004-05-24 2004-05-24 Contact hole and method fabricating thereof

Publications (2)

Publication Number Publication Date
JP2005340168A JP2005340168A (en) 2005-12-08
JP4521295B2 true JP4521295B2 (en) 2010-08-11

Family

ID=35493467

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2005042917A Active JP4521295B2 (en) 2004-05-24 2005-02-18 Organic light emitting display device and method for manufacturing the same
JP2005068159A Active JP4430568B2 (en) 2004-05-24 2005-03-10 Semiconductor device and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2005068159A Active JP4430568B2 (en) 2004-05-24 2005-03-10 Semiconductor device and manufacturing method thereof

Country Status (3)

Country Link
JP (2) JP4521295B2 (en)
KR (1) KR20050112031A (en)
CN (1) CN100481512C (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1819202B1 (en) * 2006-02-10 2011-04-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR20070092455A (en) * 2006-03-10 2007-09-13 삼성전자주식회사 Display device and manufacturing method thereof
JP5098294B2 (en) * 2006-10-30 2012-12-12 株式会社デンソー Method for manufacturing silicon carbide semiconductor device
KR100824880B1 (en) 2006-11-10 2008-04-23 삼성에스디아이 주식회사 Organic light emitting display device and manufacturing method thereof and moving device therefor
KR100824881B1 (en) 2006-11-10 2008-04-23 삼성에스디아이 주식회사 Organic light emitting display device and manufacturing method thereof and moving device therefor
KR100833738B1 (en) 2006-11-30 2008-05-29 삼성에스디아이 주식회사 Organic light emitting display device and manufacturing method thereof
KR100824902B1 (en) 2006-12-13 2008-04-23 삼성에스디아이 주식회사 Organic light emitting display device and manufacturing method thereof
JP5426138B2 (en) * 2008-10-17 2014-02-26 株式会社ジャパンディスプレイ Display device and manufacturing method thereof
KR101777246B1 (en) * 2010-08-30 2017-09-12 삼성디스플레이 주식회사 Organic light emitting display device and manufacturing method of the same
US8901554B2 (en) * 2011-06-17 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including channel formation region including oxide semiconductor
JP6286941B2 (en) 2013-08-27 2018-03-07 セイコーエプソン株式会社 LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE MANUFACTURING METHOD, ELECTRONIC DEVICE
CN104701243A (en) * 2013-12-09 2015-06-10 昆山国显光电有限公司 Through hole etching method
CN103700625A (en) * 2013-12-23 2014-04-02 京东方科技集团股份有限公司 Production method of array substrate, array substrate and display device
CN104022042B (en) * 2014-06-10 2017-01-25 京东方科技集团股份有限公司 Manufacturing method for low-temperature polycrystalline silicon thin film transistor and array substrate
CN104994126B (en) * 2015-05-15 2018-05-04 浙江地球村环保科技有限公司 A kind of air Map Analysis System
CN104952934B (en) * 2015-06-25 2018-05-01 京东方科技集团股份有限公司 Thin film transistor (TFT) and manufacture method, array base palte, display panel
KR102447451B1 (en) * 2016-01-20 2022-09-27 삼성디스플레이 주식회사 Organic light emitting display device
JP6725317B2 (en) * 2016-05-19 2020-07-15 株式会社ジャパンディスプレイ Display device
KR102571024B1 (en) * 2016-10-12 2023-08-25 삼성디스플레이 주식회사 Organic light emitting display and driving method thereof
KR102260807B1 (en) 2016-11-30 2021-06-07 가부시키가이샤 리코 Coating liquid for forming oxide or oxynitride insulator film, oxide or oxynitride insulator film, field effect transistor and manufacturing method thereof
JP6758208B2 (en) * 2017-01-26 2020-09-23 三菱電機株式会社 Manufacturing method of liquid crystal display device and TFT array substrate
CN107134412B (en) * 2017-03-23 2019-08-16 北京理工大学 A kind of source-drain electrode via etch technique and application
JP2018176493A (en) * 2017-04-07 2018-11-15 三菱マテリアル株式会社 LAMINATED FILM AND Ag ALLOY SPUTTERING TARGET
CN109860106B (en) * 2019-02-28 2020-11-03 合肥京东方光电科技有限公司 Preparation method of display substrate
CN110136574B (en) * 2019-05-13 2020-10-09 友达光电(昆山)有限公司 Display panel
CN111725324B (en) 2020-06-11 2021-11-02 武汉华星光电半导体显示技术有限公司 Thin film transistor, array substrate and manufacturing method thereof
CN112038357A (en) * 2020-08-31 2020-12-04 上海天马有机发光显示技术有限公司 Display panel, display device and preparation method
CN113517223B (en) * 2021-06-29 2024-03-15 上海华力集成电路制造有限公司 Method for manufacturing active area metal zero layer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324662A (en) * 2001-04-23 2002-11-08 Semiconductor Energy Lab Co Ltd Display device and its manufacturing method
JP2003345271A (en) * 2002-05-28 2003-12-03 Sharp Corp Both-face display device
JP2004014514A (en) * 2002-06-07 2004-01-15 Lg Electron Inc Amel display panel and its manufacturing method
JP2004031324A (en) * 2002-06-22 2004-01-29 Samsung Sdi Co Ltd Organic electroluminescence element
JP2004086014A (en) * 2002-08-28 2004-03-18 Toshiba Corp Display device and electronic apparatus
JP2004207217A (en) * 2002-12-11 2004-07-22 Sony Corp Display device and manufacturing method of the same
WO2004068910A1 (en) * 2003-01-24 2004-08-12 Semiconductor Energy Laboratory Co. Ltd. Light-emitting device, method for manufacturing same and electric apparatus using such light-emitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324662A (en) * 2001-04-23 2002-11-08 Semiconductor Energy Lab Co Ltd Display device and its manufacturing method
JP2003345271A (en) * 2002-05-28 2003-12-03 Sharp Corp Both-face display device
JP2004014514A (en) * 2002-06-07 2004-01-15 Lg Electron Inc Amel display panel and its manufacturing method
JP2004031324A (en) * 2002-06-22 2004-01-29 Samsung Sdi Co Ltd Organic electroluminescence element
JP2004086014A (en) * 2002-08-28 2004-03-18 Toshiba Corp Display device and electronic apparatus
JP2004207217A (en) * 2002-12-11 2004-07-22 Sony Corp Display device and manufacturing method of the same
WO2004068910A1 (en) * 2003-01-24 2004-08-12 Semiconductor Energy Laboratory Co. Ltd. Light-emitting device, method for manufacturing same and electric apparatus using such light-emitting device

Also Published As

Publication number Publication date
JP2005340776A (en) 2005-12-08
KR20050112031A (en) 2005-11-29
CN100481512C (en) 2009-04-22
JP2005340168A (en) 2005-12-08
JP4430568B2 (en) 2010-03-10
CN1725511A (en) 2006-01-25

Similar Documents

Publication Publication Date Title
JP4521295B2 (en) Organic light emitting display device and method for manufacturing the same
JP4308167B2 (en) Organic light emitting display device and method for manufacturing the same
KR100579198B1 (en) Organic light emitting display device and fabricating method of the same
US7687984B2 (en) Organic light emitting display device and method for fabricating the same
EP1840984B1 (en) Organic light emitting display device and method of fabricating the same
KR100667082B1 (en) Organic light-emitting device and fabrication method of the same
KR100579194B1 (en) Method for fabricating an Organic light emitting display device
KR100731753B1 (en) Both-sides emitting organic electroluminescence display device and fabricating Method of the same
JP4398403B2 (en) Organic EL display element and manufacturing method thereof
KR100635065B1 (en) Organic light emitting display device and the method for fabricating of the same
KR100807557B1 (en) Organic light emitting diode display device and manufacturing of thereof
JP2006135337A (en) Organic electroluminescence display element and method of manufacturing the same
KR100600872B1 (en) Organic light emitting display device and the method for fabricating of the same
KR100685424B1 (en) Organic electro luminescence display and methode for manufacturing the same
KR100685423B1 (en) Organic electro luminescence display and methode for manufacturing the same
KR100611757B1 (en) Organic light emitting display device and the method for fabricating of the same
KR100742377B1 (en) Organic electro luminescence device and fabricating method of the same
KR100685397B1 (en) Flat panel display device and Fabricating method of the same
KR100685839B1 (en) Oled and fabricating method of the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080807

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4521295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250