JP4519236B2 - Method for manufacturing member for plasma display, member for plasma display, and plasma display using the same. - Google Patents

Method for manufacturing member for plasma display, member for plasma display, and plasma display using the same. Download PDF

Info

Publication number
JP4519236B2
JP4519236B2 JP2000022013A JP2000022013A JP4519236B2 JP 4519236 B2 JP4519236 B2 JP 4519236B2 JP 2000022013 A JP2000022013 A JP 2000022013A JP 2000022013 A JP2000022013 A JP 2000022013A JP 4519236 B2 JP4519236 B2 JP 4519236B2
Authority
JP
Japan
Prior art keywords
electrode
divided
plasma display
electrode pattern
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000022013A
Other languages
Japanese (ja)
Other versions
JP2001210228A (en
Inventor
渡邊  修
健太郎 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000022013A priority Critical patent/JP4519236B2/en
Publication of JP2001210228A publication Critical patent/JP2001210228A/en
Application granted granted Critical
Publication of JP4519236B2 publication Critical patent/JP4519236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、壁掛けテレビや大型モニターに用いられるプラズマディスプレイ用部材およびプラズマディスプレイの製造方法に係り、特にプラズマディスプレイ用部材の電極の形成および導通検査をする製造方法に関する。
【0002】
【従来の技術】
薄型・大型テレビに使用できるディスプレイとして、プラズマディスプレイ(以下、PDPと略す)が注目されている。PDPの構造例の分解斜視図を図6に示す。PDPは、例えば、表示面となる前面板側のガラス基板には、対をなす複数のサステイン電極が銀やクロム、アルミニウム、ニッケル等の材料で形成されている。さらにサステイン電極を被覆してガラスを主成分とする誘電体層が20〜50μm厚みで形成され、誘電体層を被覆してMgO層が形成されている。一方、背面板側のガラス基板101には、複数のアドレス電極102がストライプ状に形成され、アドレス電極を被覆してガラスを主成分とする誘電体層が形成されている。誘電体層上に放電セルを仕切るための隔壁が形成され、隔壁と誘電体層で形成された放電空間内に蛍光体層が形成されてなる。フルカラー表示が可能なPDPにおいては、蛍光体層は、RGBの各色に発光するものにより構成される。前面板側のガラス基板のサステイン電極と背面板側のアドレス電極102が互いに直交するように、前面板と背面板が封着され、それらの基板の間隙内にヘリウム、ネオン、キセノンなどから構成される希ガスが封入され、図7に記載したスキャンドライバIC、アドレスドライバICなどの駆動回路が実装されてPDPが形成される。スキャン電極とアドレス電極の交点を中心として画素セルが形成されるので、PDPは複数の画素セルを有し、画像の表示が可能になる。
【0003】
PDPにおいて表示を行う際、選択された画素セルにおいて、発光していない状態からスキャン電極とアドレス電極との間に放電開始電圧以上の電圧を印加すると電離によって生じた陽イオンや電子は、画素セルが容量性負荷であるために放電空間内を反対極性の電極へと向けて移動してMgO層の内壁に帯電し、内壁の電荷はMgO層の抵抗が高いために減衰せずに壁電荷として残留する。
【0004】
次に、スキャン電極とサステイン電極の間に放電維持電圧を印加する。壁電荷のあるところでは、放電開始電圧より低い電圧でも放電することができる。放電により放電空間内のキセノンガスが励起され、147nmの紫外線が発生し、紫外線が蛍光体を励起することにより、発光表示が可能になる。
【0005】
このようなPDPにおいては、蛍光面を発光させた場合の輝度を高めることが重要となっている。この輝度を高めるための手段として、図7に示すように、一般に、背面板のストライプ状のアドレス電極を中央部で上下2群に分割し、表示を行う画素セルを選択するためアドレススキャンを上下同時に行うことでアドレス選択期間を半減させ、蛍光面が発光させる放電維持期間をその分を長くすることで輝度を高めるデュアルスキャン駆動方法が知られている。
【0006】
この背面板のアドレス電極は、従来、スクリーン印刷法、エッチング法、感光性ペースト法などの形成時に、予め、スクリーン版ならびフォトマスクのストライブ状パターンが図5で示す中央部で上下2群に分割した図4のパターンのものを用いて、形成されており、各電極の長手方向導端部間および電極隣接間の導通検査を特公平7−66022号公報あるいは特開平11−233021号公報等に記載されているプローブ法で行っていた。
【0007】
【発明が解決しようとする課題】
しかし、電極が分割された部分においては導通が取れないので、電極を分割しない時と比べて、同一数の検査プローブだけでは時間が倍かかり製造タクトが遅くなる。また、検査プローブ数を2倍にした場合はタクトは同じになるが、処理能力の負荷が上昇するため測定装置の能力を上げる必要があり、装置コストが高くなるという問題がある。また、導通検査時に基板中央部の分割部分に検査プローブが接触するため、検査時に電極を傷付けることがあり、欠陥となる場合がある。さらに、電極形成以降の誘電体層、隔壁、蛍光体層を形成した後には導通検査を行うことができず、電極形成以降の電極部に発生する欠陥を見過ごすことにより、パネル化し点灯した時にアドレスドライバICを破壊するという問題がある。
【0008】
本発明は、電極が2群以上に分割されたプラズマディスプレイ用部材において、このような従来の導通検査方法の欠陥を改善し、欠陥がなく信頼性に優れたプラズマディスプレイ用部材の製造方法、およびプラズマディスプレイ用部材ならびプラズマディスプレイを提供することを目的とする。
【0009】
【課題を解決するための手段】
すなわち本発明は、基板上にストライプ状の電極パターンを形成し、各電極の長手方向導端部間および隣接電極間の導通検査を行った後、ストライプ状の電極パターンを2群以上に分断することを特徴とするプラズマディスプレイ用部材の製造方法であって、該電極パターンの分断予定部分の幅Wcut(μm)が該電極パターンの分断しない部分の幅Wa(μm)よりも小さく、かつ10μm以上であることを特徴とするプラズマディスプレイ用部材の製造方法である。
【0011】
【発明の実施の形態】
以下に、本発明の好ましい実施の形態についてPDPの作製手順に沿って説明する。
【0012】
(背面板)
本発明の背面板製造フロー例を図3に示す。
本発明ではまず、基板上にストライプ状の電極パターンを形成する。本発明のPDP用部材に用いる基板としては通常ガラス基板が用いられ、ソーダガラスの他にPDP用の耐熱ガラスである旭硝子社製の“PD200”や日本電気硝子社製の“PP8”を用いることができる。
【0013】
ガラス基板101上に銀やアルミニウム、クロム、ニッケルなどの金属によりアドレス電極102を表示セル(画素の各RGBを形成する領域)のピッチにてストライプ状に形成する。形成する方法としては、これらの金属の粉末と有機バインダーを主成分とする金属ペーストをスクリーン印刷でパターン印刷する方法や、有機バインダーとして感光性有機成分を用いた感光性金属ペーストを塗布した後に、フォトマスクを用いてパターン露光し、不要な部分を現像工程で溶解除去し、さらに、400〜600℃に加熱・焼成して金属パターンを形成する感光性ペースト法を用いることができる。また、ガラス基板上にクロム、銅やアルミニウム等の金属を蒸着した後に、レジストを塗布し、レジストをフォトマスクを用いてパターン露光・現像した後にエッチングにより、不要な部分の金属を取り除くエッチング法を用いることができる。このとき用いるスクリーン版やフォトマスクは電極群の分断予定部分(104)が、図1、図2に示すように分断されていないものを使用する。
【0014】
レーザー照射により分断する場合は、分断予定部分の電極の幅Wcut(μm)分断しない部分の電極の幅Wa(μm)は、図1のように、WcutがWaよりも小さいことが必要であり、レーザー照射または過電流よる分断が小さいエネルギーで短時間で効率良くできるが、10μm未満になると、電極形成が困難でまた僅かな欠陥で断線するという問題が生じる。また、過電流で分断を行う場合は、分断予定部分の電極の幅Wcutは電極Waに対して十分小さいことが好ましく、10μm≦Wcut≦Wa/2の範囲にあることが好ましい。
【0015】
電極厚みは1〜10μmが好ましく、2〜5μmがより好ましい。電極厚みが薄すぎると抵抗値が大きくなり正確な駆動が困難となり、また消費電力も上昇する傾向にある。厚すぎると材料が多く必要になり、コスト的に不利な傾向にある。
アドレス電極の幅は、20〜250μm、より好ましくは30〜100μmであり、幅が細すぎると抵抗値が高くなり正確な駆動が困難となる傾向にあり、太すぎると隣合う電極間の距離が短くなるため、ショート欠陥が生じやすい傾向にある。さらに、アドレス電極は表示セルに応じたピッチで形成される。通常のPDPでは100〜500μm、高精細PDPにおいては100〜250μmのピッチで形成するのが好ましい。
【0016】
次に、本発明では、各電極の長手方向導端部間および隣接電極間の導通検査を行う。電極形成後の導通検査は、検査用のピンプローブまたはバンププローブを用いたオープン/ショート検査装置を用いたプローブ検査法で行う。すなわち、ガラス基板(101)上に形成した電極の両端子部に検査用プローブヘッドをコンタクトし、所定の2箇所間に電圧をかけ、その間の導通の有無を確認する操作を電極の長手方向導端部間および隣接電極間で行い、同一配線内の長手方向導端部間で導通がとれないオープン欠陥が無いことおよび隣接電極で導通しているショート欠陥がないことを検査し、2つの欠陥が基板上皆無のものを良品として選別し次の工程に流す。同一配線内の電極にオープン欠陥箇所があり導通が取れなかった基板や隣接配線の電極と導通がとれ隣接間でショートした欠陥がある不良品は欠陥箇所修復後、後工程に流す。
【0017】
修復方法としては、まず導通検査にてオープン、ショート欠陥が抽出した箇所をCCDなどの撮影手段により得られた画像データを画像処理することにより形状欠陥座標を抽出する画像処理検査方法にて、欠陥箇所を特定する。次に欠陥の種類に応じて、オープン欠陥の場合、修復用導電ペーストを欠陥部分に針、注射器、ディスペンサーなどを使用して付け、その後焼成して修復する。焼成は焼成炉で基板全体を加熱する方法やNd:YAGレーザーなどのレーザーで修復場所だけ加熱し焼成する方法があるが、欠陥修正の作業効率がよいことからレーザーによる方法が好ましい。ショート欠陥の場合、レーザー光など照射して焼き切り修復する。これらの本発明の導通検査、欠陥修復方法は、ガラス中央部で上下2分割されているデュアルスキャン駆動用背面板をそのまま検査する場合と比較して、検査時間が約半分で済み生産効率が良くなる。
【0018】
次に、本発明ではストライプ状の電極パターンを2群以上に分断する。電極分断する方法としては、刃物等により機械的に分断する方法もあるが、基板を傷つけずに電極を分断できるレーザーの照射光や過電流による加熱により分断することが好ましい。
【0019】
レーザーは、ガラス基板の吸収帯を外れて透過する波長0.5〜2.0μmの範囲であることが好ましい。具体的には、Nd:YAGレーザー、半導体レーザーがあげられるが、本発明はこれらのレーザーに限定されるものではない。分断方法は特に限定しないが、電極の分断予定部分とレーザーの照射により蒸発した物がガラス基板上に飛散して付着しないように、電極を形成した面を下にし電極を形成した面の裏面からレーザーを照射することが好ましい。
【0020】
レーザーのスキャンは、レーザー発振器固定でガラス基板を移動、ガラス基板固定でレーザー発振器を移動またはポリゴンミラーなどにより光学的にスキャンするどの方法でも良い。分断する長さWd(μm)は、パネルの精細度などにより決まり、通常のPDPでは70〜200μm、高精細PDPでは30〜100μmが好ましい。また、分断を過電流で行う場合は、導通検査、選別、修復後、電極間に分断部のみが抵抗加熱により焼き切れるように過電流を流し分断する。電極間に過電流を流す装置としては、電極を共通結線して一括に分断する専用装置でも導通検査用プローブをそのまま利用しても良い。さらに、分断にあたってはレーザーなどの照射後、より確実に分断するため過電流を併用しても良い。
【0021】
必要であれば分断部の検査は通常の画像処理法やプローブ検査法で行うが、好ましくは分断する前のプローブ検査後、プローブを付けたまま選別、修復、分断を行い、最後にオープン検査を行うことが良い。
【0022】
以上のようにして、ガラス基板の上に所定の電極群に分割されたアドレス電電極層を得ることができる。放電の安定化のためにアドレス電極層の上に誘電体層を設けても良い。
【0023】
アドレス電極層を形成したガラス基板上に、電極層と平行に位置した隔壁をサンドブラスト法、型転写法、フォトリソグラフィー法等によって形成する。本発明に使用する隔壁の材料としては特に限定されず、好ましくは珪素およびホウ素の酸化物を含有するガラス材料が適用される。また、フォトリソグラフィー法によって隔壁を形成する場合、屈折率が1.5〜1.68のガラス材料を70重量%以上含むことが有利である。
【0024】
電極層および隔壁層を形成したガラス基板上に蛍光体層を、感光性蛍光体ペーストを用いたフォトリソグラフィー法、ディスペンサー法、スクリーン印刷法等によって形成する。本発明に使用する蛍光体材料は特に限定されず、蛍光体粉末が適用される。例えば、赤色では、Y23:Eu、YVO4:Eu、(Y、Gd)BO3:Eu、Y23S:Eu、γ−Zn3(PO42:Mnがある。緑色では、Zn2GeO2:Mn、BaAl1219:Mn、Zn2SiO4:Mn、LaPO4:Tb、ZnS:Cu,Al、Zn2SiO4:Mn,As、(ZnCd)S:Cu,Al、ZnO:Znなどがある。青色では、Sr5(PO43Cl:Eu、BaMgAl1423:Eu、BaMgAl1017:Eu、BaMg2Al1424:Eu、ZnS:Ag+赤色顔料、Y2SiO3:Ceなどである。
このようにして、背面板を作製することができる。
【0025】
(前面板)
前面板に用いるガラス基板については、背面板に述べたものと同様である。
【0026】
まず、ガラス基板上に、酸化錫、ITOなどの透明電極をリフトオフ法、フォトエッチング法などによって形成する。
【0027】
透明電極を形成したガラス基板上に、銀やアルミ、銅、金、ニッケル等をスクリーン印刷や感光性導電ペーストを用いたフォトリソグラフィー法によって、バス電極層をパターン形成する。透明電極およびバス電極を形成したガラス基板上に、透明誘電体層をスクリーン印刷法などにより形成する。本発明に使用する透明誘電体材料は特に限定されないが、PbO、B23、SiO2を含有する誘電体材料が適用される。
【0028】
さらに、透明誘電体層を保護し放電電圧を下げる目的で、透明誘電体層を覆う形で保護膜を形成する。保護膜には、一般にアルカリ土類金属の酸化物を用いることができる。特にMgOは耐スパッタ性に優れ、2次電子放出係数が高いため、好ましく適用される。MgO保護膜は電子ビーム蒸着法、Mgターゲットの反応性スパッタ法、イオンプレーティング法で形成する。
【0029】
このようにして前面板を作製することができる。
【0030】
(プラズマディスプレイ)
これらプラズマディスプレイ用部材の背面板と前面板を用いて、背面板と前面板と封着後、前背面の基板間隔に形成された空間に、ヘリウム、ネオン、キセノンなどから構成される放電ガスを封入後、駆動回路を装着してプラズマディスプレイを作製できる。
【0031】
【実施例】
以下に、本発明を実施例を用いて、具体的に説明する。
参考例1)
(前面板の作製)旭硝子社製”PD200”13インチのガラス基板上に、ITOを用いて、ピッチ375μm、線幅150μmのスキャン電極を形成した。また、その基板上に感光性銀ペースト法で電極幅50μm、厚み3μmのバス電極を形成した。次に、透明誘電体ガラスペーストをスクリーン印刷により、表示部分のバス電極が覆われるように50μmの厚みで前面誘電体を形成した。誘電体を形成した基板上に電子ビーム蒸着により保護膜として、厚み0.5μmの酸化マグネシウム層を形成して前面板を作製した。
【0032】
(背面板の作製)
”PD200”13インチガラス基板上に感光性銀ペースト用いてアドレス電極を作成した。感光性銀ペーストを塗布、乾燥し、図2に示す上下に分断されていない電極幅Wa=50μm、ピッチ250μmの電極用フォトマスクで露光、その後現像、焼成工程を経て、Wa=50μm、厚み3μm、ピッチ250μmのアドレス電極を形成した。
【0033】
次に、アドレス電極間にプローブヘッドをコンタクトしプローブ法による導通検査を行い、良品と不良品を選別し、不良品は修復した。
【0034】
電極の分断は、Nd:YAGレーザーを使用した。出射パルスエネルギー10mJ、パルス繰り返し周波数10Hzでビーム直径を50μmで分断部にスキャンさせながらアドレス電極が形成されている基板の表面から照射し、電極をWcut=50μm、Wd=60μmで上下に分断した。この時、導通検査から分断まで従来の上下分割アドレス電極基板の約6割の時間で処理できた。
【0035】
次いで誘電体層をスクリーン印刷法により20μm形成した。次いで感光性隔壁ペーストを用いたフォトリソグラフィー法により隔壁を形成した。次いでディスペンサ法を用いて蛍光体層を形成した。蛍光体粉末は、赤:(Y,Gd,Eu)BO3、緑:(Zn,Mn)2SiO4、青:(Ba,Eu)MgAl107の組成のものを用いた。かくして背面板を作製した。
【0036】
(プラズマディスプレイの作製)
前面板と背面板をマトリクス表示駆動が可能になるように合わせて、封着用ガラスフリットで封着し350℃に加熱しながら真空排気した後、Xe5%−Neガスを67kPa封入した。スキャン電極はスキャンライバICを介して駆動回路基板のスキャン電極側パルス発生器と接続し、サステイン電極はサステイン電極側パルス発生器と接続し、アドレス電極はアドレスドライバICを介して映像処理部を接続し、プラズマディスプレイを作製した。
【0037】
PDPのアドレス電極に画像データ信号を付加した電圧を印加させ発光させた。欠陥や画質の乱れのない良好な表示特性を得ることができた。
【0038】
(実施例)図1に示すWa=50μm、Wcut=20μm、Wd=50μmの電極用フォトマスクを用いてアドレス電極基板を作製し、出射パルスエネルギー5mJ、パルス繰り返し周波数10Hzでビーム直径を50μmで分断部に照射し、電極をWcut=20μm、Wd=50μmで上下に分断した以外は参考例1と同様に作製した。欠陥や画質の乱れのない良好な表示特性を得ることができた。
【0039】
(実施例)出射パルスエネルギー6mJにし、アドレス電極が形成されている基板の裏面から照射する以外は実施例と同様に作製した。欠陥や画質の乱れのない良好な表示特性を得ることができた。
【0040】
(実施例)Wa=50μm、Wcut=10μm、Wd=50μmの電極用フォトマスクを用いてアドレス電極基板を作製し、Nd:YAGレーザーの照射の変わりに電極間に数Aの過電流を電極が焼き切れ、導通が取れなくなるまで流し電極を分断した以外は実施例と同様に作製した。欠陥や画質の乱れのない良好な表示特性を得ることができた。
【0041】
【発明の効果】
本発明によれば、電極が2群以上に分割されたプラズマディスプレイ用部材において、欠陥や画質の乱れがなく信頼性に優れたプラズマディスプレイ用部材の製造方法、およびプラズマディスプレイ用部材ならびにプラズマディスプレイを提供できる。
【図面の簡単な説明】
【図1】本発明で形成した電極の分断予定部分を示す電極の一態様の拡大平面図。
【図2】本発明で形成した電極の分断予定部分を示す電極の別の態様の拡大平面図。
【図3】本発明における背面板製造フロー図。
【図4】電極形成用フォトマスクおよびスクリーン版のパターン例図。
【図5】分割された電極群の分割部を示す拡大図。
【図6】プラズマディスプレイの分解斜視図。
【図7】プラズマディスプレイの駆動回路の系図。
【符号の説明】
101 ガラス基板
102 電極
103 電極分断予定部分周辺
104 電極分断予定部分
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a member for a plasma display used for a wall-mounted television or a large monitor, and a method for manufacturing the plasma display, and more particularly to a method for forming electrodes of the member for plasma display and a continuity test.
[0002]
[Prior art]
Plasma displays (hereinafter abbreviated as PDPs) are attracting attention as displays that can be used in thin and large televisions. An exploded perspective view of a structural example of the PDP is shown in FIG. In the PDP, for example, a plurality of paired sustain electrodes are formed of a material such as silver, chromium, aluminum, or nickel on a glass substrate on the front plate side serving as a display surface. Further, a dielectric layer mainly composed of glass is formed with a thickness of 20 to 50 μm by covering the sustain electrode, and an MgO layer is formed by covering the dielectric layer. On the other hand, on the glass substrate 101 on the back plate side, a plurality of address electrodes 102 are formed in stripes, and a dielectric layer mainly composed of glass is formed covering the address electrodes. A barrier rib for partitioning the discharge cells is formed on the dielectric layer, and a phosphor layer is formed in a discharge space formed by the barrier rib and the dielectric layer. In a PDP capable of full color display, the phosphor layer is composed of materials that emit light of RGB colors. The front plate and the back plate are sealed so that the sustain electrode of the glass substrate on the front plate side and the address electrode 102 on the back plate side are orthogonal to each other, and helium, neon, xenon, etc. are formed in the gap between the substrates. A noble gas is sealed, and driving circuits such as the scan driver IC and the address driver IC described in FIG. 7 are mounted to form a PDP. Since the pixel cell is formed around the intersection of the scan electrode and the address electrode, the PDP has a plurality of pixel cells and can display an image.
[0003]
When performing display in the PDP, when a voltage higher than the discharge start voltage is applied between the scan electrode and the address electrode in a selected pixel cell when light is not emitted, positive ions and electrons generated by ionization are Is a capacitive load and moves toward the opposite polarity electrode in the discharge space and charges the inner wall of the MgO layer. The inner wall charge is not attenuated due to the high resistance of the MgO layer, and becomes a wall charge. Remains.
[0004]
Next, a sustaining voltage is applied between the scan electrode and the sustain electrode. Where there is a wall charge, it can be discharged even at a voltage lower than the discharge start voltage. The xenon gas in the discharge space is excited by the discharge, and ultraviolet light having a wavelength of 147 nm is generated. The ultraviolet light excites the phosphor, thereby enabling light emission display.
[0005]
In such a PDP, it is important to increase the luminance when the phosphor screen emits light. As a means for increasing the brightness, as shown in FIG. 7, generally, the stripe-shaped address electrodes on the back plate are divided into two upper and lower groups at the center, and the address scan is performed in order to select a pixel cell to be displayed. A dual-scan driving method is known in which the address selection period is halved by performing simultaneously and the luminance is increased by extending the discharge maintaining period in which the phosphor screen emits light.
[0006]
Conventionally, the address electrodes on the back plate are divided into two groups in the upper and lower groups at the center shown in FIG. 5 in advance when the screen printing method, etching method, photosensitive paste method, etc. are formed. It is formed by using the divided pattern of FIG. 4 and conducts a continuity test between the longitudinal direction leading ends of each electrode and between adjacent electrodes in Japanese Patent Publication No. 7-66022 or Japanese Patent Laid-Open No. 11-233021. The probe method described in (1) was performed.
[0007]
[Problems to be solved by the invention]
However, since conduction cannot be obtained at the portion where the electrodes are divided, the time required for the same number of inspection probes is doubled and the manufacturing tact is delayed as compared with the case where the electrodes are not divided. Further, when the number of inspection probes is doubled, the tact is the same, but since the processing load increases, it is necessary to increase the capacity of the measuring apparatus, which causes a problem that the apparatus cost increases. Further, since the inspection probe comes into contact with the divided portion at the center of the substrate during the continuity inspection, the electrode may be damaged during the inspection, which may result in a defect. In addition, the continuity test cannot be performed after the dielectric layer, barrier rib, and phosphor layer after the electrode is formed, and the address when the panel is turned on by overlooking defects that occur in the electrode part after the electrode is formed. There is a problem of destroying the driver IC.
[0008]
The present invention relates to a plasma display member in which electrodes are divided into two or more groups, which improves the defects of such a conventional continuity inspection method, has no defects and has excellent reliability, and An object is to provide a member for a plasma display and a plasma display.
[0009]
[Means for Solving the Problems]
That is, according to the present invention, a striped electrode pattern is formed on a substrate, a conduction inspection is performed between the longitudinal conducting ends of each electrode and between adjacent electrodes, and then the striped electrode pattern is divided into two or more groups. A width Wcut (μm) of a part to be divided of the electrode pattern is smaller than a width Wa (μm) of an undivided part of the electrode pattern, and is 10 μm or more. It is a manufacturing method of the member for plasma displays characterized by these.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the following, a preferred embodiment of the present invention will be described in accordance with a PDP manufacturing procedure.
[0012]
(Back plate)
An example of the back plate manufacturing flow of the present invention is shown in FIG.
In the present invention, first, a striped electrode pattern is formed on a substrate. As a substrate used for the PDP member of the present invention, a glass substrate is usually used. In addition to soda glass, “PD200” manufactured by Asahi Glass Co., Ltd. or “PP8” manufactured by Nippon Electric Glass Co., Ltd., which is a heat resistant glass for PDP, is used. Can do.
[0013]
Address electrodes 102 are formed on a glass substrate 101 in stripes at a pitch of display cells (regions for forming each RGB of a pixel) using a metal such as silver, aluminum, chromium, or nickel. As a method of forming, after applying a metal paste mainly composed of these metal powder and organic binder by screen printing, or after applying a photosensitive metal paste using a photosensitive organic component as an organic binder, It is possible to use a photosensitive paste method in which pattern exposure is performed using a photomask, unnecessary portions are dissolved and removed in a development step, and further, heated and baked at 400 to 600 ° C. to form a metal pattern. Moreover, after depositing a metal such as chromium, copper or aluminum on a glass substrate, a resist is applied, and after exposing the resist to a pattern using a photomask and developing it, etching is performed to remove unnecessary portions of the metal by etching. Can be used. The screen plate and the photomask used at this time are those in which the portion (104) to be divided of the electrode group is not divided as shown in FIGS.
[0014]
If dividing by laser irradiation, the width Wa of the electrode portion that does not divide the be cut portion of the width of the electrode Wcut (μm) (μm), as shown in FIG. 1, it is necessary Wcut is smaller than Wa Although Ru can efficiently at short time energy division is small by laser irradiation or overcurrent, when less than 10 [mu] m, a problem that the electrode formation is disconnected in addition a small defect difficulties arising. Moreover, when dividing by overcurrent, the width Wcut of the electrode at the part to be divided is preferably sufficiently small with respect to the electrode Wa, and preferably in the range of 10 μm ≦ Wcut ≦ Wa / 2.
[0015]
The electrode thickness is preferably 1 to 10 μm, and more preferably 2 to 5 μm. If the electrode thickness is too thin, the resistance value becomes large and accurate driving becomes difficult, and the power consumption tends to increase. If it is too thick, a large amount of material is required, which tends to be disadvantageous in terms of cost.
The width of the address electrode is 20 to 250 μm, more preferably 30 to 100 μm. If the width is too small, the resistance value tends to be high and accurate driving tends to be difficult. Since it becomes shorter, a short defect tends to occur. Further, the address electrodes are formed at a pitch corresponding to the display cell. The pitch is preferably 100 to 500 μm for a normal PDP and 100 to 250 μm for a high definition PDP.
[0016]
Next, in the present invention, a continuity test is performed between the longitudinal conducting ends of each electrode and between adjacent electrodes. Conductivity inspection after electrode formation is performed by a probe inspection method using an open / short inspection apparatus using an inspection pin probe or bump probe. That is, the inspection probe head is brought into contact with both terminal portions of the electrode formed on the glass substrate (101), voltage is applied between two predetermined locations, and the operation for confirming the presence / absence of conduction between them is conducted in the longitudinal direction of the electrode. Check that there is no open defect that cannot be conducted between the longitudinal conducting ends in the same wiring and that there is no short defect that is conducted between adjacent electrodes. However, nothing on the substrate is selected as a non-defective product and passed to the next process. Defective products having defects that are short-circuited between adjacent substrates and electrodes that have an open defect portion in the same wiring and cannot be electrically connected to the adjacent wiring electrodes are passed to a subsequent process after the defect portion is repaired.
[0017]
As a repair method, first, in the image processing inspection method that extracts the shape defect coordinates by image processing the image data obtained by the photographing means such as CCD at the location where the open and short defects are extracted by the continuity inspection, Identify the location. Next, depending on the type of defect, in the case of an open defect, a repairing conductive paste is applied to the defective portion using a needle, a syringe, a dispenser, etc., and then baked to be repaired. Baking includes a method of heating the entire substrate in a baking furnace and a method of heating and baking only at a repair site with a laser such as an Nd: YAG laser. However, a laser method is preferred because defect repair work efficiency is good. In case of a short defect, it is repaired by irradiating it with a laser beam. These continuity inspection and defect repair methods of the present invention require about half the inspection time and improve production efficiency compared with the case of inspecting the dual scan driving back plate that is divided into two vertically at the center of the glass. Become.
[0018]
Next, in the present invention, the striped electrode pattern is divided into two or more groups. As a method of dividing the electrode, there is a method of mechanically dividing with a blade or the like, but it is preferable to divide by heating with laser irradiation light or overcurrent that can divide the electrode without damaging the substrate.
[0019]
The laser preferably has a wavelength in the range of 0.5 to 2.0 μm that passes through the absorption band of the glass substrate. Specific examples include Nd: YAG lasers and semiconductor lasers, but the present invention is not limited to these lasers. The cutting method is not particularly limited, but from the back side of the surface on which the electrode is formed with the surface on which the electrode is formed facing down, so that the part to be divided of the electrode and the material evaporated by laser irradiation are not scattered and adhered onto the glass substrate. It is preferable to irradiate a laser.
[0020]
The laser scanning may be any method of moving the glass substrate with the laser oscillator fixed, moving the laser oscillator with the glass substrate fixed, or optically scanning with a polygon mirror or the like. The length Wd (μm) to be divided is determined by the definition of the panel, and is preferably 70 to 200 μm for a normal PDP and 30 to 100 μm for a high definition PDP. Further, when the division is performed with an overcurrent, after the continuity inspection, selection, and repair, the overcurrent is divided so that only the divided portion is burned out by resistance heating between the electrodes. As a device for passing an overcurrent between the electrodes, a continuity inspection probe may be used as it is, even if it is a dedicated device that connects the electrodes in common and divides them together. Further, in the division, an overcurrent may be used in combination in order to more reliably divide after irradiation with a laser or the like.
[0021]
If necessary, the inspection of the cut portion is performed by a normal image processing method or probe inspection method. Preferably, after the probe inspection before the cutting, the selection, repair, and cutting are performed with the probe attached, and finally the open inspection is performed. Good to do.
[0022]
As described above, the address electrode layer divided into a predetermined electrode group can be obtained on the glass substrate. In order to stabilize discharge, a dielectric layer may be provided on the address electrode layer.
[0023]
A partition located in parallel with the electrode layer is formed on the glass substrate on which the address electrode layer is formed by a sandblast method, a mold transfer method, a photolithography method, or the like. The material for the partition used in the present invention is not particularly limited, and a glass material containing an oxide of silicon and boron is preferably used. Further, when the partition walls are formed by a photolithography method, it is advantageous to include 70% by weight or more of a glass material having a refractive index of 1.5 to 1.68.
[0024]
A phosphor layer is formed on a glass substrate on which an electrode layer and a partition wall layer are formed by a photolithography method using a photosensitive phosphor paste, a dispenser method, a screen printing method, or the like. The phosphor material used in the present invention is not particularly limited, and phosphor powder is applied. For example, in red, Y 2 O 3 : Eu, YVO 4 : Eu, (Y, Gd) BO 3 : Eu, Y 2 O 3 S: Eu, and γ-Zn 3 (PO 4 ) 2 : Mn are available. In green, Zn 2 GeO 2 : Mn, BaAl 12 O 19 : Mn, Zn 2 SiO 4 : Mn, LaPO 4 : Tb, ZnS: Cu, Al, Zn 2 SiO 4 : Mn, As, (ZnCd) S: Cu Al, ZnO: Zn, and the like. In blue, Sr 5 (PO 4 ) 3 Cl: Eu, BaMgAl 14 O 23 : Eu, BaMgAl 10 O 17 : Eu, BaMg 2 Al 14 O 24 : Eu, ZnS: Ag + red pigment, Y 2 SiO 3 : Ce, etc. It is.
In this way, a back plate can be produced.
[0025]
(Front plate)
The glass substrate used for the front plate is the same as that described for the back plate.
[0026]
First, a transparent electrode such as tin oxide or ITO is formed on a glass substrate by a lift-off method, a photo etching method, or the like.
[0027]
On the glass substrate on which the transparent electrode is formed, a bus electrode layer is patterned by screen printing of silver, aluminum, copper, gold, nickel, or the like or a photolithography method using a photosensitive conductive paste. A transparent dielectric layer is formed on the glass substrate on which the transparent electrode and the bus electrode are formed by a screen printing method or the like. The transparent dielectric material used in the present invention is not particularly limited, but a dielectric material containing PbO, B 2 O 3 and SiO 2 is applied.
[0028]
Further, for the purpose of protecting the transparent dielectric layer and lowering the discharge voltage, a protective film is formed so as to cover the transparent dielectric layer. In general, an oxide of an alkaline earth metal can be used for the protective film. In particular, MgO is preferably applied because it has excellent sputtering resistance and a high secondary electron emission coefficient. The MgO protective film is formed by electron beam vapor deposition, Mg target reactive sputtering, or ion plating.
[0029]
In this way, the front plate can be produced.
[0030]
(Plasma display)
Using the back plate and front plate of these plasma display members, after sealing the back plate and front plate, a discharge gas composed of helium, neon, xenon, etc. is formed in the space formed between the front and back substrates. After enclosing, a plasma display can be manufactured by mounting a drive circuit.
[0031]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
( Reference Example 1)
(Preparation of Front Plate) Scan electrodes having a pitch of 375 μm and a line width of 150 μm were formed using ITO on a 13-inch glass substrate “PD200” manufactured by Asahi Glass Co., Ltd. A bus electrode having an electrode width of 50 μm and a thickness of 3 μm was formed on the substrate by a photosensitive silver paste method. Next, a front dielectric was formed to a thickness of 50 μm by screen printing with a transparent dielectric glass paste so as to cover the bus electrode in the display portion. A front plate was produced by forming a 0.5 μm thick magnesium oxide layer as a protective film by electron beam evaporation on the substrate on which the dielectric was formed.
[0032]
(Preparation of back plate)
Address electrodes were formed on a "PD200" 13-inch glass substrate using a photosensitive silver paste. Photosensitive silver paste is applied and dried, exposed to an electrode photomask having an electrode width Wa = 50 μm and a pitch of 250 μm that is not divided in the vertical direction shown in FIG. 2, and then developed and baked, Wa = 50 μm, thickness 3 μm Address electrodes with a pitch of 250 μm were formed.
[0033]
Next, the probe head was contacted between the address electrodes, and a continuity test was conducted by the probe method to select non-defective products and defective products, and the defective products were repaired.
[0034]
Nd: YAG laser was used for the electrode separation. Irradiation was performed from the surface of the substrate on which the address electrodes were formed while scanning the dividing part at an emission pulse energy of 10 mJ, a pulse repetition frequency of 10 Hz, and a beam diameter of 50 μm, and the electrodes were divided vertically by Wcut = 50 μm and Wd = 60 μm. At this time, it was possible to process in about 60% of the time of the conventional upper / lower divided address electrode substrate from the continuity test to the division.
[0035]
Next, a dielectric layer was formed to 20 μm by screen printing. Next, barrier ribs were formed by a photolithography method using a photosensitive barrier rib paste. Next, a phosphor layer was formed using a dispenser method. The phosphor powder used had a composition of red: (Y, Gd, Eu) BO 3 , green: (Zn, Mn) 2 SiO 4 , blue: (Ba, Eu) MgAl 10 O 7 . Thus, a back plate was produced.
[0036]
(Production of plasma display)
The front plate and the back plate were matched so that matrix display drive was possible, sealed with a glass frit for sealing, evacuated while heating to 350 ° C., and sealed with 67 kPa of Xe 5% -Ne gas. The scan electrode is connected to the scan electrode side pulse generator of the drive circuit board via the scan driver IC, the sustain electrode is connected to the sustain electrode side pulse generator, and the address electrode is connected to the image processing unit via the address driver IC. Then, a plasma display was produced.
[0037]
A voltage added with an image data signal was applied to the address electrode of the PDP to emit light. Good display characteristics free from defects and image quality disturbance were obtained.
[0038]
(Example 1 ) An address electrode substrate was prepared using a photomask for electrodes of Wa = 50 μm, Wcut = 20 μm, Wd = 50 μm shown in FIG. 1, and an output pulse energy of 5 mJ, a pulse repetition frequency of 10 Hz, and a beam diameter of 50 μm. It was produced in the same manner as in Reference Example 1 except that the divided part was irradiated and the electrode was vertically divided at Wcut = 20 μm and Wd = 50 μm. Good display characteristics free from defects and image quality disturbance were obtained.
[0039]
(Example 2 ) It was produced in the same manner as in Example 1 except that the emission pulse energy was 6 mJ and irradiation was performed from the back surface of the substrate on which the address electrode was formed. Good display characteristics free from defects and image quality disturbance were obtained.
[0040]
(Example 3 ) An address electrode substrate was prepared using a photomask for electrodes of Wa = 50 μm, Wcut = 10 μm, Wd = 50 μm, and an overcurrent of several A was applied between the electrodes instead of irradiation with Nd: YAG laser. The sample was produced in the same manner as in Example 1 except that the electrode was cut off until it was burnt out and no conduction was obtained. Good display characteristics free from defects and image quality disturbance were obtained.
[0041]
【The invention's effect】
According to the present invention, in a plasma display member in which the electrode is divided into two or more groups, a method for manufacturing a plasma display member excellent in reliability without defects and image quality disturbance, and a plasma display member and a plasma display are provided. Can be provided.
[Brief description of the drawings]
FIG. 1 is an enlarged plan view of an embodiment of an electrode showing a planned division portion of the electrode formed according to the present invention.
FIG. 2 is an enlarged plan view of another aspect of the electrode showing a planned division portion of the electrode formed according to the present invention.
FIG. 3 is a flowchart for manufacturing a back plate according to the present invention.
FIG. 4 is a pattern example diagram of a photomask for electrode formation and a screen plate.
FIG. 5 is an enlarged view showing a divided portion of the divided electrode group.
FIG. 6 is an exploded perspective view of a plasma display.
FIG. 7 is a system diagram of a driving circuit of a plasma display.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 101 Glass substrate 102 Electrode 103 Electrode part scheduled periphery 104 Electrode part scheduled part

Claims (5)

基板上にストライプ状の電極パターンを形成し、各電極の長手方向導端部間および隣接電極間の導通検査を行った後、ストライプ状の電極パターンを2群以上に分断することを特徴とするプラズマディスプレイ用部材の製造方法であって、該電極パターンの分断予定部分の幅Wcut(μm)が該電極パターンの分断しない部分の幅Wa(μm)よりも小さく、かつ10μm以上であることを特徴とするプラズマディスプレイ用部材の製造方法。A striped electrode pattern is formed on a substrate, and after conducting a continuity test between the longitudinal conducting ends of each electrode and between adjacent electrodes, the striped electrode pattern is divided into two or more groups. A method for manufacturing a member for a plasma display , wherein a width Wcut (μm) of a portion to be divided of the electrode pattern is smaller than a width Wa (μm) of a portion not to be divided of the electrode pattern and is 10 μm or more. The manufacturing method of the member for plasma displays . 前記導通検査により欠陥の有無による良否を選別し、欠陥のあるものは欠陥を修復した後、ストライプ状の電極パターンを2群以上に分断することを特徴とする請求項1に記載のプラズマディスプレイ用部材の製造方法。2. The plasma display device according to claim 1, wherein whether or not there is a defect is selected by the continuity inspection, the defective electrode is repaired, and then the striped electrode pattern is divided into two or more groups. Manufacturing method of member. レーザー照射光または過電流により電極を加熱し、ストライプ状の電極パターンを分断することを特徴とする請求項1または2に記載のプラズマディスプレイ用部材の製造方法。The method for producing a member for a plasma display according to claim 1 or 2, wherein the electrode is heated by laser irradiation light or overcurrent to divide the striped electrode pattern. 前記電極パターンの分断予定部分の幅Wcut(μm)と前記電極パターンの分断しない部分の幅Wa(μm)が以下の関係式を満たし、過電流により電極を加熱することにより電極パターンを分断することを特徴とする請求項3に記載のプラズマディスプレイ用部材の製造方法。
10μm≦Wcut≦Wa/2
The width Wcut (μm) of the part to be divided of the electrode pattern and the width Wa (μm) of the part not to be divided satisfy the following relational expression, and the electrode pattern is divided by heating the electrode with overcurrent. The manufacturing method of the member for plasma displays of Claim 3 characterized by these.
10μm ≦ Wcut ≦ Wa / 2
レーザー照射光を、電極を形成した基板の裏面から照射して、電極を加熱し、ストライプ状の電極パターンを分断することを特徴とする請求項3記載のプラズマディスプレイ用部材の製造方法。4. The method for manufacturing a member for a plasma display according to claim 3, wherein laser irradiation light is irradiated from the back surface of the substrate on which the electrode is formed, the electrode is heated, and the striped electrode pattern is divided.
JP2000022013A 2000-01-31 2000-01-31 Method for manufacturing member for plasma display, member for plasma display, and plasma display using the same. Expired - Fee Related JP4519236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000022013A JP4519236B2 (en) 2000-01-31 2000-01-31 Method for manufacturing member for plasma display, member for plasma display, and plasma display using the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000022013A JP4519236B2 (en) 2000-01-31 2000-01-31 Method for manufacturing member for plasma display, member for plasma display, and plasma display using the same.

Publications (2)

Publication Number Publication Date
JP2001210228A JP2001210228A (en) 2001-08-03
JP4519236B2 true JP4519236B2 (en) 2010-08-04

Family

ID=18548358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000022013A Expired - Fee Related JP4519236B2 (en) 2000-01-31 2000-01-31 Method for manufacturing member for plasma display, member for plasma display, and plasma display using the same.

Country Status (1)

Country Link
JP (1) JP4519236B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092085A (en) * 2001-09-17 2003-03-28 Fujitsu Ltd Display unit
KR100453165B1 (en) * 2002-01-19 2004-10-15 엘지전자 주식회사 Plasma display panel
KR100468413B1 (en) * 2002-06-26 2005-01-27 엘지전자 주식회사 Plasma display panel and method of fabricating the same and apparatus for driving the same
JP2008153024A (en) * 2006-12-15 2008-07-03 Ntn Corp Micro pattern correction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274859A (en) * 1996-04-03 1997-10-21 Fujitsu Ltd Surface discharge type pdp
JPH1020333A (en) * 1996-07-05 1998-01-23 Hitachi Ltd Liquid crystal display device and its production
JPH11185627A (en) * 1997-12-19 1999-07-09 Dainippon Printing Co Ltd Review device
JPH11311798A (en) * 1998-04-28 1999-11-09 Matsushita Electric Ind Co Ltd Production of liquid crystal display panel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06251712A (en) * 1993-02-26 1994-09-09 Pioneer Electron Corp Flat panel type display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274859A (en) * 1996-04-03 1997-10-21 Fujitsu Ltd Surface discharge type pdp
JPH1020333A (en) * 1996-07-05 1998-01-23 Hitachi Ltd Liquid crystal display device and its production
JPH11185627A (en) * 1997-12-19 1999-07-09 Dainippon Printing Co Ltd Review device
JPH11311798A (en) * 1998-04-28 1999-11-09 Matsushita Electric Ind Co Ltd Production of liquid crystal display panel

Also Published As

Publication number Publication date
JP2001210228A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
US6967442B2 (en) Plasma display device having barrier ribs
US7056193B2 (en) Method of forming fine partition walls, method of producing planar display device, and abrasive for jet processing
KR100838669B1 (en) Alternating current driven type plasma display device
KR101128671B1 (en) Alternating current driven type plasma display device and production method therefor
JP2001076625A (en) Plasma display panel
JP2004119118A (en) Plasma display device and its manufacturing method
JP4519236B2 (en) Method for manufacturing member for plasma display, member for plasma display, and plasma display using the same.
KR20010093695A (en) Alternating current driven type plasma display
US6538381B1 (en) Plasma display panel and method for manufacturing the same
KR20100133009A (en) Plasma display panel
US20020180355A1 (en) Plasma display device
US6737805B2 (en) Plasma display device and method of producing the same
US20040038615A1 (en) Production method for plasma display panel unit-use panel and production method for plasma display unit
JP2004186062A (en) Plasma display device
JP2003132799A (en) Alternate current driving type plasma display
JP4114384B2 (en) Plasma display device
KR100736583B1 (en) Plasma Display Panel
JP2001076630A (en) Ac drive type plasma display device
JP2004087373A (en) Method for forming phosphor layer, method for manufacturing flat panel display device, and method for manufacturing plasma display panel device
JP2003045341A (en) Plasma discharge display device
JP2001076628A (en) Plasma display device
JP2003077389A (en) Manufacturing method of front panel for plasma display device and manufacturing method of plasma display device
JP2011238539A (en) Method for manufacturing plasma display panel
KR20090047016A (en) Plasma display panel and method for fabricating in therof
KR20060074673A (en) Plasma display panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees