JP4516521B2 - Catalyst production method - Google Patents

Catalyst production method Download PDF

Info

Publication number
JP4516521B2
JP4516521B2 JP2005369396A JP2005369396A JP4516521B2 JP 4516521 B2 JP4516521 B2 JP 4516521B2 JP 2005369396 A JP2005369396 A JP 2005369396A JP 2005369396 A JP2005369396 A JP 2005369396A JP 4516521 B2 JP4516521 B2 JP 4516521B2
Authority
JP
Japan
Prior art keywords
titanium oxide
catalyst
shirasu
tank
graphite silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005369396A
Other languages
Japanese (ja)
Other versions
JP2007167772A (en
Inventor
秋良 佐多
Original Assignee
株式会社 サタコンサルタンツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 サタコンサルタンツ filed Critical 株式会社 サタコンサルタンツ
Priority to JP2005369396A priority Critical patent/JP4516521B2/en
Publication of JP2007167772A publication Critical patent/JP2007167772A/en
Application granted granted Critical
Publication of JP4516521B2 publication Critical patent/JP4516521B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Description

本発明は、暗所でもその触媒機能を発揮でき、とくに、各種排尿の防臭、褪色機能を有する酸化チタン系触媒の製造法に関する。   The present invention relates to a method for producing a titanium oxide catalyst which can exhibit its catalytic function even in the dark, and in particular has a deodorizing and fading function for various urinations.

酸化チタンに光触媒機能があることは広く知られており、この酸化チタンの触媒機能を種々の分野に拡大するための手段が種々提案されている。   It is widely known that titanium oxide has a photocatalytic function, and various means for expanding the catalytic function of titanium oxide in various fields have been proposed.

例えば、特許文献1には、酸化チタンに窒素またはイオウをドープすることにより、紫外線より長波長の可視光をも吸収し、蓄水性物質に含まれる水と反応して、親水性を発現することが開示されている。   For example, Patent Document 1 discloses that titanium oxide is doped with nitrogen or sulfur to absorb visible light having a longer wavelength than ultraviolet light, and reacts with water contained in a water storage substance to develop hydrophilicity. It is disclosed.

また、特許文献2には、酸窒化チタンの表面にアミノ基、アミド基、アジド塩、シアン塩、シアン酸塩、カルボン酸塩のうちの少なくとも1種の官能基または不純物を存在させることによって可視光時の光触媒性能を大幅に向上させることができることが開示されている。   Patent Document 2 discloses that the surface of titanium oxynitride is visible when at least one functional group or impurity selected from amino group, amide group, azide salt, cyanate salt, cyanate salt, and carboxylate salt is present. It has been disclosed that the photocatalytic performance during light can be greatly improved.

また、特許文献3には、窒化チタンに光触媒粒子分散液を吹き付けて光触媒層を形成した樹脂成形体が開示されている。   Patent Document 3 discloses a resin molded body in which a photocatalyst layer is formed by spraying a photocatalyst particle dispersion on titanium nitride.

また、特許文献4には、酸化チタンに脱臭機能があることが開示されている。   Patent Document 4 discloses that titanium oxide has a deodorizing function.

さらに、特許文献5には、含窒素有機化合物を金属チタンに配位させたチタン錯体を焼成して得られた窒素含有酸化チタン結晶を環境汚染ガスの分解剤として使用することが開示されている。   Furthermore, Patent Document 5 discloses that nitrogen-containing titanium oxide crystals obtained by firing a titanium complex in which a nitrogen-containing organic compound is coordinated to metallic titanium are used as a decomposing agent for environmental pollutants. .

しかしながら、上記何れの酸化チタンまたは酸窒化チタンの触媒反応の展開は、基本的には、可視光線下における光触媒作用を利用したものである。   However, the development of any of the above titanium oxide or titanium oxynitride catalytic reactions basically utilizes the photocatalytic action under visible light.

これに対して、本願発明者は、特許文献6において、二酸化チタンはある条件下では、暗所においてもその触媒作用を発揮するという知見を得て、担体としてのグラファイトシリカ粉末を主体とする混合物からなる成形体上に、二酸化チタン粉末または二酸化チタン粉末とグラファイトシリカ粉末の混合物を被覆することによって、畜産動物の尿の脱色剤あるいは脱臭剤が得られることを開示した。
特開2001−207082号公報 特開2002−321907号公報 特開2003−154546号公報 特開2004−100319号公報 特開2004−141739号公報 特開2005−288381号公報
On the other hand, the inventor of the present application obtained a knowledge in Patent Document 6 that titanium dioxide exerts its catalytic action in a dark place under certain conditions, and a mixture mainly composed of graphite silica powder as a carrier. It has been disclosed that a decolorant or deodorizer for livestock animal urine can be obtained by coating a formed body comprising a titanium dioxide powder or a mixture of titanium dioxide powder and graphite silica powder.
JP 2001-207082 A JP 2002-321907 A JP 2003-154546 A JP 2004-100319 A JP 2004-141739 A JP 2005-28881A

本発明の目的は、酸化チタン系触媒の暗所における触媒機能をさらに増大することにある。   An object of the present invention is to further increase the catalytic function of the titanium oxide catalyst in the dark.

本発明の他の目的は、家畜排尿の脱臭・脱色に適した酸化チタン系触媒の提供にある。   Another object of the present invention is to provide a titanium oxide catalyst suitable for deodorization / decolorization of livestock urine.

本発明のさらに他の目的は、暗所における酸化チタン系触媒の脱色・脱臭剤としての機能を増大させるための処理法の提供にある。   Still another object of the present invention is to provide a treatment method for increasing the function of a titanium oxide catalyst in a dark place as a decolorizing / deodorizing agent.

本発明は、シラス(アルミノ珪酸塩ガラスの粉末)とグラファイトシリカと酸化チタンとの混合物の成形体の暗所における触媒としての機能は、その処理方法によって、格段に向上するという知見の下で完成した。   The present invention has been completed under the knowledge that the function as a catalyst in a dark place of a mixture of shirasu (aluminosilicate glass powder), graphite silica and titanium oxide is greatly improved by the treatment method. did.

すなわち、本発明の酸化チタン系触媒の製造法は、シラスとグラファイトシリカとをボール状に混合成形し、その表面にシラスとグラファイトシリカ粉末と酸化チタン粉末との混合物を付着させ還元焼成して担体としてのセラミックスボールとしたのち、このセラミックスボールの表面に酸化チタン溶液を塗布し焼成してセラミックスボール表面に酸化チタンの被覆層を形成するものである。   That is, in the method for producing a titanium oxide catalyst of the present invention, shirasu and graphite silica are mixed and molded into a ball shape, and a mixture of shirasu, graphite silica powder and titanium oxide powder is attached to the surface of the catalyst, followed by reduction firing. Then, a titanium oxide solution is applied to the surface of the ceramic ball and fired to form a titanium oxide coating layer on the surface of the ceramic ball.

本発明で用いるグラファイトシリカは、先第三系黒色硬質泥岩中の断層破砕部に産出する天然鉱石であり、炭素含有量が数%の黒色物で珪酸を主成分とするもので、物理学的性質としての特異性は常温で高放射率の中間赤外線(波長4μm〜14μmの生育光線)を放射し、その放射特性は理想物質としての黒体に極めて近い曲線を示す点にあることが知られているものである。   Graphite silica used in the present invention is a natural ore produced in a fault crushing part in the Pre-Tertiary black hard mudstone, a black matter having a carbon content of several percent and mainly composed of silicic acid. Specificity as a property is known to radiate mid-infrared rays with a high emissivity at room temperature (growth rays with a wavelength of 4 μm to 14 μm), and their radiation characteristics are known to be curves that are very close to black bodies as ideal substances It is what.

このグラファイトシリカをシラスと混合してボール状に成形するに際しては、天然鉱石であるグラファイトシリカ原料を粉砕して粉末状とする。   When this graphite silica is mixed with shirasu and formed into a ball shape, the graphite silica raw material, which is a natural ore, is pulverized into powder.

そして、シラスとグラファイトシリカ粉末を用いて2〜3mm程度のボール状に混合成形し、その表面にシラスとグラファイトシリカ粉末と酸化チタン粉末との混合物を付着させた後、還元焼成してセラミックス化する。この還元焼成は、1000〜1200℃程度の温度で行うことが好ましい。なお、ボール状の混合成形体の表面にシラスとグラファイトシリカ粉末と酸化チタン粉末との混合物を付着させる工程は省略することができる。   Then, the mixture is formed into a ball shape of about 2 to 3 mm using shirasu and graphite silica powder, and a mixture of shirasu, graphite silica powder and titanium oxide powder is adhered to the surface, and then reduced and fired to form a ceramic. . This reduction firing is preferably performed at a temperature of about 1000 to 1200 ° C. Note that the step of attaching the mixture of shirasu, graphite silica powder and titanium oxide powder to the surface of the ball-shaped mixed molded body can be omitted.

得られたセラミックスボールを担体とし、その表面に酸化チタン溶液を塗布し焼成してセラミックスボール表面に酸化チタンの被覆層を形成する。この焼成は、酸化雰囲気下で行ってもよいし、還元雰囲気下で行ってもよい。酸化雰囲気下での焼成は、350〜550℃程度の温度で行うことが好ましい。還元雰囲気下での焼成は、900〜1000℃程度の温度で行うことが好ましい。   The obtained ceramic ball is used as a carrier, a titanium oxide solution is applied to the surface and fired to form a titanium oxide coating layer on the ceramic ball surface. This firing may be performed in an oxidizing atmosphere or a reducing atmosphere. Firing in an oxidizing atmosphere is preferably performed at a temperature of about 350 to 550 ° C. Firing in a reducing atmosphere is preferably performed at a temperature of about 900 to 1000 ° C.

また、必要に応じ、セラミックスボールの表面に酸化チタン溶液を塗布し焼成したのちに窒化処理し、セラミックスボール表面の被覆層を窒化チタン層、あるいは窒化チタンを含有する層としてもよい。   If necessary, a titanium oxide solution may be applied to the surface of the ceramic ball and fired, followed by nitriding, and the coating layer on the surface of the ceramic ball may be a titanium nitride layer or a layer containing titanium nitride.

このようにして調製した酸化チタン系触媒は、他の方法、例えば、シラスとグラファイトシリカ粉末との混合粉末から得たものと比較して、暗所における触媒能力において格段に優れている。   The titanium oxide-based catalyst thus prepared is remarkably superior in catalytic ability in the dark compared with other methods, for example, those obtained from a mixed powder of shirasu and graphite silica powder.

以下、本発明の実施形態を、本発明の製造法によって得られた触媒を養豚場の排水処理に使用した場合の実施例によって説明する。   Hereinafter, an embodiment of the present invention will be described with reference to an example in which the catalyst obtained by the production method of the present invention is used for wastewater treatment in a pig farm.

(1)使用触媒
シラスとグラファイトシリカ粉末を用いて2〜3mm程度のボール状に混合成形し、その表面にシラスとグラファイトシリカ粉末と酸化チタン粉末との混合物を付着させた後、1090℃で還元焼成してセラミックス化した。得られたセラミックスボール(ボールコア部がシラスとグラファイトシリカ、表層部がシラス・グラファイトシリカ・チタンの化合物である)を担体とし、その表面に市販の酸化チタン溶液を塗布し、900℃の還元雰囲気下で焼成し窒化処理したものを使用触媒とした。
(1) Catalysts used Shirasu and graphite silica powder were mixed into a ball shape of about 2 to 3 mm, and a mixture of shirasu, graphite silica powder and titanium oxide powder was adhered to the surface, and then reduced at 1090 ° C. Firing into ceramics. The obtained ceramic balls (ball core part is shirasu and graphite silica, surface layer part is a compound of shirasu / graphite silica / titanium) as a carrier, a commercially available titanium oxide solution is applied to the surface, and a reducing atmosphere at 900 ° C. The catalyst that was calcined below and nitrided was used as the catalyst.

(2)被処理液
J社養豚場で生物処理されたもので、未だ多量の色素等の有機物が残留する場外排出直前の排水を被処理液とした。
(2) Liquid to be treated The wastewater immediately before the off-site discharge, which was biologically treated at company J pig farm and still contains a large amount of organic matter such as pigment, was used as the liquid to be treated.

(3)試験機
図1に実施例で用いた試験機を示す。試験機としては、使用触媒と被処理液とを接触させる通水断面積0.005m(0.05m×0.1m)、接触長0.50mの5槽の接触部1〜5を有する上方向流方式のアクリル製試験機を用いた。
(3) Testing machine Fig. 1 shows the testing machine used in the examples. The tester has 5 tank contact parts 1 to 5 having a water flow cross-sectional area of 0.005 m 2 (0.05 m × 0.1 m) and a contact length of 0.50 m for contacting the catalyst to be used and the liquid to be treated. A direction-flow acrylic testing machine was used.

(4)試験方法
予め被処理液中に24時間以上浸漬させた使用触媒を5槽の接触部1〜5に充填し、被処理液(流量50cc/分)を水中ポンプで第1槽目の接触部1の下部に導き、上方向流で接触部1を通過させて上部で得た通過液を次の第2槽目の接触部2の下部に導き、その槽の接触部2を通過させる連続通水試験を行った。第3〜5槽目も同様な接触方式とし、第5槽上部で最終処理水を得るようにした。延べ100時間以上の通水試験後に被処理液(原水)と各槽の通過水を検体として採取し分析を行った。採取を100時間以上の通水後とした理由は、ヤシガラ活性炭が上記同様な試験で約25時間後に飽和状態となり、第5槽目の通過水が原水と同等の色素を呈したため、その4倍の時間を要する事前通水時間を設定した。
(4) Test method The used catalyst previously immersed in the liquid to be treated for 24 hours or more is filled in the contact portions 1 to 5 of the five tanks, and the liquid to be treated (flow rate 50 cc / min) is filled in the first tank with an underwater pump. Guided to the lower part of the contact part 1 and passed through the contact part 1 in an upward flow, the passing liquid obtained at the upper part is guided to the lower part of the contact part 2 of the next second tank and allowed to pass through the contact part 2 of the tank. A continuous water flow test was conducted. The 3rd-5th tank was made into the same contact system, and the final treated water was obtained in the 5th tank upper part. After a water flow test for a total of 100 hours or more, the liquid to be treated (raw water) and the water passing through each tank were collected as samples and analyzed. The reason for sampling after passing water for 100 hours or more is that coconut husk activated carbon became saturated after about 25 hours in the same test as described above, and the passing water in the fifth tank exhibited a pigment equivalent to the raw water. The pre-watering time which requires the time was set.

(5)分析項目
分析項目を表1に示す。

Figure 0004516521
(5) Analysis items Table 1 shows the analysis items.
Figure 0004516521

(6)試験結果
試験結果を表2及び図2に示す。

Figure 0004516521
(6) Test results The test results are shown in Table 2 and FIG.
Figure 0004516521

本試験において1槽あたりの通水時間は約20分間であることから、第3槽通過点(接触長1.50m)は1時間経時点に相当する。この時点で見ると、色度が97%、全有機炭素量(TOC)が80%、溶存酸素量(DO)が59%と減少しており、使用触媒の有効性が確認された。   In this test, the water passing time per tank is about 20 minutes, and therefore, the third tank passing point (contact length 1.50 m) corresponds to a time point of 1 hour. At this point in time, the chromaticity was 97%, the total organic carbon content (TOC) was 80%, and the dissolved oxygen content (DO) was 59%, confirming the effectiveness of the catalyst used.

また、有機態及び無機態窒素の調査分析を行ったところ、予測されたことではあったが有機態窒素が最終第5槽の通過点(接触長2.50m)で約85%減少した。さらに、無機態窒素の減少は全く期待していなかったが、無機態のほとんどを占める硝酸態窒素が第5槽の通過点で約25%減少した。有機態窒素は使用触媒反応で第1〜5槽内で徐々に分解され減少したものと考えられる。無機態の硝酸態窒素を減少させた原因は定かではないが、硝酸イオンを酸化チタン担持の半導体を使用し電場をかけての還元反応で窒化ガスに変換させる研究成果等もあることから、本試験で使用した触媒特有の微量電場での還元反応も有り得るのではないかと考えられる。   In addition, as a result of investigation and analysis of organic and inorganic nitrogen, organic nitrogen was reduced by about 85% at the passing point (contact length: 2.50 m) of the final fifth tank, as expected. Furthermore, although the decrease of inorganic nitrogen was not expected at all, nitrate nitrogen occupying most of the inorganic state was reduced by about 25% at the passing point of the fifth tank. It is considered that organic nitrogen was gradually decomposed and decreased in the first to fifth tanks by the catalytic reaction used. The cause of the decrease in inorganic nitrate nitrogen is not clear, but there are also research results that convert nitrate ions into nitriding gas by a reduction reaction using an electric field using a semiconductor supporting titanium oxide. It is thought that there may be a reduction reaction in a small electric field peculiar to the catalyst used in the test.

被処理液の処理試験に用いた試験機を示す。The test machine used for the process test of the to-be-processed liquid is shown. 図1の試験機よって処理された被処理液の分析結果を示す。The analysis result of the to-be-processed liquid processed with the testing machine of FIG. 1 is shown.

符号の説明Explanation of symbols

1 第1槽の接触部
2 第2槽の接触部
3 第3槽の接触部
4 第4槽の接触部
5 第5槽の接触部
DESCRIPTION OF SYMBOLS 1 Contact part of 1st tank 2 Contact part of 2nd tank 3 Contact part of 3rd tank 4 Contact part of 4th tank 5 Contact part of 5th tank

Claims (3)

シラスとグラファイトシリカとをボール状に混合成形し、その表面にシラスとグラファイトシリカ粉末と酸化チタン粉末との混合物を付着させ還元焼成して担体としてのセラミックスボールとしたのち、このセラミックスボールの表面に酸化チタン溶液を塗布し焼成する触媒の製造法。   Shirasu and graphite silica are mixed and molded into a ball shape, and a mixture of shirasu, graphite silica powder, and titanium oxide powder is attached to the surface and reduced and fired to form a ceramic ball as a carrier. A method for producing a catalyst in which a titanium oxide solution is applied and calcined. シラスとグラファイトシリカとをボール状に混合成形し、還元焼成して担体としてのセラミックスボールとしたのち、このセラミックスボールの表面に酸化チタン溶液を塗布し焼成する触媒の製造法。   A method for producing a catalyst in which shirasu and graphite silica are mixed and molded into a ball shape, reduced and fired to form a ceramic ball as a carrier, and then a titanium oxide solution is applied to the surface of the ceramic ball and fired. セラミックスボールの表面に酸化チタン溶液を塗布し焼成したのち、窒化処理する請求項1または請求項2に記載の触媒の製造法。   The method for producing a catalyst according to claim 1 or 2, wherein a titanium oxide solution is applied to the surface of the ceramic ball, fired, and then subjected to nitriding treatment.
JP2005369396A 2005-12-22 2005-12-22 Catalyst production method Expired - Fee Related JP4516521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005369396A JP4516521B2 (en) 2005-12-22 2005-12-22 Catalyst production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005369396A JP4516521B2 (en) 2005-12-22 2005-12-22 Catalyst production method

Publications (2)

Publication Number Publication Date
JP2007167772A JP2007167772A (en) 2007-07-05
JP4516521B2 true JP4516521B2 (en) 2010-08-04

Family

ID=38295039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005369396A Expired - Fee Related JP4516521B2 (en) 2005-12-22 2005-12-22 Catalyst production method

Country Status (1)

Country Link
JP (1) JP4516521B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269295A (en) * 2009-05-19 2010-12-02 Kyoji Takada Water ph control only by heat source and natural ore water
JP2010269294A (en) * 2009-05-19 2010-12-02 Kyoji Takada Method for generating acidic water
JP6923975B1 (en) * 2020-10-30 2021-08-25 有限会社ギムティー Manufacturing method of sterilization part and air purifier using it

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288381A (en) * 2004-04-02 2005-10-20 Sata Consultants:Kk Organic matter decomposing agent

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3939800B2 (en) * 1997-03-18 2007-07-04 鹿児島県 Purification agent and production method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288381A (en) * 2004-04-02 2005-10-20 Sata Consultants:Kk Organic matter decomposing agent

Also Published As

Publication number Publication date
JP2007167772A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
RU2595658C2 (en) Activated carbon impregnated with acid, methods for production and use thereof
TW201119949A (en) Composition as absorbent and catalyzer, processing method thereof, and method for treating waste water thereof
CN109529814B (en) Visible light driven inverse proteolith photocatalytic material, preparation method thereof and degradation removal of organic pollutants in water body by using visible light driven inverse proteolith photocatalytic material
JP4516521B2 (en) Catalyst production method
JP2006239583A (en) Sintered body for water purification, and production method
CN105289629A (en) Method for carrying out catalytic ozone degradation on new pollutant in water by lanthanum-based perovskite oxide
EP2927193A1 (en) Photocatalyst comprising tio2 and activated carbon made from date pits
CN104030429A (en) Catalytic ozone oxidizing method for industrial wastewater deep treatment
JP2012091167A (en) Method for treating water containing nutrient salts and oxidizing substance
Agustina et al. Reduction of copper, iron, and lead content in laboratory wastewater using zinc oxide photocatalyst under solar irradiation
KR102478521B1 (en) Composite adsorbent containing coffee beans and iron hydroxide
Zayadi et al. A potential waste to be selected as media for metal and nutrient removal
KR102478525B1 (en) Activated carbon prepared from coffee beans
CN113457639B (en) Manganese-loaded loofah sponge fiber for adsorption catalytic denitrification and preparation and application thereof
CN108722410A (en) CuO class Fenton catalysis materials and preparation method thereof for degradation of organic dyes
JP2009189914A (en) Microorganism-carrying photocatalyst-containing sintered body for water purification and its manufacturing method, and method for purifying water in water area using the sintered body and water purification process of water area using it
CN114853112A (en) Application of titanium dioxide nano-catalyst in photocatalytic removal of nitrate nitrogen in water body
CN106000399A (en) Catalyst decomposable with a trace amount of hydrogen peroxide at normal temperature
JPH01194993A (en) Treatment of organic compound-containing water
JPH08132075A (en) Treatment of aqueous solution containing ammonia and/or ammonium ion
KR101817431B1 (en) Amine modified biochar bead and preparation method thereof
JP2006281156A (en) Functional photocatalyst and its production method
JP2000203823A (en) Production of activated carbon
JP5827457B2 (en) Nitrogen oxide removing material and nitrogen oxide removing method
CN115245825B (en) Fenton-like catalyst converted from animal manure and synthesis method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100416

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees