JP4515248B2 - Gas chromatograph for measuring dimethyl ether in LP gas - Google Patents

Gas chromatograph for measuring dimethyl ether in LP gas Download PDF

Info

Publication number
JP4515248B2
JP4515248B2 JP2004378562A JP2004378562A JP4515248B2 JP 4515248 B2 JP4515248 B2 JP 4515248B2 JP 2004378562 A JP2004378562 A JP 2004378562A JP 2004378562 A JP2004378562 A JP 2004378562A JP 4515248 B2 JP4515248 B2 JP 4515248B2
Authority
JP
Japan
Prior art keywords
gas
dimethyl ether
column
separation
vacuum ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004378562A
Other languages
Japanese (ja)
Other versions
JP2006184138A (en
Inventor
徹 石地
祥一 打越
鉄也 飯島
賢治 池田
健 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
High Pressure Gas Safety Institute of Japan
Original Assignee
High Pressure Gas Safety Institute of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by High Pressure Gas Safety Institute of Japan filed Critical High Pressure Gas Safety Institute of Japan
Priority to JP2004378562A priority Critical patent/JP4515248B2/en
Publication of JP2006184138A publication Critical patent/JP2006184138A/en
Application granted granted Critical
Publication of JP4515248B2 publication Critical patent/JP4515248B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、LPガスに含まれるジメチルエーテルを検出するための装置に関する。   The present invention relates to an apparatus for detecting dimethyl ether contained in LP gas.

ガスコンロに使用可能なエネルギーとして期待されるジメチルエーテル(DME)は、SOxや煤を出さずNOx発生量も抑制できるなど燃焼特性が良いうえ、石炭や炭鉱ガス、ガス田、石油残さ、バイオマスなど様々な原料を利用して製造することができる。
このため、ガスコンロ等民生用エネルギーのほかにガスタービンなど発電施設、燃料電池用燃料、さらにはディーゼル自動車用燃料としても期待されている。
DME燃料の供給に際しては、既存のLPガス流通インフラの利用が考えられるが、一次基地(元売事業者)、二次基地(卸売り事業者)、三次基地(充填事業者)、小売り業者を経て一般消費者に供給されるまでに、不用意にDMEが混入したLPガスが流通する畏れも否定できない。
このため、LPガスに含まれるDMEの濃度を現場で手軽に測定する技術が要望されているが、LPガスは、ブタン、プロパン、プロピレンなど複数種の成分がふくまれているため、これらと化学的特性が似通ったジメチルエーテルを選択的に検出することが必要となる。
このように化学的特性が似通ったガス成分の分析には通常、充填カラムやキャピラリーカラムを使用したガスクロマトグラフが利用されるが、前者のカラムでは各成分の分離能を高めようとすると、分離時間が長くなり、また後者のカラムを使用すると装置が大型化して携帯が困難で、現場での使用に不便をきたすという問題がある。
Dimethyl ether (DME), which is expected to be used as an energy source for gas stoves, has good combustion characteristics, such as being able to suppress NOx generation without producing SOx and soot, and has various properties such as coal, coal mine gas, gas fields, petroleum residues, and biomass. It can be manufactured using raw materials.
For this reason, in addition to consumer energy such as gas stoves, power generation facilities such as gas turbines, fuel for fuel cells, and further fuel for diesel vehicles are also expected.
When supplying DME fuel, it is possible to use the existing LP gas distribution infrastructure, but after going through the primary base (former dealer), secondary base (wholesaler), tertiary base (filler), and retailer It cannot be denied that LP gas inadvertently mixed with DME circulates before being supplied to general consumers.
For this reason, there is a demand for a technique for easily measuring the concentration of DME contained in LP gas on site, but LP gas contains multiple types of components such as butane, propane, and propylene. It is necessary to selectively detect dimethyl ether having similar mechanical characteristics.
Gas chromatographs using packed columns or capillary columns are usually used for analysis of gas components with similar chemical characteristics. However, if the former column is used to improve the resolution of each component, the separation time is reduced. If the latter column is used, the apparatus becomes large and difficult to carry, which causes inconvenience for use on site.

本発明はこのような事情に鑑みてなされたものであってその目的とするところは、携帯可能で、かつLPガス中のジメチルエーテルを高い選択性で短時間に検出することができる検出装置を提供することである。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a detection device that is portable and can detect dimethyl ether in LP gas with high selectivity in a short time. It is to be.

このような課題を達成するために本発明においては、カルボニル化合物やグリコール類の分離に適したポリマー系充填剤である「Porapak(登録商標)P」を充填剤としたカラムと、高エネルギーの真空紫外光線を照射源とする光イオン化検出器と、標準ガスを供給するガス供給源とを備え、LPガスをサンプリングガスとして前記カラムを通過させ、前記光イオン化検出器は、前記カラムで分離された成分に真空紫外光線を照射してイオン化し、検出対象であるジメチルエーテルと夾雑物であるプロパン、ブタン及びプロピレンとのイオン化ポテンシャルの相違を利用してジメチルエーテルを選択的に検出するようにした。 In order to achieve such a problem, in the present invention, a column containing “Porapak (registered trademark) P” , which is a polymer filler suitable for separation of carbonyl compounds and glycols, and a high energy vacuum A photoionization detector using an ultraviolet ray as an irradiation source and a gas supply source for supplying a standard gas are passed through the column using LP gas as a sampling gas, and the photoionization detector is separated by the column. Components were ionized by irradiation with vacuum ultraviolet light, and dimethyl ether was selectively detected by utilizing the difference in ionization potential between dimethyl ether as a detection target and propane, butane and propylene as impurities.

カラムの分離特性と光イオン化検出器とにより、LPガスに含まれているジメチルエーテルを短時間に、かつ高い選択性で検出することができる。   Due to the separation characteristics of the column and the photoionization detector, dimethyl ether contained in the LP gas can be detected in a short time and with high selectivity.

図1(イ)、(ロ)は、それぞれ本発明のガスクロマト装置の概観を示すものであって、ケース1には外部から開閉可能な扉2により区画されたキャリアガスとなる標準エアボンベ30の収容領域が確保され、内部には後述する切換えバルブ20、カラム25や、調圧手段となる圧力調整弁31、計量管22、PIDを検出器とする検出手段26などガスクロマトグラフを構成する部材が収容されている。   FIGS. 1 (a) and 1 (b) each show an overview of the gas chromatograph of the present invention. A case 1 includes a standard air cylinder 30 serving as a carrier gas partitioned by a door 2 that can be opened and closed from the outside. A housing area is secured, and members constituting the gas chromatograph such as a switching valve 20, a column 25, a pressure adjusting valve 31 serving as a pressure adjusting means, a measuring pipe 22, and a detecting means 26 using a PID as a detector are disposed inside. Contained.

一方、ケース1の前面3には切換えバルブ20の操作ノブ4、サンプリングガス流入口21、サンプリングガス排出口23、キャリアガス圧力計5、ガスボンベ30の開閉弁6、、ボンベのガス圧力計7、検出手段26に付属する表示パネル8、及びガス排出口9などが配置されている。   On the other hand, on the front surface 3 of the case 1, there are provided an operation knob 4 for a switching valve 20, a sampling gas inlet 21, a sampling gas outlet 23, a carrier gas pressure gauge 5, an on-off valve 6 for a gas cylinder 30, a gas pressure gauge 7 for a cylinder, A display panel 8 attached to the detection means 26, a gas discharge port 9, and the like are arranged.

図2は本発明の検出装置の流路構成を示すものであって、切換えバルブ20、この実施例では6方切換弁は、第1の流路(図中、実線で示す流路)によりサンプリングガス流入口21、計量管22、サンプリングガス排出口23に至る流路が、第2の流路(図中、点線で示す流路)によりキャリアガス供給手段24、計量管22、カラム25、検出手段26に至る流路を形成する。なお、キャリアガス供給手段は、標準エアを蓄圧したガスボンベ30と圧力調整弁31とにより構成されている。   FIG. 2 shows the flow path configuration of the detection apparatus of the present invention. The switching valve 20, in this embodiment, the 6-way switching valve, is sampled by the first flow path (flow path indicated by a solid line in the figure). The flow path leading to the gas inlet 21, the measurement tube 22, and the sampling gas discharge port 23 is a carrier gas supply means 24, a measurement tube 22, a column 25, and a detection by a second flow path (a flow path indicated by a dotted line in the figure). A flow path leading to the means 26 is formed. The carrier gas supply means includes a gas cylinder 30 that accumulates standard air and a pressure adjustment valve 31.

カラム25は、カルボニル化合物やグリコール類の分離に適したポリマー系充填剤(Waters社の商品名Porapak P)を充填剤として構成されている。   The column 25 is configured with a polymer filler (trade name Porapak P, manufactured by Waters) suitable for separation of carbonyl compounds and glycols as a filler.

検出手段26は、この実施例では光イオン化検出器(Photo Ionization Detector)により構成されていて、カラム25によって分離された物質に高エネルギーの真空紫外光線を照射し、その物質が持つイオン化ポテンシャル以上にポテンシャルが上昇した際に生じるイオン化物質を高感度エレクトロメーターにより測定するように構成されている。   In this embodiment, the detection means 26 is constituted by a photoionization detector, and irradiates the material separated by the column 25 with high-energy vacuum ultraviolet light, and exceeds the ionization potential of the material. An ionized substance generated when the potential is increased is measured by a high sensitivity electrometer.

光イオン化検出器は、紫外線のエネルギにより物質をイオン化して検出するため、検出対象であるジメチルエーテルと夾雑物であるプロパン、ブタン、及びプロピレンの被イオン化特性(イオン化ポテンシャル)の相違、つまりジメチルエーテルだけが酸素原子に2個の単価水素基R、R’が結合した有機化合物を有する特性を積極的に利用して目的物質であるジメチルエーテルを選択的に検出することが可能となる。   Since the photoionization detector ionizes and detects substances by the energy of ultraviolet rays, the difference in ionization characteristics (ionization potential) between dimethyl ether, which is the detection target, and propane, butane, and propylene, that is, dimethyl ether, is the only difference. It is possible to selectively detect dimethyl ether as a target substance by actively utilizing the characteristics of having an organic compound in which two unitary hydrogen groups R and R ′ are bonded to an oxygen atom.

この実施例においてジメチルエーテル(C2H6O)5000ppm、プロパン(C3H8)9.5%、ブタン(n-C4H10)6000ppm、プロピレン(CH3CH=CH2)500ppmをそれぞれ純空気に混合した試料ガスを分析したところ、図3に示したようにプロピレン(CH3CH=CH2)とプロパン(C3H8)との混合成分に対する感度が低く、ジメチルエーテル(C2H6O)のピークが独立峰として、試料注入後5乃至6分で検出できた。   In this example, a sample gas obtained by mixing 5,000 ppm of dimethyl ether (C2H6O), 9.5% of propane (C3H8), 6000 ppm of butane (n-C4H10), and 500 ppm of propylene (CH3CH = CH2) in pure air was analyzed. As shown, the sensitivity to the mixed component of propylene (CH3CH = CH2) and propane (C3H8) was low, and the peak of dimethyl ether (C2H6O) was detected as an independent peak 5 to 6 minutes after the sample injection.

一方、比較のためにガス分析において有機物の検出に汎用されている水素イオン化検出器(Flame Ionization Detector; FID)を使用したところ、図4に示すようにプロピレン(CH3CH=CH2)とプロパン(C3H8)との混合成分に対する感度が非常に高く、ジメチルエーテル(C2H6O)のピークが、プロピレン(CH3CH=CH2)とプロパン(C3H8)との混合成分のテール部に重なった。   On the other hand, for comparison, when a hydrogen ionization detector (FID) widely used for detecting organic substances in gas analysis was used, propylene (CH3CH = CH2) and propane (C3H8) as shown in FIG. The dimethyl ether (C2H6O) peak overlapped the tail of the mixed component of propylene (CH3CH = CH2) and propane (C3H8).

このことから、カラムとしてはカルボニル化合物やグリコール類の分離に適したポリマー系充填剤(Waters社の商品名Porapak P)を、また検出手段としては高エネルギーの真空紫外光線を照射光として使用するPIDを用いると、LPガス流通ラインに残留したジメチルエーテルを高い感度と選択性で検出することができるといえる。   For this reason, a PID that uses a polymer filler suitable for the separation of carbonyl compounds and glycols as the column (trade name Porapak P from Waters) and a high-energy vacuum ultraviolet ray as the irradiation light as the detection means. It can be said that dimethyl ether remaining in the LP gas distribution line can be detected with high sensitivity and selectivity.

なお、上述の実施例においてはカルボニル化合物やグリコール類の分離に適したポリマー系充填剤(Waters社の商品名Porapak P)だけを用いてが、ホルムアルデヒドの分離に適したポリマー系充填剤(Waters社の商品名Porapak T)を混合したり、またカルボニル化合物やグリコール類の分離に適したポリマー系充填剤(Waters社の商品名Porapak P)を充填したカラムとホルムアルデヒドの分離に適したポリマー系充填剤(Waters社の商品名Porapak T)とそれぞれ個別に充填したカラムを直列に接続し、高エネルギーの真空紫外光線を照射光として使用するPIDを用いても同様の測定結果を得ることを確認した。   In the above-mentioned examples, only a polymer filler suitable for separation of carbonyl compounds and glycols (trade name Porapak P of Waters) is used, but a polymer filler suitable for separation of formaldehyde (Waters (Porapak T) and polymer packing material suitable for separation of carbonyl compounds and glycols (Waters product name Porapak P) and polymer packing material suitable for separation of formaldehyde It was confirmed that the same measurement results were obtained even when PID using a high energy vacuum ultraviolet ray as irradiation light was connected in series with each individually packed column (trade name Porapak T of Waters).

図(イ)、(ロ)は、それぞれ本発明のガス測定装置の概要を示す図である。FIGS. 1A and 1B are diagrams each showing an outline of the gas measuring device of the present invention. 本発明のガス測定装置の一実施例を示す構成図である。It is a block diagram which shows one Example of the gas measuring device of this invention. 本発明によるガスクロマトグラムを示す図である。It is a figure which shows the gas chromatogram by this invention. 検出手段にFIDを使用した場合のガスクロマトグラムを示す図である。It is a figure which shows the gas chromatogram at the time of using FID for a detection means.

符号の説明Explanation of symbols

20 切換えバルブ 21 サンプリングガス流入口 22 計量管 23 サンプリングガス排出口 24 キャリアガス供給手段 25 カラム 26 検出手段 30 ガスボンベ     20 Switching valve 21 Sampling gas inlet 22 Metering tube 23 Sampling gas outlet 24 Carrier gas supply means 25 Column 26 Detection means 30 Gas cylinder

Claims (1)

カルボニル化合物やグリコール類の分離に適したポリマー系充填剤である「Porapak(登録商標)P」を充填剤としたカラムと、高エネルギーの真空紫外光線を照射源とする光イオン化検出
器と、標準ガスを供給するガス供給源とを備え、
LPガスをサンプリングガスとして前記カラムを通過させ、
前記光イオン化検出器は、前記カラムで分離された成分に真空紫外光線を照射してイオン化し、検出対象であるジメチルエーテルと夾雑物であるプロパン、ブタン及びプロピレンとのイオン化ポテンシャルの相違を利用してジメチルエーテルを選択的に検出する、
ことを特徴とするLPガス中のジメチルエーテル測定用ガスクロマト装置。
Columns with “Porapak (registered trademark) P” , a polymer packing material suitable for separation of carbonyl compounds and glycols, a photoionization detector that uses high-energy vacuum ultraviolet light as an irradiation source, and a standard A gas supply source for supplying gas,
Let LP gas pass through the column as sampling gas,
The photoionization detector is ionized by irradiating the components separated by the column with vacuum ultraviolet light, and utilizes the difference in ionization potential between dimethyl ether as a detection target and propane, butane and propylene as impurities. Selectively detect dimethyl ether,
A gas chromatograph for measuring dimethyl ether in LP gas.
JP2004378562A 2004-12-28 2004-12-28 Gas chromatograph for measuring dimethyl ether in LP gas Expired - Fee Related JP4515248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004378562A JP4515248B2 (en) 2004-12-28 2004-12-28 Gas chromatograph for measuring dimethyl ether in LP gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004378562A JP4515248B2 (en) 2004-12-28 2004-12-28 Gas chromatograph for measuring dimethyl ether in LP gas

Publications (2)

Publication Number Publication Date
JP2006184138A JP2006184138A (en) 2006-07-13
JP4515248B2 true JP4515248B2 (en) 2010-07-28

Family

ID=36737366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004378562A Expired - Fee Related JP4515248B2 (en) 2004-12-28 2004-12-28 Gas chromatograph for measuring dimethyl ether in LP gas

Country Status (1)

Country Link
JP (1) JP4515248B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4847713B2 (en) * 2005-05-09 2011-12-28 高圧ガス保安協会 Dimethyl ether measuring apparatus and method
CN101576499B (en) * 2009-04-09 2011-01-19 广州大学 Method and device for detecting concentration of dimethyl ether gas
CN105911185B (en) * 2016-04-20 2019-02-05 徐州市质量技术监督综合检验检测中心 A kind of method of dimethyl ether and each hydrocarbon component content in detection liquefied petroleum gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354459A (en) * 1989-07-21 1991-03-08 Shimadzu Corp Method of analyzing lower alcohol in gasoline and gas chromatography apparatus used therein
JP2004205313A (en) * 2002-12-25 2004-07-22 Dainippon Printing Co Ltd Gas chromatography device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354459A (en) * 1989-07-21 1991-03-08 Shimadzu Corp Method of analyzing lower alcohol in gasoline and gas chromatography apparatus used therein
JP2004205313A (en) * 2002-12-25 2004-07-22 Dainippon Printing Co Ltd Gas chromatography device

Also Published As

Publication number Publication date
JP2006184138A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
Zheng et al. Characterization of a thermal decomposition chemical ionization mass spectrometer for the measurement of peroxy acyl nitrates (PANs) in the atmosphere
De Gouw et al. Validation of proton transfer reaction‐mass spectrometry (PTR‐MS) measurements of gas‐phase organic compounds in the atmosphere during the New England Air Quality Study (NEAQS) in 2002
Sharp et al. A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals
Zhu et al. Flow-through microfluidic photoionization detectors for rapid and highly sensitive vapor detection
KR101110358B1 (en) Method and test system for detecting harmful substances
Slusher et al. A thermal dissociation–chemical ionization mass spectrometry (TD‐CIMS) technique for the simultaneous measurement of peroxyacyl nitrates and dinitrogen pentoxide
Nasreddine et al. Development of a novel portable miniaturized GC for near real-time low level detection of BTEX
Nakao et al. Secondary organic aerosol formation from phenolic compounds in the absence of NO x
US9459235B2 (en) Interference compensated photoionization detector
Aschmann et al. Products of reaction of OH radicals with α‐pinene
Haase et al. Calibration and intercomparison of acetic acid measurements using proton-transfer-reaction mass spectrometry (PTR-MS)
Apel et al. Intercomparison of oxygenated volatile organic compound measurements at the SAPHIR atmosphere simulation chamber
CN107110832A (en) The detection method of at least one VOC contained by the detection microdevice and gaseous sample of VOC
Zannoni et al. Intercomparison of two comparative reactivity method instruments inf the Mediterranean basin during summer 2013
CN105911158A (en) Gas chromatograph and detection method for determining total content of sulfides in natural gas
CN102037344B (en) Atomic absorption mercury analyser
JP4515248B2 (en) Gas chromatograph for measuring dimethyl ether in LP gas
Khan et al. Low-volume PEEK gas cell for BTEX detection using portable deep-UV absorption spectrophotometry
Borsdorf et al. Continuous on-line determination of methyl tert-butyl ether in water samples using ion mobility spectrometry
Kim et al. Quantitative and qualitative sensing techniques for biogenic volatile organic compounds and their oxidation products
Schüler et al. Detecting trace-level concentrations of volatile organic compounds with metal oxide gas sensors
Andersson Detectors
Reid et al. NaDos: A real-time, wearable, personal exposure monitor for hazardous organic vapors
Holopainen et al. Determination of fuel ethers in water by membrane extraction ion mobility spectrometry
Ruzsanyi et al. Detection of sulfur-free odorants in natural gas using ion mobility spectrometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

R150 Certificate of patent or registration of utility model

Ref document number: 4515248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees