JPH0354459A - Method of analyzing lower alcohol in gasoline and gas chromatography apparatus used therein - Google Patents

Method of analyzing lower alcohol in gasoline and gas chromatography apparatus used therein

Info

Publication number
JPH0354459A
JPH0354459A JP18983789A JP18983789A JPH0354459A JP H0354459 A JPH0354459 A JP H0354459A JP 18983789 A JP18983789 A JP 18983789A JP 18983789 A JP18983789 A JP 18983789A JP H0354459 A JPH0354459 A JP H0354459A
Authority
JP
Japan
Prior art keywords
column
sorbitol
gasoline
stage
porous polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18983789A
Other languages
Japanese (ja)
Inventor
Koichi Shiomi
紘一 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP18983789A priority Critical patent/JPH0354459A/en
Publication of JPH0354459A publication Critical patent/JPH0354459A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simply and accurately measure the content of alcohol, in the analysis of alcohol in gasoline due to gas chromatography, by separating a component by the sorbitol column of the first stage to apply predetermined treatment thereto and introducing the residual specimen into the porous polymer beads column of the second stage to separate the same. CONSTITUTION:An apparatus is constituted of the first stage consisting of a sample gasifying chamber 1, a sorbitol column 2 and a pressure controller 3, the second stage consisting of a resistor 5, a porous polymer beads column 6 and a detector 7 and the four-way valve 4 connecting both stages. At first, gasoline is introduced into the gasifying chamber 1 and a component is separated by the sorbitol column 2 and the residual component is introduced into the second column 6 at the point of time when a C8 aromatic component is eluated. The four-way valve 4 and the pressure controller 3 play an important part in the change-over of flow passages and the content of alcohol in gasoline of a high octane value containing alcohols can be simply and accurately measured by this method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はガソリン中の低級アルコールの分析法およびこ
れに用いる装置に関する。本発明分析法は、特にガソリ
ン精製工程、自動車メーカーなどにおいてアルコール添
加ガソリン中の低級アルコールの分析を行うために用い
られる。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for analyzing lower alcohols in gasoline and an apparatus used therefor. The analytical method of the present invention is used particularly in gasoline refining processes, automobile manufacturers, etc. to analyze lower alcohols in alcohol-added gasoline.

従来技術とその課題 ガソリンは多数の炭化水素の混合物であり、その成分数
は300〜500に及ぶ。ガソリンのオクタン価を上げ
アンチノック性を向上させる添加剤として代表的なもの
としては、テトラエチル鉛などがある。しかしながら、
このような添加剤が公害問題を引き起こすに至り、これ
に代わるオクタン価向上策が種々計られている。このう
ち、近年ガソリン中に数%のアルコール類を添加するこ
とが提案されている。このようなアルコール類が添加さ
れたガソリン中からアルコール類を分離することは非常
に困難であり、ガソリン中のアルコール成分の分析には
キャピラリーガスク口マトグラフィを用いた複雑なシス
テムが用いられる。キャピラリーカラムはステンレス、
溶融シリカなどの長い毛細管であり、充填剤を使用せず
、内壁を固定相液体膜で被覆した中空構造をなす。この
ため流路抵抗が低く長いカラムを作ることができ高い分
解能が得られるので石油製品の分析に用いられる。しか
しながら、注入される試料の量が僅かであるため付属装
置が必要なこと、また高感度の検出装置が必要なことな
どから装置は高価なものとなっている。
PRIOR ART AND ITS PROBLEMS Gasoline is a mixture of many hydrocarbons, and the number of components ranges from 300 to 500. Typical additives that increase the octane number of gasoline and improve its anti-knock properties include tetraethyl lead. however,
Such additives have come to cause pollution problems, and various alternative measures to improve the octane number have been developed. Of these, in recent years it has been proposed to add several percent of alcohols to gasoline. It is very difficult to separate alcohols from gasoline to which such alcohols have been added, and a complicated system using capillary gas chromatography is used to analyze alcohol components in gasoline. Capillary column is stainless steel,
It is a long capillary made of fused silica, etc., and has a hollow structure with an inner wall coated with a stationary phase liquid film without using a filler. For this reason, long columns with low flow path resistance can be made and high resolution can be obtained, so they are used in the analysis of petroleum products. However, since the amount of sample to be injected is small, additional equipment is required, and a highly sensitive detection device is required, making the device expensive.

本発明の目的はアルコール類を含有する高オクタン価ガ
ソリン中のアルコール含有率を簡便に測定する方法およ
び装置を提供するものである。
An object of the present invention is to provide a method and apparatus for easily measuring the alcohol content in high octane gasoline containing alcohols.

課題を解決するための手 本発明はガスクロマトグラフ装置を用いたガソリン中の
低級アルコールの分析法であって、試料を第1段のソル
ビトールカラムに注入してガソリン成分の分離を行い、
該カラムより炭素数9の芳香族炭化水素が溶出した時点
でソルビトールカラム内に残留した試料を第二段のボー
ラスポリマービーズカラムに導入して分離を行うことを
特徴とするガソリン中の低級アルコールの分析法を提供
するものである。
The present invention is a method for analyzing lower alcohols in gasoline using a gas chromatography device, in which a sample is injected into a first-stage sorbitol column to separate gasoline components.
Lower alcohols in gasoline are separated by introducing the sample remaining in the sorbitol column into a second-stage bolus polymer bead column at the time when aromatic hydrocarbons having 9 carbon atoms are eluted from the column. It provides an analytical method.

また、本発明はかかる分析法に適したガスグロマトグラ
フ装置をも提供する。すなわち、本発明装置は、 第1段装置、第2段装置およびこれらの間に設けられた
流踏切り替えバルブからなるガスクロマトグラフ装置で
あって、 第1段装置はソルビトールカラム、および切り替えバル
ブに対しソルビトールカラムと並列に配置され、これと
同一圧力を加える圧力調整器からなり、 第2段装置はボーラスボリマービーズカラム、および切
り替えバルブに対しボーラスボリマービーズカラムと並
列に配置され、これと同一の抵抗を有する流路抵抗カラ
ムからなり、 前記切り替えバルブは、第1のボジンヨンでツルビトー
ルカラムー流路抵抗カラム間および圧力調整器−ポーラ
スポリマービーズカラム間の2つの流路を形成し、第2
のボジシ3ンでソルビトールカラム−ポーラスポリマー
ビーズカラム間の流路を形成する ことを特徴とするガスクロマトグラフ装置を提供するも
のである。
The present invention also provides a gas chromatograph apparatus suitable for such an analysis method. That is, the device of the present invention is a gas chromatograph device consisting of a first-stage device, a second-stage device, and a flow switching valve provided between them, wherein the first-stage device has a sorbitol column and a flow switching valve. The second stage device is placed in parallel with the bolus polymer bead column and the switching valve is placed in parallel with the bolus polymer bead column, and consists of a pressure regulator that applies the same pressure as the sorbitol column. a flow path resistance column having a resistance of 2
The present invention provides a gas chromatograph apparatus characterized in that a flow path between a sorbitol column and a porous polymer bead column is formed by a body 3 of the present invention.

本発明装置の第1段のソルビトールカラムは従来公知の
ものかいずれも用いられてよい。また、ボーラスボリマ
ービーズカラムは、例えば商品名Porapak ( 
Water社製)で市販のジビニルベンゼンースチレン
コボリマーなどの公知のものが用いられてよい。切り替
えバルブは四方バルブなどの適宜の多ボートバルブを用
いてよい。
As the first stage sorbitol column of the apparatus of the present invention, any conventionally known sorbitol column may be used. In addition, bolus polymer bead columns can be used, for example, under the trade name Porapak (
Known materials such as divinylbenzene-styrene copolymer commercially available from Water Inc.) may be used. As the switching valve, an appropriate multi-boat valve such as a four-way valve may be used.

友里剋 つぎに本発明ガスクロマトグラフ装置の一具体例を用い
本発明を図面を参照しながらさらに詳細に説明する。
Next, the present invention will be explained in more detail using a specific example of the gas chromatograph apparatus of the present invention with reference to the drawings.

第1図は本発明分析法に用いられるガスクロマトグラフ
装置を示す概略図である。該装置は試料気化室l1ソル
ビトールカラム2および、圧力調整器3よりなる第1段
装置;抵抗器5、ボーラスボリマービーズカラム6およ
び検出器7からなる第2段装置;並びに第1段装置およ
び第2段装置を連結する四方バルブ4からなる。
FIG. 1 is a schematic diagram showing a gas chromatograph apparatus used in the analysis method of the present invention. The device includes a first stage device consisting of a sample vaporization chamber 11, a sorbitol column 2, and a pressure regulator 3; a second stage device consisting of a resistor 5, a bolus polymer bead column 6, and a detector 7; It consists of a four-way valve 4 that connects the second stage device.

分析を行うにあたっては、まず四方バルブ4の流路を実
線のように設定する。すなわち、第1段目に配置された
ソルビトールカラム2は、四方バルブ4を介して第2段
の流路抵抗器5とつながる。
In conducting the analysis, first, the flow path of the four-way valve 4 is set as shown by the solid line. That is, the sorbitol column 2 arranged in the first stage is connected to the flow path resistor 5 in the second stage via the four-way valve 4.

該流路抵抗器5はボーラスボリマービーズカラム6と同
一の流路抵抗を有し、四方バルブ4の切り替え前後にソ
ルビトールカラム2を通る移動相の抵抗を同一に保持す
る。
The flow path resistor 5 has the same flow path resistance as the bolus polymer bead column 6 and maintains the same resistance of the mobile phase passing through the sorbitol column 2 before and after switching the four-way valve 4.

一方、第1段目の圧力調整器3は四方バルブ4に設けら
れた他の回路を介してボーラスボリマービーズカラム6
につながり、四方バルブ4を切り替えてソルビトールカ
ラム2とボーラスボリマービーズカラム6とをつなぐ前
のボーラスボリマービーズカラム6に負荷される圧力を
所定値に調整する。
On the other hand, the first stage pressure regulator 3 is connected to the bolus polymer bead column 6 through another circuit provided in the four-way valve 4.
The pressure applied to the bolus polymer bead column 6 before connecting the sorbitol column 2 and the bolus polymer bead column 6 is adjusted to a predetermined value by switching the four-way valve 4.

第2図はソルビトールカラム(カラム長:4m1温度:
l00℃)のみでレギュラーガソリン(C.〜C,アル
コールを添加)の成分を分離した場合に得られたクロマ
トグラムである。ソルビトールカラム2では低級アルコ
ール(C,〜C.)はカラムの液相への分配係数が大き
いので、ガソリン成分に比べリテンションタイムが大き
くなる。このようにして第l段のソルビトールカラムに
よる分離操作でC,芳香族が溶出するタイミングをあら
かじめ検知しておく。
Figure 2 shows a sorbitol column (column length: 4 m1, temperature:
This is a chromatogram obtained when the components of regular gasoline (C. to C, alcohol added) were separated only at 100°C. In the sorbitol column 2, the lower alcohols (C, -C.) have a large distribution coefficient to the liquid phase of the column, so the retention time is longer than that of the gasoline component. In this way, the timing at which C and aromatics elute in the separation operation using the first stage sorbitol column is detected in advance.

この装置を用いて分析を行うには、まず試料気化室lに
ガソリンを注入(lμQ程度)する。つぎに第1段のソ
ルビトールカラムにてガソリン成分の分離が行われC8
芳香族が溶出した時点を見計らい、該カラム中の残留成
分を第2段のボーラスボリマービーズカラム6に導入す
る。すなわち、アルコール類のうち、ソルビトールカラ
ムから最初に溶出するイソプロパノール(i−PrOH
)以降の成分がカラム内にあり、それより前の成分がソ
ルビトールカラムを通過するタイミングを見計らって四
方バルブ4を点線に切り換える。
To conduct an analysis using this device, first gasoline (approximately lμQ) is injected into the sample vaporization chamber l. Next, gasoline components are separated in the first stage sorbitol column, and C8
At the time when the aromatics have eluted, the remaining components in the column are introduced into the bolus polymer bead column 6 in the second stage. That is, among alcohols, isopropanol (i-PrOH) is the first to elute from the sorbitol column.
) The four-way valve 4 is switched to the dotted line at the timing when the following components are in the column and the previous components pass through the sorbitol column.

この操作によりアルコール類およびこれらと同じ位置に
溶出するC1。゜芳香族炭化水素(炭素数10以上の炭
素数の芳香族炭化水素)がボリマービーズカラム6に導
入される。
This operation causes alcohols and C1 to elute at the same positions as these.゜Aromatic hydrocarbons (aromatic hydrocarbons having a carbon number of 10 or more) are introduced into the polymer bead column 6.

ボーラスボリマービーズカラム6を低いカラム温度(約
90℃)から高い温度(190℃)までlO℃/分の速
度にて昇温しながら分離操作を行い第3図に示すごとく
アルコール類を分離した。かかる昇温分析の条件は、試
料、カラムの種類により公知の方法により適宜選択され
てよいが、通常5〜15℃/分の昇温速度で60〜10
0℃の温度から170〜200℃に昇温する。0 10
’芳香族炭化水素はこのカラムからは非常に遅れて溶出
するので、ピーク状の溶出カーブとはならずアルコール
類の分析には妨げとならない。
The separation operation was carried out while raising the temperature of the bolus polymer bead column 6 from a low column temperature (approximately 90°C) to a high temperature (190°C) at a rate of 10°C/min, and alcohols were separated as shown in Figure 3. . Conditions for such temperature-rising analysis may be appropriately selected according to known methods depending on the type of sample and column, but usually at a heating rate of 5-15°C/min.
The temperature is raised from 0°C to 170-200°C. 0 10
'Aromatic hydrocarbons elute from this column very late, so they do not create a peak-like elution curve and do not interfere with the analysis of alcohols.

01〜C4アルコール添加のガソリン(第2図)を3 
9分でバルブ切り換えを行い、C,〜C4アルコール分
を検出器(FID)で検出したときのチャートを第3図
に示す。検出器はTCDであってもよい。
01~C4 alcohol added gasoline (Figure 2)
FIG. 3 shows a chart when the valve was switched at 9 minutes and the C to C4 alcohol content was detected by the detector (FID). The detector may be a TCD.

C 10’芳香族炭化水素もボーラスボリマービーズに
導入されるが、第3図のごとくアルコール以外のピーク
は検出されない。
Although C 10' aromatic hydrocarbons are also introduced into the bolus polymer beads, no peaks other than alcohol are detected as shown in FIG.

なお、分析条件はつぎのとおりである。The analysis conditions are as follows.

[分析条件〕 分析試料: C l− C 4アルコール添加のレギュ
ラーガソリン 分離条件 分析カラム ソルビトールカラム(20%on shimalite
)4 mポーラスポリマービーズカラム     2m
移動相・窒素 温度: ソルビトールカラム;100℃ポーラスポリマ
ービーズカラム: 90℃=190℃、10℃/min 流量: 40mQ/ min 検出条件 検出器:FID 発明の効果 本発明によれば、アルコール類を含有する高オクタン価
のガソリン中のアルコール含有率が簡便かつ正確に測定
することができる。
[Analysis conditions] Analytical sample: Regular gasoline with addition of C1-C4 alcohol Separation conditions Analytical column Sorbitol column (20% on shimalite
) 4 m porous polymer bead column 2 m
Mobile phase/nitrogen temperature: Sorbitol column; 100°C porous polymer bead column: 90°C = 190°C, 10°C/min Flow rate: 40 mQ/min Detection conditions Detector: FID Effects of the invention According to the present invention, alcohol containing The alcohol content in high-octane gasoline can be measured easily and accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一興体例の流路を示す説明図、第
2図はソルビトールカラムによりアルコール添加ガソリ
ンを分離したときのガスクロマトグラム、第3図は本発
明分析法によりアルコール添加ガソリンを分離したとき
のガスクロマトグラムである。 図中の主な符号はつぎのとおりである。 2:ソルビトールカラム、4:四方バルブ、6 :ポーラスポリマービーズカラム。
Figure 1 is an explanatory diagram showing the flow path of an example of the apparatus of the present invention, Figure 2 is a gas chromatogram when alcohol-added gasoline is separated by a sorbitol column, and Figure 3 is a gas chromatogram when alcohol-added gasoline is separated by the analytical method of the present invention. This is the gas chromatogram obtained when The main symbols in the figure are as follows. 2: Sorbitol column, 4: Four-way valve, 6: Porous polymer bead column.

Claims (2)

【特許請求の範囲】[Claims] (1)ガスクロマトグラフ装置を用いたガソリン中の低
級アルコールの分析法であって、試料を第1段のソルビ
トールカラムに注入してガソリン成分の分離を行い、該
カラムより炭素数9の芳香族炭化水素が溶出した時点で
ソルビトールカラム内に残留した試料を第二段のポーラ
スポリマービーズカラムに導入して分離を行うことを特
徴とするガソリン中の低級アルコールの分析法。
(1) A method for analyzing lower alcohols in gasoline using a gas chromatography device, in which the sample is injected into a sorbitol column in the first stage to separate gasoline components, and aromatic carbon having 9 carbon atoms is extracted from the column. A method for analyzing lower alcohols in gasoline, which is characterized in that the sample remaining in the sorbitol column at the time when hydrogen is eluted is introduced into a second-stage porous polymer bead column for separation.
(2)第1段装置、第2段装置およびこれらの間に設け
られた流路切り替えバルブからなるガスクロマトグラフ
装置であって、 第1段装置はソルビトールカラム、および切り替えバル
ブに対しソルビトールカラムと並列に配置され、これと
同一圧力を加える圧力調整器からなり、 第2段装置はポーラスポリマービーズカラム、および切
り替えバルブに対しポーラスポリマービーズカラムと並
列に配置され、これと同一の抵抗を有する流路抵抗カラ
ムからなり、 前記切り替えバルブは、第1のポジションでソルビトー
ルカラム−流路抵抗カラム間および圧力調整器−ポーラ
スポリマービーズカラム間の2つの流路を形成し、第2
のポジションでソルビトールカラム−ポーラスポリマー
ビーズカラム間の流路を形成する ことを特徴とするガスクロマトグラフ装置。
(2) A gas chromatograph device consisting of a first-stage device, a second-stage device, and a flow path switching valve provided between them, wherein the first-stage device is connected to a sorbitol column, and the switching valve is parallel to the sorbitol column. The second stage device is arranged in parallel with the porous polymer bead column to the porous polymer bead column and the switching valve, and includes a flow path having the same resistance as the porous polymer bead column. consisting of a resistance column, the switching valve forming two flow paths between the sorbitol column and the flow path resistance column and between the pressure regulator and the porous polymer bead column in a first position;
A gas chromatograph apparatus characterized in that a flow path is formed between a sorbitol column and a porous polymer bead column at the position shown in FIG.
JP18983789A 1989-07-21 1989-07-21 Method of analyzing lower alcohol in gasoline and gas chromatography apparatus used therein Pending JPH0354459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18983789A JPH0354459A (en) 1989-07-21 1989-07-21 Method of analyzing lower alcohol in gasoline and gas chromatography apparatus used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18983789A JPH0354459A (en) 1989-07-21 1989-07-21 Method of analyzing lower alcohol in gasoline and gas chromatography apparatus used therein

Publications (1)

Publication Number Publication Date
JPH0354459A true JPH0354459A (en) 1991-03-08

Family

ID=16248038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18983789A Pending JPH0354459A (en) 1989-07-21 1989-07-21 Method of analyzing lower alcohol in gasoline and gas chromatography apparatus used therein

Country Status (1)

Country Link
JP (1) JPH0354459A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184138A (en) * 2004-12-28 2006-07-13 High Pressure Gas Safety Institute Of Japan Gas chromatographic device for measuring dimethyl ether in lp gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184138A (en) * 2004-12-28 2006-07-13 High Pressure Gas Safety Institute Of Japan Gas chromatographic device for measuring dimethyl ether in lp gas
JP4515248B2 (en) * 2004-12-28 2010-07-28 高圧ガス保安協会 Gas chromatograph for measuring dimethyl ether in LP gas

Similar Documents

Publication Publication Date Title
Kolb et al. Quantitative headspace analysis of solid samples; a classification of various sample types
Rood The troubleshooting and maintenance guide for gas chromatographers
US3030798A (en) Chromatographic process and apparatus
CN101210912A (en) Gas chromatographic analysis device
US2905536A (en) Method for studying chemical reactions
Hayes et al. Hydrocarbon group type analyzer system for the rapid determination of saturates, olefins, and aromatics in hydrocarbon distillate products
Gordon et al. Comparison of state-of-the-art column switching techniques in high resolution gas chromatography
Pearson et al. Automated high-performance liquid chromatography determination of hydrocarbon types in crude oil residues using a flame ionization detector
Kosal et al. Determination of hydrocarbon types in naphthas, gasolines and kerosenes: a review and comparative study of different analytical procedures
Ettre et al. Investigation of the linearity of a stream splitter for capillary gas chromatography
Doran et al. The combined use of high efficiency liquid and capillary gas chromatography for the determination of polycyclic aromatic hydrocarbons in automotive exhaust condensates and other hydrocarbon mixtures
McConnell et al. Automated high-resolution gas chromatographic system for recording and evaluation of metabolic profiles
Sharma et al. Hydrocarbon group type analysis of petroleum heavy fractions using the TLC-FID technique
JPH0354459A (en) Method of analyzing lower alcohol in gasoline and gas chromatography apparatus used therein
Petrocelli et al. Determination of dissolved gases in petroleum fractions by gas chromatography
Ury An automated gas chromatographic analysis of gasolines for hydrocarbon types
JPH05223799A (en) Quantitative analysis method of saturated compound, olefin and aromatic hydrocarbon component
Eggertsen et al. Determination of Small Amounts of n-Paraffins by Molecular Sieve-Gas Chromatography
Szakasits et al. Hydrocarbon type determination of naphthas and catalytically reformed products by automated multidimensional gas chromatography
Hayes Jr et al. Paraffins, olefins, naphthenes and aromatics analysis of selected hydrocarbon distillates using on-line column switching high-performance liquid chromatography with dielectric constant detection
Willis Trapping technique for open tubular chromatographic columns
JPH06242095A (en) Simultaneous quantitative analysis of kerosene, methanol, btx and mtbe in gasoline
JPH0694697A (en) Analytical method and device classified by hydrocarbon type of hydrocarbon oil
Fett et al. Routine determination of benzene, toluene, ethylbenzene and total aromatics in hydrocarbon solvents by a combination of liquid and gas chromatography
US5001071A (en) Vented retention gap capillary gas chromatography method