JP4513515B2 - Welded joint with excellent corrosion resistance - Google Patents

Welded joint with excellent corrosion resistance Download PDF

Info

Publication number
JP4513515B2
JP4513515B2 JP2004326405A JP2004326405A JP4513515B2 JP 4513515 B2 JP4513515 B2 JP 4513515B2 JP 2004326405 A JP2004326405 A JP 2004326405A JP 2004326405 A JP2004326405 A JP 2004326405A JP 4513515 B2 JP4513515 B2 JP 4513515B2
Authority
JP
Japan
Prior art keywords
corrosion
content
welded
steel
weld metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004326405A
Other languages
Japanese (ja)
Other versions
JP2006137967A (en
Inventor
登 誉田
英昭 幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004326405A priority Critical patent/JP4513515B2/en
Publication of JP2006137967A publication Critical patent/JP2006137967A/en
Application granted granted Critical
Publication of JP4513515B2 publication Critical patent/JP4513515B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、疲労亀裂進展抵抗特性に優れた鋼材の溶接継手およびその溶接継手を用いた構造物に関する。さらに詳しくは、溶接部の耐食性(耐局部腐食性)に優れた溶接継手およびその溶接継手を用いた構造物に関する。   The present invention relates to a welded joint of steel material having excellent fatigue crack growth resistance characteristics and a structure using the welded joint. More particularly, the present invention relates to a welded joint excellent in corrosion resistance (local corrosion resistance) of a welded portion and a structure using the welded joint.

近年、溶接構造物が大型化される傾向が顕著になってきており、構造部材の高強度化と軽量化が望まれている。しかし、高強度鋼を使用すると設計応力が上昇するため、溶接部から疲労破壊が発生しやすくなり、その改善が重要な問題となっている。構造用鋼材などの厚鋼板では一般に溶接施工が施されるため、溶接部から発生して進展する疲労亀裂を鋼材で停留させることができれば、構造物の疲労寿命の延長に有効である。このため、疲労亀裂の進展抑制効果を有する各種の鋼板が提案されている。   In recent years, the tendency to increase the size of welded structures has become remarkable, and it is desired to increase the strength and weight of structural members. However, when high strength steel is used, the design stress increases, so that fatigue failure is likely to occur from the welded portion, and its improvement is an important issue. Thick steel plates such as structural steel materials are generally welded. Therefore, if fatigue cracks that develop from the weld and propagate can be retained by the steel materials, it is effective in extending the fatigue life of the structure. For this reason, various steel plates having an effect of suppressing the progress of fatigue cracks have been proposed.

代表的なものとして、特許文献1には、組織が主にフェライト、パーライト、およびベイナイトの1種または2種以上で構成され、さらに平均存在間隔が20μm以下で平均扁平比が5以上の形状の島状マルテンサイトを体積率で0.5〜5%の割合で存在させた、耐疲労亀裂伝播性に優れた鋼板が示されている。   As a typical example, Patent Document 1 has a structure in which the structure is mainly composed of one or more of ferrite, pearlite, and bainite, and the average existence interval is 20 μm or less and the average flatness ratio is 5 or more. A steel sheet excellent in fatigue crack propagation resistance, in which island martensite is present in a volume ratio of 0.5 to 5%, is shown.

特許文献2には、硬質部の素地と、この素地に分散した軟質部とからなる組織を有し、この2部分の硬度差がビッカース硬度で150以上であることを特徴とする、疲労亀裂の進展抑制効果を有する鋼板が開示されている。   Patent Document 2 has a structure composed of a base of a hard part and a soft part dispersed in the base, and the hardness difference between the two parts is 150 or more in terms of Vickers hardness. A steel sheet having a progress suppressing effect is disclosed.

しかし、これらの鋼板には、高強度を確保するため、または組織制御を行うため、各種の合金元素を含有させる必要がある。そのため、これらの鋼板を溶接する場合、溶接材料によっては母材と溶接金属とで化学成分が異なることとなり、母材に比べて溶接部が局部的に腐食する恐れがある。溶接部の局部腐食は応力集中につながり、破壊にいたる原因ともなるため、大きな問題となる。   However, these steel plates need to contain various alloy elements in order to ensure high strength or to control the structure. Therefore, when these steel plates are welded, the chemical composition differs between the base material and the weld metal depending on the welding material, and the welded portion may corrode locally compared to the base material. The local corrosion of the welded part is a big problem because it leads to stress concentration and also causes destruction.

溶接部の局部腐食は、鋼母材と溶接金属との間で異なった組成、組織をもつ部分が電位差をもち、その電位差によって局部電池が形成される結果、いわゆる電気化学的なガルバニック腐食を生ずることに原因がある。したがって、この腐食を防止するには、母材に合った溶接金属を使用する必要がある。   The local corrosion of the weld is caused by so-called electrochemical galvanic corrosion as a result of the formation of a local battery due to the potential difference between the steel base metal and the weld metal where the composition and structure differ. There is a cause. Therefore, in order to prevent this corrosion, it is necessary to use a weld metal suitable for the base material.

母材と溶接部との間で起こる局部腐食の場合、例えば、組織が互いに異なることに原因がある場合には、溶接部の組織を母材の組織とほぼ同じにすることによって、局部腐食をある程度防止することができる。具体的な方法として、溶接部を後熱処理する方法があるが、現場溶接の場合、後熱処理は工数がかかることから、後熱処理を極力なくす方向で検討されている。従って、この方法は望ましいものではない。   In the case of local corrosion occurring between the base metal and the welded part, for example, when there is a cause for the difference in structure between the base metal and the welded part, the local corrosion is reduced by making the welded part structure almost the same as the base metal structure. It can be prevented to some extent. As a specific method, there is a method in which the welded portion is post-heat-treated. However, in the case of on-site welding, post-heat treatment is time-consuming, so studies are being made in the direction of minimizing post-heat treatment. This method is therefore not desirable.

ガルバニック腐食を考えた場合、溶接金属の化学組成を母材よりも電気化学的に貴にすれば、溶接金属の局部腐食を防ぐことができる。このため、鋼材と溶接金属の化学組成を規定し、両者に電位差をつけて防食しようとする試みがある。例えば、特許文献3には、所定組成の鋼材を3〜6重量%のNiを含有する溶接材料で溶接するというように、溶接金属の化学組成中のNiを母材より高くすることが開示されている。しかし、この方法では、溶接金属が母材に対して貴となりすぎるため、母材との電位差が大きくなりすぎて、今度は母材が腐食されるという問題がある。   When galvanic corrosion is considered, local corrosion of the weld metal can be prevented by making the chemical composition of the weld metal electrochemically more noble than the base metal. For this reason, there is an attempt to prevent corrosion by defining the chemical composition of the steel material and the weld metal and applying a potential difference between them. For example, Patent Document 3 discloses that Ni in the chemical composition of the weld metal is higher than that of the base material, such as welding a steel material having a predetermined composition with a welding material containing 3 to 6% by weight of Ni. ing. However, in this method, since the weld metal is too noble with respect to the base material, there is a problem that the potential difference from the base material becomes too large, and this time the base material is corroded.

溶接金属の局部腐食を防止する方法として、例えば特許文献4には、ベイナイト主体の鋼材のサブマージ溶接に、溶接ワイヤとフラックス原料およびCr、Cu、Ni等の金属粉を混合した焼成フラックスとを使うことにより、海水環境中で使用される溶接部の局部腐食を防止することが開示されている。   As a method for preventing local corrosion of the weld metal, for example, Patent Document 4 uses a welding wire, a flux raw material, and a fired flux in which metal powders such as Cr, Cu, and Ni are mixed in submerged welding of bainite-based steel. Thus, it is disclosed to prevent local corrosion of a welded portion used in a seawater environment.

特許文献5には、溶接金属中のCu, Ni, Cr, Moと母材のCr量との最適なバランスを保つことにより、溶接部の局部腐食を防止した溶接継手が開示されている。
しかし、上記の特許文献に開示された方法では、いずれも溶接棒またはフラックスに特殊元素を入れて成分調整する必要があり、コストが高くなるとともに、溶接施工者にとっては、特殊な溶接棒を扱うことになり、作業性が悪化するという問題がある。
特開平6-271985号公報 特開平7-242992号公報 特開平1-142024号公報 特開平5-8042号公報 特開平7-155951号公報
Patent Document 5 discloses a welded joint in which local corrosion of the welded portion is prevented by maintaining an optimal balance between Cu, Ni, Cr, Mo in the weld metal and the Cr content of the base metal.
However, in any of the methods disclosed in the above-mentioned patent documents, it is necessary to adjust the components by putting a special element into the welding rod or flux, which increases the cost and handles a special welding rod for the welder. As a result, there is a problem that workability deteriorates.
JP-A-6-271985 JP 7-242992 A JP-A-1-142024 JP-A-5-8042 JP-A-7-155951

本発明の目的は、溶接構造物を構成する鋼材として、特に疲労亀裂進展特性に優れた鋼材を使用した場合に、溶接部の耐局部腐食性に優れた溶接継手を提供することである。   An object of the present invention is to provide a welded joint that is excellent in local corrosion resistance of a welded portion, particularly when a steel material that is excellent in fatigue crack growth characteristics is used as a steel material that constitutes a welded structure.

発明者らは、溶接部の局部腐食の原因が溶接金属と母材との電位差にあるとの前提にたって、各種鋼材の溶接部を多数調査し、以下の知見を得るに至った。
1)炭素鋼の共金溶接部においては、溶接金属が凝固組織のため、一般にそうでない母材よりも、自然電位が幾分卑である。そのため、最初は電位の貴な母材がカソード、卑な溶接金属がアノードとなり、電池が形成されて、アノードとなる溶接金属で腐食が発生する。
Based on the premise that the cause of local corrosion of the welded portion is the potential difference between the weld metal and the base metal, the inventors have investigated a large number of welded portions of various steel materials and have obtained the following knowledge.
1) Since the weld metal is a solidified structure in the carbon steel commingled weld, the natural potential is somewhat lower than that of the base metal which is not so generally. Therefore, initially, the noble base material is the cathode, the base weld metal is the anode, a battery is formed, and corrosion occurs in the weld metal that is the anode.

2)腐食が進行・成長した段階では、アノードではpHが低下し、かつ腐食生成物で覆われるため酸素が不足する。一方、母材カソードでは、酸素の供給は十分である。そのため、両者の間で酸素濃淡電池が形成され、1)で発生した溶接金属の腐食がさらに成長する。   2) At the stage where corrosion progresses and grows, the anode has a low pH and is covered with corrosion products, resulting in a lack of oxygen. On the other hand, the supply of oxygen is sufficient at the base material cathode. Therefore, an oxygen concentration cell is formed between the two, and the corrosion of the weld metal generated in 1) further grows.

3)このような局部腐食の発生・成長を防止するためには、まず、溶接金属の自然電位を母材並みにまで貴化させる必要がある。
4)鋼の自然電位を貴化させる合金元素として、Cu、Ni、Moが考えられる。これらの元素の溶接金属への添加により、pHの低下した環境(アノード)下での耐食性も高まる。したがって、CuとNiとMoを母材中の含有量よりやや多くなるように溶接金属に添加すれば、溶接金属と母材との自然電位差は小さくなるか、あるいは差がなくなる。しかし、溶接金属へのCu添加量は溶接性の問題で限られるし、Ni添加はコスト高になるため、これらの元素の含有量を調整するだけでは十分ではなく、他の元素にも分担させることが考えられる。
3) In order to prevent the occurrence and growth of such local corrosion, first, it is necessary to make the natural potential of the weld metal as noble as the base metal.
4) Cu, Ni, and Mo are conceivable as alloy elements that make the natural potential of steel noble. Addition of these elements to the weld metal also enhances the corrosion resistance under a reduced pH environment (anode). Therefore, if Cu, Ni, and Mo are added to the weld metal so as to be slightly higher than the content in the base material, the natural potential difference between the weld metal and the base material is reduced or eliminated. However, the amount of Cu added to the weld metal is limited by the problem of weldability, and the cost of adding Ni is high. Therefore, it is not sufficient to adjust the content of these elements, but also share them with other elements. It is possible.

5)そこで、発明者らはSiとCrに着目した。Si添加は鋼の自然電位を卑化させる働きをもち、CrもpHの低下した溶液中では、鋼の自然電位を卑化させる働きをすることがわかった。したがって、溶接金属中のSi、Crを適切に制御させれば、局部腐食を回避することが可能となる。 5) Therefore, the inventors focused on Si and Cr. It has been found that addition of Si has a function of lowering the natural potential of steel, and Cr also has a function of lowering the natural potential of steel in a solution having a lowered pH. Therefore, local corrosion can be avoided by appropriately controlling Si and Cr in the weld metal.

この知見に基づき、Cu、Ni、Moの量は溶接金属の方が母材より高めとし、Cr、Siの量については溶接金属中の量を適切に制御とすることで、母材と溶接金属の自然電位を近づけることができる。   Based on this knowledge, the amount of Cu, Ni, and Mo is higher in the weld metal than in the base metal, and the amount of Cr and Si is appropriately controlled in the weld metal so that the base metal and the weld metal are controlled. Can be brought close to the natural potential.

本発明は上記の知見により完成したものであって、鋼材の組成が、質量%で、C:0.01〜0.20%、Si:0.60%以下、Mn:0.50〜2.0%、P:0.02%以下、S:0.02%以下、Al:0.003〜0.10%、Cu:0.01〜1.5%、Ni:0.02〜1.5%、Cr:0.02〜1.2%、Mo:0.01〜1.0%、Ti:0.010〜0.1%およびNb:0.005〜0.1%を含有し、残部が鉄および不純物であり、鋼材が、最大引張・圧縮歪±0.012、繰り返し速度0.5Hz、最大歪までの波数12の漸増・漸減繰り返し負荷を15回与えたときの1回目の最大歪時の応力σ1と15回目の最大歪時の応力σ15との比σ15/σ1で示される繰り返し軟化パラメータが0.65〜0.95であり、鋼材同士を溶接した溶接継手において、下記(1)式と(2)式または(1)式と(3)式を同時に満足することを特徴とする溶接継手である:
(ΔCu+ΔNi+ΔMo)≦0.0 ・・・・(1)式
(ΔSi+1.5×ΔCr)≧0.2 ・・・・(2)式
0.0≧(ΔSi+1.5×ΔCr)≧−0.2 ・・・・(3)式
式中、ΔCu=CuM−CuW、ΔNi=NiM−NiW、ΔMo=MoM−MoW、
ΔSi=SiM−SiW、ΔCr=CrM−CrWであり、
CuW、NiW、SiW、CrW、MoWは溶接金属の各元素含有量(質量%)、
CuM、NiM、SiM、CrM、MoMは母材の各元素含有量(質量%)である。
上記鋼材の組成が、さらに、質量%で、1.5%を超えない含有量のV、1.0%を超えない含有量のW、0.01%を超えない含有量のREMのうち、1種または2種以上を有していてもよい。
The present invention has been completed based on the above findings, and the composition of the steel material is, by mass, C: 0.01 to 0.20%, Si: 0.60% or less, Mn: 0.50 to 2. 0%, P: 0.02% or less, S: 0.02% or less, Al: 0.003 to 0.10%, Cu: 0.01 to 1.5%, Ni: 0.02 to 1.5 %, Cr: 0.02 to 1.2%, Mo: 0.01 to 1.0%, Ti: 0.010 to 0.1% and Nb: 0.005 to 0.1% , the balance Is the iron and impurities, and the maximum strain of the first time when the steel material is given a maximum tensile / compressive strain of ± 0.012, a repetition rate of 0.5 Hz, and a gradual increase / decrease of wave number 12 until the maximum strain is applied 15 times. The repetitive softening parameter indicated by the ratio σ15 / σ1 between the stress σ1 at the time and the stress σ15 at the 15th maximum strain is 0.65 to 0.95, A welded joint characterized by satisfying the following expressions (1) and (2) or expressions (1) and (3) at the same time:
(ΔCu + ΔNi + ΔMo) ≦ 0.0 (1) Equation (ΔSi + 1.5 × ΔCr) ≧ 0.2 (2) Equation 0.0 ≧ (ΔSi + 1.5 × ΔCr) ≧ −0 .2 Formula (3) where ΔCu = CuM-CuW, ΔNi = NiM-NiW, ΔMo = MoM-MoW,
ΔSi = SiM-SiW, ΔCr = CrM-CrW,
CuW, NiW, SiW, CrW, and MoW are each element content (mass%) of a weld metal,
CuM, NiM, SiM, CrM, and MoM are each element content (mass%) of a base material.
The composition of the steel material further includes, in mass%, V having a content not exceeding 1.5%, W having a content not exceeding 1.0%, and REM having a content not exceeding 0.01%, You may have 1 type, or 2 or more types.

本発明はまた、このような溶接継手を有する鋼材の溶接構造物にも関する。   The present invention also relates to a steel welded structure having such a welded joint.

本発明によれば、特に疲労亀裂進展特性に優れた鋼材において、溶接部の腐食が母材に対して想定される腐食の範囲内に収まる、溶接部の耐局部腐食性に優れた溶接部を有する溶接継手が、特殊な溶接棒や高価な元素を使用せずに実現される。従って、本発明の溶接継手を有する溶接構造物は、母材の腐食寿命だけを考慮すればよいので、疲労亀裂進展特性の良好な鋼材から構築された、長い疲労寿命を有する溶接構造物が、溶接部から破壊して寿命が設計寿命より短くなるという事態の発生が避けられる。   According to the present invention, in a steel material particularly excellent in fatigue crack growth characteristics, a welded portion with excellent local corrosion resistance of the welded portion in which the corrosion of the welded portion falls within the range of corrosion assumed for the base metal. A welded joint is achieved without the use of special welding rods or expensive elements. Therefore, since the welded structure having the welded joint of the present invention only needs to consider the corrosion life of the base material, a welded structure having a long fatigue life constructed from a steel material having good fatigue crack growth characteristics is obtained. Occurrence of a situation in which the welded portion breaks and the life becomes shorter than the design life can be avoided.

本発明は、鋼材同士を溶接した溶接継手において、溶接金属と母材のCu,Ni,Mo含有量が下記の(1)式を満足し、さらにそれらのSiおよびCr含有量が下記の(2)式または(3)式のいずれかを満たす溶接継手である。   In the welded joint in which steel materials are welded to each other, the present invention satisfies the following formula (1) for the Cu, Ni, and Mo contents of the weld metal and the base metal, and further, the Si and Cr contents are the following (2 ) Or a welded joint that satisfies either of the formulas (3).

(ΔCu+ΔNi+ΔMo)≦0.0 ・・・・(1)式
(ΔSi+1.5×ΔCr)≧0.2 ・・・・(2)式
0.0≧(ΔSi+1.5×ΔCr)≧−0.2 ・・・・(3)式
式中、ΔCu=CuM−CuW、ΔNi=NiM−NiW、ΔMo=MoM−MoW、
ΔSi=SiM−SiW、ΔCr=CrM−CrWであり、
CuW、NiW、SiW、CrW、MoWは溶接金属の各元素含有量(質量%)、
CuM、NiM、SiM、CrM、MoMは母材の各元素含有量(質量%)である。
(ΔCu + ΔNi + ΔMo) ≦ 0.0 (1) Equation (ΔSi + 1.5 × ΔCr) ≧ 0.2 (2) Equation 0.0 ≧ (ΔSi + 1.5 × ΔCr) ≧ −0 .2 Formula (3) where ΔCu = CuM-CuW, ΔNi = NiM-NiW, ΔMo = MoM-MoW,
ΔSi = SiM-SiW, ΔCr = CrM-CrW,
CuW, NiW, SiW, CrW, and MoW are each element content (mass%) of a weld metal,
CuM, NiM, SiM, CrM, and MoM are each element content (mass%) of a base material.

発明者らは、試験用に溝状の開先形状を設けた鋼材(図4参照)に対して、様々な組成を有する溶接材料を用いて、炭酸ガスアーク溶接および被覆アーク溶接を行った。同じ組成を有する溶接材料について2つのサンプルを作製して加速腐食試験および流水状態の海水浸漬試験を行い、溶接部の溶接金属(図1〜3にはdepoと表示)とHAZ部(熱影響部;図1〜3にはHAZと表示)における選択腐食の有無を調べた。選択腐食は、各部分での平均腐食深さaを求め、母材の平均腐食深さbとの比率(a/b)が1.2より大である場合に、その部分での選択腐食であると判定した。この試験結果を、X軸をΔSi+1.5×ΔCrとし、Y軸をΔCu+ΔNi+ΔMoとして整理したグラフを図1および2に示す。   The inventors performed carbon dioxide arc welding and covered arc welding on steel materials (see FIG. 4) provided with groove-like groove shapes for testing using welding materials having various compositions. Two samples of welding materials with the same composition were prepared and subjected to an accelerated corrosion test and a seawater immersion test in flowing water. The weld metal (depo is shown in FIGS. 1 to 3) and the HAZ part (heat affected zone) The presence or absence of selective corrosion in FIGS. In the selective corrosion, the average corrosion depth a in each part is obtained, and when the ratio (a / b) to the average corrosion depth b of the base material is larger than 1.2, the selective corrosion in that part is It was determined that there was. 1 and 2 are graphs in which the X-axis is ΔSi + 1.5 × ΔCr and the Y-axis is ΔCu + ΔNi + ΔMo.

図1は、加速腐食試験の結果を示したものである。図1より、溶接部の選択腐食を生じないサンプルは、図の下半分(ΔCu+ΔNi+ΔMoが負の領域)に集中する傾向があった。一方、ΔSi+1.5×ΔCrが負の領域では、その絶対値が大きくなると、depo部で選択腐食が起こる傾向が強かった。逆に、ΔSi+1.5×ΔCrが正の領域では、ゼロに近い場合に、HAZ部での選択腐食が起こる傾向が見られた。   FIG. 1 shows the results of the accelerated corrosion test. From FIG. 1, the samples that did not cause selective corrosion of the welded portion tended to concentrate in the lower half of the figure (region where ΔCu + ΔNi + ΔMo is negative). On the other hand, in the region where ΔSi + 1.5 × ΔCr is negative, there is a strong tendency for selective corrosion to occur in the depo portion when the absolute value increases. On the contrary, in the region where ΔSi + 1.5 × ΔCr is positive, there is a tendency that selective corrosion occurs in the HAZ portion when it is close to zero.

図2は、流水状態の海水浸漬試験の結果を示したものである。図2においても、図1と同様の傾向が見られた。即ち、溶接部の選択腐食を生じないサンプルが図の下半分(ΔCu+ΔNi+ΔMoが負の領域)に集中する傾向があり、さらにΔSi+1.5×ΔCrが負の領域では、その絶対値が大きくなるとdepo部で選択腐食が起こる傾向が強くなり、ΔSi+1.5×ΔCrが正の領域では、ゼロに近い場合にHAZ部での選択腐食が起こる傾向があった。   FIG. 2 shows the results of a seawater immersion test in flowing water. In FIG. 2, the same tendency as in FIG. 1 was observed. That is, samples that do not cause selective corrosion of the welded portion tend to concentrate in the lower half of the figure (ΔCu + ΔNi + ΔMo is negative), and in the region where ΔSi + 1.5 × ΔCr is negative, the absolute value increases. There was a strong tendency for selective corrosion to occur in the depo part, and in the region where ΔSi + 1.5 × ΔCr was positive, there was a tendency for selective corrosion to occur in the HAZ part when it was close to zero.

図3は、図1と図2を重ね合わせた図である。これからわかるように、(ΔCu+ΔNi+ΔMo)が負であって(即ち、上記(1)式を満たす)、かつ(ΔSi+1.5×ΔCr)が0.2以上であるか(上記(2)式を満たす)、または−0.2から0である(上記(3)式を満たす)場合には、depo部とHAZ部のいずれにおいても腐食が起こりにくいことがわかる。   FIG. 3 is a diagram in which FIGS. 1 and 2 are superimposed. As can be seen from this, (ΔCu + ΔNi + ΔMo) is negative (that is, the above equation (1) is satisfied) and (ΔSi + 1.5 × ΔCr) is 0.2 or more (the above equation (2) is It is understood that corrosion is unlikely to occur in both the depo part and the HAZ part in the case of satisfying (equal to (3)).

ここで、ΔCu+ΔNi+ΔMoが負である場合、すなわち、(1)式を満足する場合に、腐食が起こりづらくなるのは、先に4)で述べたとおりである。一方、ΔSi+1.5×ΔCrが−0.2より大きい場合に腐食が起こりづらくなる傾向が見られるのは、同じく先に5)に述べたとおりである。   Here, when ΔCu + ΔNi + ΔMo is negative, that is, when the expression (1) is satisfied, it is difficult for corrosion to occur as described in 4) above. On the other hand, when ΔSi + 1.5 × ΔCr is larger than −0.2, the tendency that corrosion hardly occurs is the same as described in 5) above.

しかし、ΔSi+1.5×ΔCrが−0.2より大きい場合であっても、ΔSi+1.5×ΔCrが0から0.2の領域では、特にHAZ部に腐食が見られた。これに関しては、HAZ部のミクロ組織がベイナイト含有組織となり、母材のフェライト−パーライト組織と異なるため、HAZ部電位が溶接金属の電位より20mV以上も卑になることが多いので、HAZ部が選択的に腐食されると考えられる。   However, even when ΔSi + 1.5 × ΔCr is larger than −0.2, corrosion was particularly observed in the HAZ portion in the region where ΔSi + 1.5 × ΔCr was 0 to 0.2. In this regard, since the HAZ part microstructure is a bainite-containing structure and is different from the base ferrite-pearlite structure, the HAZ part potential is often more than 20 mV lower than the weld metal potential, so the HAZ part is selected. It is thought to be corroded.

なお、溶接金属とは、溶接施工時に一度溶融状態まで昇温した材料領域のことを示す。溶接方法は手溶接、SAW(サブマージドアーク溶接)等どのような方法であってもかまわないが、溶接金属の化学成分は溶加材の化学成分だけで決まるものではなく、溶融に伴い母材成分の影響も受ける。すなわち、母材の希釈程度は開先形状、溶接狙い位置、溶接条件、溶接姿勢など数多くの因子が影響する。そのため、溶接金属の化学成分は母材からの希釈の程度を考慮し、溶接材料を選択する必要である。   The weld metal refers to a material region that has been heated to a molten state once during welding. The welding method may be any method such as manual welding or SAW (submerged arc welding), but the chemical component of the weld metal is not determined solely by the chemical component of the filler metal, and the base metal is melted with melting. Also affected by ingredients. That is, the degree of dilution of the base material is affected by many factors such as the groove shape, the welding target position, the welding conditions, and the welding posture. For this reason, it is necessary to select a welding material in consideration of the degree of dilution of the chemical component of the weld metal from the base material.

本発明の溶接継手では、母材となる鋼材が疲労亀裂進展特性に優れたものであることが好ましい。具体的には、最大引張・圧縮歪±0.012、繰り返し速度0.5Hz、最大歪までの波数12の漸増・漸減繰り返し負荷を15回与えたときの1回目の最大歪時の応力σ1と15回目の最大歪時の応力σ15との比σ15/σ1で示される繰り返し軟化パラメータが0.65〜0.95であることで示される疲労特性を有する鋼材が好ましい。   In the welded joint of the present invention, it is preferable that the steel material as the base material is excellent in fatigue crack growth characteristics. Specifically, the maximum tensile / compressive strain ± 0.012, the repetition rate 0.5 Hz, and the stress σ1 at the time of the first maximum strain when applying a gradual increase / decrease load of wave number 12 up to the maximum strain 15 times A steel material having fatigue characteristics indicated by a repeated softening parameter indicated by a ratio σ15 / σ1 to a stress σ15 at the time of the 15th maximum strain of 0.65 to 0.95 is preferable.

本発明者らが特開2001-41868号公報に述べたように、硬化組織を有する鋼材を繰り返し軟化させた時の繰り返し軟化パラメータσ15/σ1は、通常用いられる応力拡大係数範囲(ΔK)が20MPa・√mにおける疲労亀裂進展速度(da/dN)と良好な相関を示す。   As described in Japanese Patent Application Laid-Open No. 2001-41868 by the present inventors, the repeated softening parameter σ15 / σ1 when a steel material having a hardened structure is repeatedly softened has a stress intensity factor range (ΔK) that is normally used of 20 MPa. -Good correlation with fatigue crack growth rate (da / dN) at √m.

この繰り返し軟化パラメータが0.65を下回ると、亀裂進展速度は遅くなるが、鋼材の靭性や溶接性が劣化し、溶接構造用鋼として用途が著しく限定される。他方、繰り返し軟化パラメータが0.95を上回ると、亀裂進展速度が速くなるだけでなく、強度の低下も引き起こす。繰り返し軟化パラメータが0.65以上0.95以下であると、鋼材の疲労亀裂進展抵抗特性が優れ、靱性や溶接性の劣化も生じない。   When this repeated softening parameter is less than 0.65, the crack growth rate becomes slow, but the toughness and weldability of the steel material deteriorates, and the use as a steel for welded structures is remarkably limited. On the other hand, if the repeated softening parameter exceeds 0.95, not only does the crack growth rate increase, but it also causes a decrease in strength. When the repeated softening parameter is 0.65 or more and 0.95 or less, the fatigue crack propagation resistance characteristics of the steel material are excellent, and deterioration of toughness and weldability does not occur.

このような繰り返し軟化パラメータを有する鋼材としては、例えば、質量%で下記組成を有するものが例示される:C:0.01〜0.20%、Si:0.60%以下、Mn:0.50〜2.0%、P:0.02%以下、S:0.02%以下、Al:0.003〜0.10%、Cu:0〜1.5%、Ni:0〜1.5%、Cr:0〜1.2%、Mo:0〜1.0%、V:0〜1.5%、Ti:0〜0.1%、Nb:0〜0.1%、W:0〜1.0%、REM:0〜0.01%および残部が鉄および不純物。   Examples of the steel material having such a repeated softening parameter include those having the following composition in mass%: C: 0.01 to 0.20%, Si: 0.60% or less, Mn: 0.8. 50 to 2.0%, P: 0.02% or less, S: 0.02% or less, Al: 0.003 to 0.10%, Cu: 0 to 1.5%, Ni: 0 to 1.5 %, Cr: 0 to 1.2%, Mo: 0 to 1.0%, V: 0 to 1.5%, Ti: 0 to 0.1%, Nb: 0 to 0.1%, W: 0 ~ 1.0%, REM: 0 ~ 0.01% and balance iron and impurities.

本発明における上記の鋼組成の限定理由を次に説明する。鋼組成に関する%は全て質量%である。
C:0.01〜0.20%
Cは構造部材の強度確保に有効な元素である。しかし、その含有量が0.01%未満では強度向上効果が得がたい。一方、Cの含有量が0.20%を超えると、溶接性が低下するので溶接施工が困難となり、構造用鋼としての使用領域が著しく限定されてしまう。大きな強度を確保するとともに溶接性をも確保するため、C含有量は0.04〜0.15%とすることが望ましい。
The reason for limiting the steel composition in the present invention will be described next. All percentages relating to steel composition are mass%.
C: 0.01 to 0.20%
C is an element effective for ensuring the strength of the structural member. However, if the content is less than 0.01%, it is difficult to obtain an effect of improving the strength. On the other hand, if the C content exceeds 0.20%, the weldability is lowered, so that welding is difficult, and the use area as structural steel is remarkably limited. In order to ensure high strength and weldability, the C content is preferably 0.04 to 0.15%.

Si:0〜0.60%
Siは脱酸作用を有する。しかし、その含有量が0.60%を超えると靭性が劣化する。望ましい含有量は0.05〜0.5%である。
Si: 0 to 0.60%
Si has a deoxidizing action. However, if its content exceeds 0.60%, the toughness deteriorates. A desirable content is 0.05 to 0.5%.

Mn:0.50〜2.0%
Mnは強度の確保に有効な元素である。しかし、その含有量が0.50%未満ではその効果が十分ではない。一方、Mnの含有量が2.0%を超えると靭性が劣化する。望ましい含有量は0.70〜1.8%である。
Mn: 0.50 to 2.0%
Mn is an element effective for securing strength. However, if the content is less than 0.50%, the effect is not sufficient. On the other hand, if the Mn content exceeds 2.0%, the toughness deteriorates. A desirable content is 0.70 to 1.8%.

P:0.02%以下
Pは、不純物として存在し、その含有量が多いと、鋼の靭性に影響を与える。特に、0.02%を超えると母材だけでなくHAZの靭性が著しく低下する。
P: 0.02% or less P exists as an impurity, and if its content is large, it affects the toughness of steel. In particular, if it exceeds 0.02%, not only the base material but also the toughness of the HAZ is significantly reduced.

S:0.02%以下
Sは、不純物として存在し、その含有量が多いと、母材のHAZ靭性を阻害し、板厚方向の延性も低下させる。さらに、MnS介在物の生成原因にもなり、疲労き裂の起点ともなるので、0.02%以下とした。
S: 0.02% or less S is present as an impurity, and if its content is large, the HAZ toughness of the base metal is inhibited, and the ductility in the thickness direction is also reduced. Furthermore, it also causes generation of MnS inclusions and also a starting point of fatigue cracks, so the content was made 0.02% or less.

Al:0.003〜0.10%
Alは脱酸作用を有する。しかし、その含有量が0.003%未満ではその効果が十分ではなく、鋼中の酸化物が増加するため靭性が劣化する。一方、Alの含有量が0.10%を超えると靭性が低下する。望ましい含有量は0.010〜0.050%である。
Al: 0.003 to 0.10%
Al has a deoxidizing action. However, if the content is less than 0.003%, the effect is not sufficient, and the toughness deteriorates because the oxide in the steel increases. On the other hand, if the Al content exceeds 0.10%, the toughness decreases. A desirable content is 0.010 to 0.050%.

Cu:0〜1.5%
Cuは強度の確保、耐食性改善に有効な元素である。しかし、Cu含有量が1.5%を超えると靱性の劣化を引き起こす。望ましい含有量は0.01〜1.0%である。
Cu: 0 to 1.5%
Cu is an element effective for securing strength and improving corrosion resistance. However, if the Cu content exceeds 1.5%, deterioration of toughness is caused. A desirable content is 0.01 to 1.0%.

Ni:0〜1.5%
Niは強度の確保、靭性改善に有効な元素である。しかし、Niが1.5%を超えるように含有させても、その効果が飽和するばかりか、コストの上昇を招く。望ましい含有量は0.02〜1.3%である。
Ni: 0 to 1.5%
Ni is an element effective for securing strength and improving toughness. However, even if Ni is contained so as to exceed 1.5%, the effect is saturated and the cost is increased. A desirable content is 0.02 to 1.3%.

Cr:0〜1.20%
Cuと同様に、Crも強度の確保、耐食性改善に有効な元素である。しかし、Cr含有量が1.20%を超えると、靱性の劣化を引き起こす。望ましい含有量は0.02〜1.0%である。
Cr: 0 to 1.20%
Like Cu, Cr is an element effective for securing strength and improving corrosion resistance. However, when the Cr content exceeds 1.20%, the toughness is deteriorated. A desirable content is 0.02 to 1.0%.

Mo:0〜1.0%
Moは、焼入れ性を高め、強度を改善するのに有効な元素である。しかし、Mo含有量が1.0%を超えると靱性の劣化を引き起こすばかりでなく、コストの上昇を招く。望ましい含有量は0.01〜0.8%である。
Mo: 0 to 1.0%
Mo is an element effective for enhancing the hardenability and improving the strength. However, if the Mo content exceeds 1.0%, not only the toughness is deteriorated but also the cost is increased. A desirable content is 0.01 to 0.8%.

V:0〜1.5%
Vは鋼の強度、靭性を高める効果がある。しかし、1.5%を超えて含有させると、靭性の劣化を引き起こす。望ましい含有量は0.05〜1.0%である。
V: 0 to 1.5%
V has the effect of increasing the strength and toughness of the steel. However, if it exceeds 1.5%, toughness is deteriorated. A desirable content is 0.05 to 1.0%.

Ti:0〜0.1%
Tiは靭性を確保するのに有効な元素である。しかし、その含有量が0.1%を超えると、かえって靭性が低下してしまう。望ましいTi含有量は0.01〜0.05%である。
Ti: 0 to 0.1%
Ti is an element effective for ensuring toughness. However, if its content exceeds 0.1%, the toughness is rather lowered. A desirable Ti content is 0.01 to 0.05%.

Nb:0〜0.1%
Nbは靭性を確保するのに有効な元素である。しかし、その含有量が0.1%を超えるとかえって靭性が低下してしまう。望ましい含有量は0.005〜0.05%である。
Nb: 0 to 0.1%
Nb is an effective element for ensuring toughness. However, if the content exceeds 0.1%, the toughness is rather lowered. A desirable content is 0.005 to 0.05%.

W:0〜1.0%
Wは鋼の強度向上効果があるとともに、疲労亀裂進展抑制にも効果がある。さらには耐食性に効果があるため、サワー原油中などの腐食環境下においても疲労亀裂進展抑制に効果がある。しかし、その含有量が1.0%を超えると靭性の劣化を引き起こす。Wの望ましい含有量は0.05〜0.5%である。
W: 0 to 1.0%
W has an effect of improving the strength of steel and also effective in suppressing fatigue crack growth. Furthermore, since it is effective in corrosion resistance, it is effective in suppressing fatigue crack growth even in corrosive environments such as in sour crude oil. However, if its content exceeds 1.0%, deterioration of toughness is caused. A desirable content of W is 0.05 to 0.5%.

REM:0〜0.01%
REMは組織を微細化し、靭性改善に効果がある。しかし、その含有量が0.01%を超えると靭性が劣化する。REMの望ましい含有量は、0.0005〜0.01%である。
REM: 0 to 0.01%
REM refines the structure and is effective in improving toughness. However, if the content exceeds 0.01%, the toughness deteriorates. A desirable content of REM is 0.0005 to 0.01% .

表1に示す組成の鋼塊を溶製し、熱間圧延で板厚25〜50mmの鋼板を製作した。この鋼板から、図4に示すように、95×160mmの中央に開先として台形状の溝を設けた溶接用試験材を作製した。板厚は、鋼種番号1および4の鋼板については20mmに減厚したが、残りの鋼板は元厚のままであった。この試験材の開先に対して、表2に示す組成の溶加材(溶接棒またはワイヤー)を用いて、溶接を実施した。鋼種と溶加材の組合あわせごとに2つの溶接サンプルを作製した。   A steel ingot having the composition shown in Table 1 was melted and a steel plate having a thickness of 25 to 50 mm was manufactured by hot rolling. From this steel plate, as shown in FIG. 4, a test material for welding was prepared in which a trapezoidal groove was provided as a groove at the center of 95 × 160 mm. The plate thickness was reduced to 20 mm for the steel types 1 and 4, but the remaining steel plates remained at the original thickness. Welding was performed on the groove of the test material using a filler material (welding rod or wire) having the composition shown in Table 2. Two weld samples were prepared for each combination of steel type and filler metal.

溶接は、溶加材が表2にAで示すCO2用ワイヤである場合には、2層2パスの炭酸ガスアーク溶接(1層目と2層目のいずれも200A×25V×30cm/min,CO2ガス流量:25L/min)により行い、その他の溶加材の場合には、2層2パスの手溶接(1層目:160A×24V×20cm/min、2層目:160A×24V×15cm/min)により行った。 When the filler metal is a CO 2 wire indicated by A in Table 2, the welding is a two-layer, two-pass carbon dioxide arc welding (both the first and second layers are 200 A × 25 V × 30 cm / min, CO 2 gas flow rate: 25 L / min) In the case of other filler materials, two-layer, two-pass manual welding (first layer: 160 A × 24 V × 20 cm / min, second layer: 160 A × 24 V × 15 cm / min).

溶接後の各試験材(溶接サンプル)について、溶接金属の表面側を分光分析法により組成分析して、Si,Cr,Cu,Ni,Moの含有量を求め、母材である試験材中の含有量との差(Δ)を算出した。結果を表3に示す。表3において、試験材記号における、A〜Dの記号は、溶接に使用した溶加材(表2の記号)を意味する。   For each test material after welding (weld sample), the composition side of the surface side of the weld metal is analyzed by spectroscopic analysis to determine the content of Si, Cr, Cu, Ni, and Mo. The difference (Δ) from the content was calculated. The results are shown in Table 3. In Table 3, symbols A to D in the test material symbols mean the filler materials (symbols in Table 2) used for welding.

これらの各溶接試験材から、図5に示す寸法の試験片を採取して腐食試験に供した。腐食試験は、加速腐食試験および流水状態の海水浸漬試験の2通りで実施した。
加速腐食試験では、#600で試験片の溶接面側の表面を自動研磨し、脱脂した後、溶接ビードを含む12×42mmの範囲を残して、他はシリコーン樹脂で被覆したものを使用した。試験溶液には30℃に保持したASTM規格に基づく人工海水(ASTM D−1141)を用い、この試験溶液に試験片を72時間浸漬した。
From each of these weld test materials, test pieces having the dimensions shown in FIG. 5 were collected and subjected to a corrosion test. The corrosion test was performed in two ways: an accelerated corrosion test and a seawater immersion test in flowing water.
In the accelerated corrosion test, the surface on the welded surface side of the test piece was automatically polished and degreased in # 600, and then a 12 × 42 mm range including a weld bead was left, and the others were coated with a silicone resin. The test solution was artificial seawater (ASTM D-1141) based on the ASTM standard maintained at 30 ° C., and the test piece was immersed in this test solution for 72 hours.

流水状態の海水浸漬試験では、同様に#600で試験片の表面を自動研磨し、脱脂した後、上記と同様に被覆した試験片を、流動状態に保持した自然の生海水中に3ケ月浸漬した。   In the flowing seawater immersion test, the surface of the test piece was similarly automatically polished with # 600, degreased, and the test piece covered in the same manner as above was immersed in natural raw seawater kept in a fluid state for 3 months. did.

上記の各腐食試験後、試験片を海水から取り出し、クエン酸アンモニウムで脱スケールを行った。その後、溶接ビード部(溶接金属)、HAZ部、および母材のそれぞれの部分について、試験片断面の光学顕微鏡写真から、5点における腐食深さの平均値として各部分の平均腐食深さを求めた。腐食深さは、被覆した非腐食部分の厚みとの差として測定できる。   After each corrosion test, the test piece was taken out of the seawater and descaled with ammonium citrate. Then, for each part of the weld bead part (welded metal), HAZ part, and base metal, the average corrosion depth of each part is obtained as an average value of the corrosion depth at five points from the optical micrograph of the test piece cross section. It was. The corrosion depth can be measured as the difference from the thickness of the coated non-corroded part.

腐食は母材でも生じる。通常、構造物は、それに使用される鋼材(母材に相当する)の腐食深さを予め予測して腐食代を追加して、建造するため、母材部での腐食量がHAZ部および溶接金属での腐食量より大きくなる場合には、さほど問題ではない。しかし、母材に比べてHAZ部または溶接金属での腐食量が大きくなると、構造物の寿命は寿命予測より短くなるので、大きな問題となる。   Corrosion also occurs in the base material. Normally, a structure is constructed by predicting the corrosion depth of a steel material (corresponding to the base material) used in the structure and adding a corrosion allowance, so that the amount of corrosion in the base material part is HAZ and welded. If it is greater than the amount of corrosion on the metal, it is not a problem. However, when the amount of corrosion at the HAZ portion or the weld metal is larger than that of the base material, the lifetime of the structure becomes shorter than the lifetime prediction, which is a serious problem.

このため、母材の平均腐食深さbを基準とし、HAZ部または溶接金属のそれぞれの平均腐食深さaが母材の平均腐食深さbの何倍であるか(即ち、a/b比を算出した。a/b比の値が1.2以上であると、その部位は選択的に腐食していると判定される。従って、HAZ部と溶接金属の少なくとも一方の部位の平均腐食深さが母材の1.2倍以上であると、溶接部(HAZ部と溶接金属とを含む)の腐食特性が不良(溶接部の選択腐食あり)である。   Therefore, on the basis of the average corrosion depth b of the base material, how many times the average corrosion depth a of the HAZ part or the weld metal is larger than the average corrosion depth b of the base material (that is, the a / b ratio). If the value of a / b ratio is 1.2 or more, it is determined that the part is selectively corroded, so that the average corrosion depth of the HAZ part and at least one part of the weld metal is determined. When the thickness is 1.2 times or more of the base metal, the corrosion characteristics of the welded portion (including the HAZ portion and the weld metal) are poor (there is selective corrosion of the welded portion).

母材の平均腐食深さの1.2倍以上を溶接部での選択腐食があると判断した理由は次の通りである。母材の腐食深さにはばらつきがあるが、その最小および最大の腐食深さは、平均腐食深さの±20%程度である。したがって、母材の最大の腐食深さ(平均腐食深さ×1.2)より深い腐食は、母材に想定される腐食より大きな腐食、即ち、溶接部における局部的な腐食(選択腐食)になり、腐食特性が不良であると判断される。   The reason why it was determined that there is selective corrosion at the weld at 1.2 times or more of the average corrosion depth of the base metal is as follows. Although there are variations in the corrosion depth of the base metal, the minimum and maximum corrosion depth is about ± 20% of the average corrosion depth. Therefore, corrosion deeper than the maximum corrosion depth of the base metal (average corrosion depth x 1.2) is larger than the expected corrosion of the base metal, that is, local corrosion (selective corrosion) in the weld. Thus, the corrosion characteristics are judged to be poor.

表3には、加速腐食試験と流水海水浸漬試験のそれぞれについて、HAZ部と溶接金属のa/b値のうちいずれか大きい方の数値とその数値を生じた部位とを示した。表3において、Depoとは溶接金属を意味する。HAZ部と溶接金属のいずれにおいてもa/b値が1未満である場合は、最大腐食部位が母材であるので、「母材で最大腐食」と表示した。その場合は、溶接部の耐食性(耐局部腐食性)が特に優れているので、表3に○と表示した。一方、溶接部の最大腐食深さのa/b値の比が1.2より大である場合は×(溶接部の耐食性が悪い)、1.0〜1.2の範囲である場合を△(許容範囲内)と表示した。   Table 3 shows the larger numerical value of the HAZ part and the a / b value of the weld metal and the part that generated the numerical value for each of the accelerated corrosion test and the flowing water seawater immersion test. In Table 3, Depo means weld metal. When the a / b value is less than 1 in both the HAZ part and the weld metal, the maximum corrosion site is the base material, and thus “maximum corrosion with the base material” is displayed. In that case, since the corrosion resistance (local corrosion resistance) of the welded portion is particularly excellent, “◯” is shown in Table 3. On the other hand, when the ratio of the a / b value of the maximum corrosion depth of the welded part is larger than 1.2, × (the corrosion resistance of the welded part is poor), and the case where it is in the range of 1.0 to 1.2 (Within tolerance).

Figure 0004513515
Figure 0004513515

Figure 0004513515
Figure 0004513515

Figure 0004513515
Figure 0004513515

表3より、本発明に従って、(ΔCu+ΔNi+ΔMo)の値が0または負であり(前記(1)式を満たす)、(ΔSi+1.5ΔCr)の値が−0.2〜0であるか、または0.2以上である(前記(2)式または(3)式を満たす)場合には、溶接部より母材での腐食が大きくなるか、或いはHAZ部または溶接金属での腐食が最も大きくても、母材での平均腐食深さの1.2倍以下であり、構造物の溶接継手として使用しても溶接部での腐食を考慮する必要はなく、母材(構造物に使用される鋼材)の腐食寿命を考慮するだけでよい。   From Table 3, according to the present invention, the value of (ΔCu + ΔNi + ΔMo) is 0 or negative (satisfies the above expression (1)), and the value of (ΔSi + 1.5ΔCr) is −0.2 to 0, or If it is 0.2 or more (the above formula (2) or (3) is satisfied), the corrosion at the base metal is larger than the welded portion, or the corrosion at the HAZ portion or the weld metal is the largest. However, it is less than 1.2 times the average corrosion depth of the base metal, and even if it is used as a welded joint of a structure, there is no need to consider corrosion in the welded part. It is only necessary to consider the corrosion life of the steel.

一方、本発明の範囲外のものは、加速腐食試験および流水状態の海水浸漬試験の少なくとも一方において、HAZ部または溶接金属の少なくとも一方での腐食が大きくなる(a/b比が1.2より大になる)ため、溶接継手として使用するのは好ましくない。   On the other hand, in the case outside the scope of the present invention, the corrosion of at least one of the HAZ part and the weld metal becomes large in at least one of the accelerated corrosion test and the flowing seawater immersion test (a / b ratio is 1.2 from 1.2). Therefore, it is not preferable to use it as a welded joint.

加速腐食試験の結果を示す図である。It is a figure which shows the result of an accelerated corrosion test. 流水状態の海水浸漬試験の結果を示す図である。It is a figure which shows the result of the seawater immersion test of a flowing water state. 図1と図2を重ねて得られる図である。It is a figure obtained by superimposing FIG. 1 and FIG. 実施例で溶接試験に用いた試験材とその開先の形状を示す。The test material used for the welding test in an Example and the shape of the groove | channel are shown. 腐食試験に用いた溶接試験片の形状を示す。The shape of the weld specimen used for the corrosion test is shown.

Claims (3)

鋼材の組成が、質量%で、C:0.01〜0.20%、Si:0.60%以下、Mn:0.50〜2.0%、P:0.02%以下、S:0.02%以下、Al:0.003〜0.10%、Cu:0.01〜1.5%、Ni:0.02〜1.5%、Cr:0.02〜1.2%、Mo:0.01〜1.0%、Ti:0.010〜0.1%およびNb:0.005〜0.1%を含有し、残部が鉄および不純物であり、
前記鋼材が、最大引張・圧縮歪±0.012、繰り返し速度0.5Hz、最大歪までの波数12の漸増・漸減繰り返し負荷を15回与えたときの1回目の最大歪時の応力σ1と15回目の最大歪時の応力σ15との比σ15/σ1で示される繰り返し軟化パラメータが0.65〜0.95であり、
前記鋼材同士を溶接した溶接継手において、下記(1)式と(2)式または(1)式と(3)式を同時に満足することを特徴とする溶接継手。
(ΔCu+ΔNi+ΔMo)≦0.0 ・・・・(1)式
(ΔSi+1.5×ΔCr)≧0.2 ・・・・(2)式
0.0≧(ΔSi+1.5×ΔCr)≧−0.2 ・・・・(3)式
式中、ΔCu=CuM−CuW、ΔNi=NiM−NiW、ΔMo=MoM−MoW、
ΔSi=SiM−SiW、ΔCr=CrM−CrWであり、
CuW、NiW、SiW、CrW、MoWは溶接金属の各元素含有量(質量%)、
CuM、NiM、SiM、CrM、MoMは母材の各元素含有量(質量%)である。
The composition of the steel material is% by mass : C: 0.01 to 0.20%, Si: 0.60% or less, Mn: 0.50 to 2.0%, P: 0.02% or less, S: 0 0.02% or less, Al: 0.003-0.10%, Cu: 0.01-1.5%, Ni: 0.02-1.5%, Cr: 0.02-1.2%, Mo : 0.01 to 1.0%, Ti: 0.010 to 0.1% and Nb: 0.005 to 0.1% , the balance being iron and impurities,
When the steel material is given a maximum tensile / compressive strain ± 0.012, a repetition rate of 0.5 Hz, and a gradual increase / decrease load of wave number 12 up to the maximum strain, 15 stresses σ1 and 15 at the time of the first maximum strain The repetitive softening parameter indicated by the ratio σ15 / σ1 to the stress σ15 at the time of the maximum strain at the second time is 0.65 to 0.95,
A welded joint in which the steel materials are welded together, wherein the following formulas (1) and (2) or formulas (1) and (3) are satisfied at the same time.
(ΔCu + ΔNi + ΔMo) ≦ 0.0 (1) Equation (ΔSi + 1.5 × ΔCr) ≧ 0.2 (2) Equation 0.0 ≧ (ΔSi + 1.5 × ΔCr) ≧ −0 .2 Formula (3) where ΔCu = CuM-CuW, ΔNi = NiM-NiW, ΔMo = MoM-MoW,
ΔSi = SiM-SiW, ΔCr = CrM-CrW,
CuW, NiW, SiW, CrW, and MoW are each element content (mass%) of a weld metal,
CuM, NiM, SiM, CrM, and MoM are each element content (mass%) of a base material.
前記鋼材の組成が、さらに、質量%で、1.5%を超えない含有量のV、1.0%を超えない含有量のW、0.01%を超えない含有量のREMのうち、1種または2種以上を有することを特徴とする請求項1に記載の溶接継手。  The composition of the steel material further includes, in mass%, V having a content not exceeding 1.5%, W having a content not exceeding 1.0%, and REM having a content not exceeding 0.01%, The weld joint according to claim 1, wherein the weld joint has one type or two or more types. 請求項1または2に記載の溶接継手を有する溶接構造物。 Welded structure having a welded joint according to claim 1 or 2.
JP2004326405A 2004-11-10 2004-11-10 Welded joint with excellent corrosion resistance Expired - Fee Related JP4513515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004326405A JP4513515B2 (en) 2004-11-10 2004-11-10 Welded joint with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004326405A JP4513515B2 (en) 2004-11-10 2004-11-10 Welded joint with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2006137967A JP2006137967A (en) 2006-06-01
JP4513515B2 true JP4513515B2 (en) 2010-07-28

Family

ID=36618974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004326405A Expired - Fee Related JP4513515B2 (en) 2004-11-10 2004-11-10 Welded joint with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP4513515B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2973723B1 (en) * 2011-04-06 2013-05-10 Alstom Hydro France WELDING METHOD AND ORGAN OF HYDRAULIC MACHINE MADE BY MEANS OF SUCH A METHOD
CN108950279B (en) * 2018-07-27 2020-05-08 西北有色金属研究院 Method for synergistically improving arc ablation performance of CuW contact material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2875375B2 (en) * 1990-11-07 1999-03-31 川崎製鉄株式会社 How to prevent local corrosion in welds
JP2754438B2 (en) * 1991-08-30 1998-05-20 日本鋼管株式会社 Pipe arc welding method
JPH10324950A (en) * 1997-03-26 1998-12-08 Sumitomo Metal Ind Ltd High-strength welded steel structure, and its manufacture

Also Published As

Publication number Publication date
JP2006137967A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
EP2258885B1 (en) Lean duplex stainless steel excellent in corrosion resistance and toughness of weld heat-affected zone
RU2421539C2 (en) Martensite stainless steel for welded structures
KR101586590B1 (en) Austenite steel welded joint
KR102415777B1 (en) Two-phase stainless steel clad steel sheet and its manufacturing method
RU2393262C1 (en) Steel sheet for hidden arc welding
WO2008084838A1 (en) Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness
EP1108495B1 (en) Welding material and a method of producing welded joint
JP2007302995A (en) Ferritic stainless steel for warm water vessel with welded structure and warm water vessel
JP2009161836A (en) Ferritic stainless steel sheet excellent in corrosion resistance in welding crevice part
JP6432716B1 (en) Fillet welded joint and manufacturing method thereof
KR102520119B1 (en) Welded structure and its manufacturing method
KR20230042371A (en) Welded joints and manufacturing methods of welded joints
JP2009185382A (en) Ferritic stainless steel sheet having excellent corrosion resistance in welding gap oxide film
JP2007119811A (en) Welded joint and its manufacturing method
JP6477181B2 (en) Austenitic stainless steel
WO1997024203A1 (en) Method of manufacturing large diameter welded steel pipe having high strength and toughness
RU2380452C2 (en) Steel with increased welding capabilities for submarines hull
JP4879688B2 (en) Steel arc welded joint with excellent fatigue strength, its welding method and steel structure
JP4513515B2 (en) Welded joint with excellent corrosion resistance
JP2002226947A (en) Martensitic stainless steel welded joint having excellent strain aging resistance
JP6766576B2 (en) Manufacturing method of thick steel plate and welded joint
JP2018076563A (en) High strength steel
JP4424484B2 (en) Welded joints with excellent cold cracking resistance and steel for welding materials
JP2009167439A (en) Ferritic stainless steel for welding gap structural warm-water vessel
KR20210129161A (en) Two-phase stainless steel welded joint and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100503

R150 Certificate of patent or registration of utility model

Ref document number: 4513515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees