JP4513204B2 - Sealing film for solar cell - Google Patents

Sealing film for solar cell Download PDF

Info

Publication number
JP4513204B2
JP4513204B2 JP2000383926A JP2000383926A JP4513204B2 JP 4513204 B2 JP4513204 B2 JP 4513204B2 JP 2000383926 A JP2000383926 A JP 2000383926A JP 2000383926 A JP2000383926 A JP 2000383926A JP 4513204 B2 JP4513204 B2 JP 4513204B2
Authority
JP
Japan
Prior art keywords
film
solar cell
sealing film
eva
cell sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000383926A
Other languages
Japanese (ja)
Other versions
JP2002185027A (en
Inventor
真一郎 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2000383926A priority Critical patent/JP4513204B2/en
Publication of JP2002185027A publication Critical patent/JP2002185027A/en
Application granted granted Critical
Publication of JP4513204B2 publication Critical patent/JP4513204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate

Description

【0001】
【発明の属する技術分野】
本発明は太陽電池用封止膜に係り、特に、エチレン−酢酸ビニル共重合体樹脂製の太陽電池用封止膜であって、太陽電池作製時の封止工程における太陽電池用セルの破損が防止される太陽電池用封止膜に関する。
【0002】
【従来の技術及び先行技術】
近年、資源の有効利用や環境汚染の防止等の面から、太陽光を直接電気エネルギーに変換する太陽電池が注目され、開発が進められている。
【0003】
太陽電池は、一般に、図16に示す如く、表面側透明保護部材としてのガラス基板11と裏面側保護部材(バックカバー)12との間にエチレン−酢酸ビニル共重合体樹脂(EVA)フィルム13A,13Bの封止膜により、シリコン発電素子14等の太陽電池用セルを封止した構成とされている。
【0004】
このような太陽電池は、ガラス基板11、封止膜用EVAフィルム13A、シリコン発電素子14、封止膜用EVAフィルム13B及びバックカバー12をこの順で積層し、加熱加圧して、EVAを架橋硬化させて接着一体化することにより製造される。
【0005】
なお、封止膜用EVAフィルム13A,13Bは、一般に溶融樹脂を直線状スリットを有するダイから押し出し、冷却ロール又は水槽で急冷固化するTダイ法、カレンダー法等により成膜されている。
【0006】
ところで、太陽電池の作製時にあっては、その封止工程の加熱加圧の際にEVAフィルムが太陽電池用セルに押し付けられるため、この押圧力で太陽電池が割れるという問題があった。また、封止時の脱気不良で空気を巻き込んだり、加熱加圧した際にEVAフィルムが流動して樹脂がはみ出したりすることで製品の歩留りが低下するという問題もあった。
【0007】
従来、この封止時の脱気不良を改善するために、EVAフィルムにエンボス加工を施してフィルム表面に凹部を形成することが提案されている(特公平1−52428号公報)。
【0008】
また、本出願人は先に、エンボス加工による凹部の深さを深くすることにより、太陽電池作製時の封止工程における太陽電池用セルの破損や脱気不良、樹脂の流出等を改善する太陽電池用封止膜を提案した(特願2000−227388号)。
【0009】
【発明が解決しようとする課題】
エンボス加工を施したフィルムであれば、脱気不良や太陽電池用セルの破損、樹脂の流動等が防止されるが、十分に満足し得る効果が得られているとは言えず、より一層の改善が望まれている。
【0010】
特に近年、太陽電池を構成するシリコンの量を減らしてコスト削減を図るべく太陽電池用セルの薄厚化が要求されており、この場合において太陽電池用セルはより一層破損し易くなり、また、脱気不良も発生し易くなることから、封止時に太陽電池用セルに加わる歪をより一層緩和することができ、また、気泡の残留を確実に防止することができる太陽電池用封止膜の開発が望まれている。
【0011】
従って、本発明は、太陽電池作製時の封止工程における太陽電池用セルの破損や脱気不良、樹脂の流出等をより一層確実に防止し、太陽電池を歩留り良く効率的に作製することができる太陽電池用封止膜を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の太陽電池用封止膜は、エチレン−酢酸ビニル共重合体樹脂を成膜して得られるフィルムにエンボス加工を施すことにより、該フィルム面に多数の凹部を形成してなる太陽電池用封止膜において、隣接する該凹部間を連通する連通路としての凹溝が設けられている太陽電池用封止膜であって、凹部は平面視形状が円形でその直径Rが0.1〜2mmで、連通路としての凹溝の幅Wが0.1〜1mmであることを特徴とする。
【0013】
エンボス加工により凹部を形成したフィルムであれば、太陽電池用セルの封止を行う際、局部的な押圧力が集中しようとした場合、凹部形成表面のクッション効果でこの応力を吸収し、太陽電池用セルへの局部的な応力の集中を防止することができるため、太陽電池用セルの破損を防止することができる。また、エンボス加工の凹凸面で封止時の脱気性を高めると共に加熱加圧時の樹脂の流動によるはみ出しを防止することができる。
【0014】
しかし、単にエンボス加工による凹部を形成したのみのフィルムでは、封止時に凹部内に空気が封じ込められ、封じ込められた空気の反発力で、十分なクッション性、応力吸収性能が得られない場合がある。即ち、凹部を形成したフィルムでは、封止時にフィルム表面が被封止物と面接触で当接された際、凹部は被封止物により蓋をされた密閉空間となってしまい、空気の逃げ場がなくなる。また、この凹部内の空気の閉じ込めで脱気不良となる場合もある。
【0015】
本発明では、エンボス加工による凹部の間を連通する連通路を設けるため、空気は連通路から隣接する凹部に逃げることができ、この凹部内の空気の封じ込めが防止され、十分なクッション性、応力吸収性でセルの破損及び脱気不良を確実に防止することができる。また、樹脂の流動による樹脂のはみ出しも有効に防止される。
【0016】
特に、フィルム端面と連通する連通路を設けることにより、空気をフィルム外へ排出することができ、好ましい。また、このフィルム端面と連通する連通路は2以上設けられていることが好ましい。
【0017】
本発明において、エンボス加工による凹部はフィルムの両面に設けられていても良く、この場合において、連通路はフィルムの両面に設けられていることが好ましい
【0018】
チレン−酢酸ビニル共重合体樹脂を成膜して得られるフィルムよりなる太陽電池用封止膜において、該フィルム面に多数の凸部を形成した太陽電池用封止膜であれば、凹部ではなく、凸部が設けられているため、前述の空気の封じ込めの問題はなく、凸部による凹凸面のクッション性、応力吸収性でセルの破損及び脱気不良を確実に防止することができる。また、樹脂の流動による樹脂のはみ出しも有効に防止される。
【0019】
この太陽電池用封止膜において、凸部は、フィルム面に規則的に等間隔で形成されていることが好ましい
【0020】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態を詳細に説明する。
【0021】
図1〜図6は本発明の太陽電池用封止膜の実施の形態を示す図であって、各々(a)図は平面図、(b)図は(a)図のB−B線に沿う断面図である。
【0022】
図1の太陽電池用封止膜1Aは、EVAフィルム2の一方の面にエンボス加工により、多数の凹部3と、隣接する凹部3,3を連通する連通路としての凹溝4とを設けたものである。
【0023】
図1の太陽電池用封止膜1Aは凹部3が千鳥配列とされているのに対し、図2の太陽電池用封止膜1Bは凹部3が縦横に等間隔で配置され、横方向及び縦方向に隣接する凹部3,3間に凹溝4が設けられている。
【0024】
このように隣接する凹部3,3を連通する連通路としての凹溝4を設けることにより、凹部3内の空気が隣接する凹部3へ移動することができるようになり、これにより、特定の凹部3に空気が封じ込められることが防止され、良好なクッション性及び応力吸収性を得ることができるようになる。
【0025】
図1,2に示す如く、隣接する凹部3,3間に凹溝4を設けることにより、凹部3,3間での空気の移動が可能となるが、好ましくは空気は封止界面から排除することが望ましい。
【0026】
図3〜6に示す太陽電池用封止膜1C,1D,1E,1Fは、凹部3のうちのフィルム端縁に最も近い凹部3Aについては、フィルム端面に連通する連通路としての凹溝4Aを設けたものである。このような太陽電池用封止膜1C〜1Fであれば、封止面の空気を凹部4,4Aを介してフィルム端面に排出することができ、より一層良好な効果を得ることができる。
【0027】
図7の太陽電池用封止膜1Gに示す如く、このような凹部3,3A及び凹溝4,4Aは、EVAフィルム2の両面に設けても良く、この場合、凹部3の投影位置をEVAフィルム2の一方の面と他方の面とでずらすようにすることにより、良好なクッション性、応力吸収性及びガス抜き性を得ることができる。
【0028】
本発明において、凹部3(3A)の深さDは、凹部をフィルムの一方の面に設ける場合と両面に設ける場合とでも異なり、また、凹部の大きさや形成割合によっても異なるが、直径Rが0.1〜2mmで、深さDがフィルムの厚みTの20〜95%程度の凹部を、フィルムの全面積に対する凹部の形成面積の合計が20〜99%程度となるように設けることが好ましい。
【0029】
また、連通路としての凹溝は、空気の移動効率の面で深さdがフィルムの厚みTの50〜90%で幅Wが0.1〜1mmでる。
【0030】
なお、凹部の断面形状は、図1〜6に示すような半円ないし半円類似形状に限らず、三角形、四角形等であっても良い。凹部の平面視形状円形である。
【0031】
このような凹部はフィルムの一方の面又は両方の面に等間隔で規則正しく設けるのが好ましい。
【0032】
15参考例に係る太陽電池用封止膜の実施の形態を示す図であって、図8の(a)図は平面図、(b)図は(a)図のB−B線に沿う断面図である。
【0033】
図8の太陽電池用封止膜1Hは、EVAフィルム2の一方の面に多数の凸部5を等間隔で規則正しく形成したものである。
【0034】
このような太陽電池用封止膜1Hであっても、凸部5,5間に空気が円滑に流動するために凸部5,5による良好なクッション性及び応力吸収性、脱ガス性を得ることができる。
【0035】
図8の太陽電池用封止膜1Hは円錐形状の凸部5を設けてあるが、この凸部の形状には特に制限はなく、図9の太陽電池用封止膜1Iの如く、半球状の凸部5Aであっても良い。また、図10の太陽電池用封止膜1Jに示す如く、円錐台形状の凸部5Bであっても良い。
【0036】
また、凸部の平面視形状や配列にも特に制限はなく、図11に示す如く、平面視形状が四角形の凸部5Cを千鳥配列で等間隔で規則正しく設けた太陽電池用封止膜1Kであっても良い。
【0037】
更に、図12に示す如く、凸部5DをEVAフィルム2の両面に設けた太陽電池用封止膜1Lであっても良い。このように、凸部5DをEVAフィルム2の両面に設ける場合、凸部5Dの投影位置をEVAフィルム2の一方の面と他方の面とでずらすようにすることにより、良好なクッション性、応力吸収性及びガス抜き性を得ることができる。
【0038】
また、凸部と凹部とを設けたものであっても良く、例えば、図13に示す如く、EVAフィルム2の一方の面に凸部5Eを設け、他方の面の該凸部5Eに対応する位置に凹部3Eを設けた太陽電池用封止膜1Mであっても良い。この場合において、凹部3E,3E間を連通する連通路としての凹溝を設けても良い。
【0039】
また、図14に示す如く、凸部5Eと凹溝3EとをEVAフィルム2の一方の面に交互に均等配置した太陽電池用封止膜1Nであっても良い。また、図15に示す如く、凸部5Eと凹部3EとをEVAフィルム2の両面に交互に均等配置した太陽電池用封止膜1Pであっても良く、この場合において、図示の如く、フィルムの一方の面と他方の面とで凸部5Eと3Eとの位置をずらし、凸部5Eの形成位置のフィルムの反対側の面には凹部3Eが位置し、凹部3Eの形成位置のフィルムの反対側の面には凸部5Eが位置するようにすることにより、良好なクッション性、応力吸収性及びガス抜き性を得ることができる
【0040】
部5,5A〜5Eの高さHは、凸部をフィルムの一方の面に設ける場合と両面に設ける場合、或いは凸部と凹部とを設ける場合とでも異なり、また、凸部の大きさや形成割合によっても異なるが、一般的には、基部の直径Rが0.1〜2mm程度で高さHがフィルムの厚みTの20〜95%程度の凸部を、フィルムの全面積に対する凸部の形成面積の合計が1〜50%程度となるように設けることが好ましい。
【0041】
なお、凸部と共に設ける凹部については、前述の発明に係る凹部と同様の深さ及び直径とすることができ、その形成割合は、フィルムの全面積に対する凸部と凹部の形成面積の合計が20〜99%程度となるように設けることが好ましい。
【0042】
このような本発明の太陽電池用封止膜は、架橋剤を含むEVA樹脂組成物を常法に従って成膜し、更に、エンボス加工により所定の深さの凹部と凹溝を形成することにより、或いは凸部を形成することにより、容易に製造することができる。
【0043】
なお、本発明の太陽電池用封止膜の厚さTは、通常の場合50μm〜2000μm好ましくは100〜1000μm特に好ましくは200〜800μm程度とされる。
【0044】
このような本発明の太陽電池用封止膜は、凹部及び凹溝或いは凸部の形成された凹凸面が封止面となるように使用される。
【0045】
次に、本発明に係る成膜原料として好適なEVA樹脂組成物について説明する。
【0046】
本発明で用いられるEVA樹脂は、酢酸ビニル含有量が40重量%以下、好ましくは10〜36重量%特に好ましくは10〜33重量%、とりわけ好ましくは10〜26重量%である。
【0047】
EVA樹脂の酢酸ビニルの含有率が40重量%を超えると、樹脂が非常に流れ易くなり、加熱架橋時にガラス基板とバックカバーとの間から流出し易い。また、粘着性が増してタックし易くなり、取り扱い性が悪くなる。
【0048】
酢酸ビニルの含有率が10重量%より低いEVA樹脂は、加工性が悪く、またフィルムが硬過ぎて脱気性が悪くなると共に、太陽電池用セルに損傷を生じさせ易い。
【0049】
本発明で用いられるEVA樹脂は、メルトフローレートが0.7〜20であることが好ましく、より好ましくは1.5〜10である。
【0050】
本発明で用いるEVA樹脂組成物には、耐候性の向上のために架橋剤を配合して架橋構造を持たせるが、この架橋剤としては、一般に、100℃以上でラジカルを発生する有機過酸化物が用いられ、特に、配合時の安定性を考慮に入れれば、半減期10時間の分解温度が70℃以上であるものが好ましい。このような有機過酸化物としては、例えば2,5−ジメチルヘキサン;2,5−ジハイドロパーオキサイド;2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン;3−ジ−t−ブチルパーオキサイド;t−ジクミルパーオキサイド;2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン;ジクミルパーオキサイド;α,α’−ビス(t−ブチルパーオキシイソプロピル)ベンゼン;n−ブチル−4,4−ビス(t−ブチルパーオキシ)ブタン;2,2−ビス(t−ブチルパーオキシ)ブタン;1,1−ビス(t−ブチルパーオキシ)シクロヘキサン;1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン;t−ブチルパーオキシベンゾエート;ベンゾイルパーオキサイド等を用いることができる。これらの有機過酸化物の配合量は、一般にEVA樹脂100重量部に対して5重量部以下、好ましくは1〜3重量部である。
【0051】
また、太陽電池の封止膜として、発電素子との接着力向上の目的で、EVA樹脂にシランカップリング剤を添加することができる。この目的に供されるシランカップリング剤としては公知のもの、例えばγ−クロロプロピルトリメトキシシラン;ビニルトリクロロシラン;ビニルトリエトキシシラン;ビニル−トリス−(β−メトキシエトキシ)シラン;γ−メタクリロキシプロピルトリメトキシシラン;β−(3,4−エトキシシクロヘキシル)エチルトリメトキシシラン;γ−グリシドキシプロピルトリメトキシシラン;ビニルトリアセトキシシラン;γ−メルカプトプロピルトリメトキシシラン;γ−アミノプロピルトリメトキシシラン;N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン等を挙げることができる。これらのシランカップリング剤の配合量は、一般にEVA樹脂100重量部に対して5重量部以下、好ましくは0.1〜2重量部である。
【0052】
更に、EVA樹脂のゲル分率を向上させ、耐久性を向上するためにEVA樹脂に架橋助剤を添加することができる。この目的に供される架橋助剤としては、公知のものとしてトリアリルイソシアヌレート;トリアリルイソシアネート等の3官能の架橋助剤の他、NKエステル等の単官能の架橋助剤等も挙げることができる。これらの架橋助剤の配合量は、一般にEVA樹脂100重量部に対して10重量部以下、好ましくは1〜5重量部である。
【0053】
更に、EVA樹脂の安定性を向上する目的でハイドロキノン;ハイドロキノンモノメチルエーテル;p−ベンゾキノン;メチルハイドロキノンなどを添加することができ、これらの配合量は、一般にEVA樹脂100重量部に対して5重量部以下である。
【0054】
更に、必要に応じ、上記以外に着色剤、紫外線吸収剤、老化防止剤、変色防止剤等を添加することができる。着色剤の例としては、金属酸化物、金属粉等の無機顔料、アゾ系、フタロシアニン系、アヂ系、酸性又は塩基染料系レーキ等の有機顔料がある。紫外線吸収剤には、2−ヒドロキシ−4−オクトキシベンゾフェノン;2−ヒドロキシ−4−メトキシ−5−スルフォベンゾフェノン等のベンゾフェノン系;2−(2’−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール系;フェニルサルシレート;p−t−ブチルフェニルサルシレート等のヒンダートアミン系がある。老化防止剤としては、アミン系;フェノール系;ビスフェニル系;ヒンダートアミン系があり、例えばジ−t−ブチル−p−クレゾール;ビス(2,2,6,6−テトラメチル−4−ピペラジル)セバケート等がある。
【0055】
このようにして成膜されたEVAフィルムを用いて太陽電池を製造するには、図16に示す如く、ガラス基板11、EVAフィルム13A、シリコン発電素子14、EVAフィルム13B及びバックカバー12を積層し、積層体を常法に従って、真空ラミネーターで温度125〜150℃、脱気時間5〜12分、プレス圧力0.5〜1kg/cm、プレス時間8〜45分で加熱加圧圧着すれば良く、この加熱加圧時に、EVAフィルム13A,13Bが架橋して耐候性に優れた封止膜を形成することができる。この封止に当り、本発明のEVAフィルムは、クッション性が良好であるため、未溶融のフィルムがセルに押し付けられることによるセルの損傷を防止することができ、また、脱気性が良好であるため空気の巻き込みの問題もなく、更には樹脂の流出、タックの問題もなく、高品質の製品を歩留り良く製造することができる。
【0056】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0057】
実施例1
下記配合のEVA樹脂組成物を用いて、EVAフィルムを成膜し、エンボス加工により、片面に、直径R=0.6mmで深さD=300μmの凹部とこれらを連通する幅W=0.5mmで深さd=100μmの凹溝とを形成した厚さT=600μmのフィルムを得た。なお、凹部及び凹溝の形状及び配置は図6(a),(b)に示す通りであり、フィルムの面積に対する凹部の形成面積の割合は50%である。
[EVA樹脂組成物配合(重量部)]
EVA樹脂(酢酸ビニル含有量26重量%) :100
架橋剤(1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシ
クロヘキサン) :2.0
シランカップリング剤(γ−メタクリロキシプロピルトリメトキシシラン)
:1.0
架橋助剤(トリアリルイソシアヌレート) :3.0
紫外線吸着剤(2−ヒドロキシ−4−オクチルベンゾフェノン) :0.3
【0058】
このフィルムを封止膜用EVAフィルム13A,13Bとして用い、図16に示す如く、厚さ3mmのガラス板11、厚さ38μmのフッ化ポリエチレンフィルムよりなるバックカバー12との間にシリコン発電素子14を封止して太陽電池を製造した。なお、フィルム13A,13Bはそのエンボス加工面が素子14側となるように配置した。また、封止は、真空ラミネーターを用い、熱板温度150℃、脱気時間5分、プレス圧力1atm、プレス時間45分間加熱圧着し、EVA樹脂を架橋することにより行った。
【0059】
このようにして、100個の太陽電池を作製したところ、素子の損傷、脱気不良、タック不良及びEVA樹脂のはみ出しは全く認められなかった。
【0060】
比較例1
エンボス加工により凹部のみを形成し、凹溝のないEVAフィルムを用いた他は実施例1と同様にして太陽電池を作製したところ、100個中、2個についてセルの破損が認められた。
【0061】
【発明の効果】
以上詳述した通り、本発明の太陽電池用封止膜によれば、太陽電池作製時の封止工程で太陽電池用セルに封止膜が押し付けられることによるセルの損傷や封止時の脱気不良、タック発生を確実に防止することができると共に、EVA樹脂のはみ出しを防止することができ、太陽電池を高い歩留りで作製することができる。
【図面の簡単な説明】
【図1】 本発明の太陽電池用封止膜の実施の形態を示す図であって、(a)図は平面図、(b)図は(a)図のB−B線に沿う断面図である。
【図2】 本発明の太陽電池用封止膜の他の実施の形態を示す図であって、(a)図は平面図、(b)図は(a)図のB−B線に沿う断面図である。
【図3】 本発明の太陽電池用封止膜の別の実施の形態を示す図であって、(a)図は平面図、(b)図は(a)図のB−B線に沿う断面図である。
【図4】 本発明の太陽電池用封止膜の別の実施の形態を示す図であって、(a)図は平面図、(b)図は(a)図のB−B線に沿う断面図である。
【図5】 本発明の太陽電池用封止膜の別の実施の形態を示す図であって、(a)図は平面図、(b)図は(a)図のB−B線に沿う断面図である。
【図6】 本発明の太陽電池用封止膜の別の実施の形態を示す図であって、(a)図は平面図、(b)図は(a)図のB−B線に沿う断面図である。
【図7】 本発明の太陽電池用封止膜の別の実施の形態を示す断面図である。
【図8】 参考例に係る太陽電池用封止膜を示す図であって、(a)図は平面図、(b)図は(a)図のB−B線に沿う断面図である。
【図9】 参考例に係る太陽電池用封止膜を示す断面図である。
【図10】 参考例に係る太陽電池用封止膜を示す断面図である。
【図11】 参考例に係る太陽電池用封止膜を示す平面図である。
【図12】 参考例に係る太陽電池用封止膜を示す断面図である。
【図13】 参考例に係る太陽電池用封止膜を示す断面図である。
【図14】 参考例に係る太陽電池用封止膜を示す断面図である。
【図15】 参考例に係る太陽電池用封止膜を示す断面図である。
【図16】 太陽電池の製造方法を示す断面図である。
【符号の説明】
1A,1B,1C,1D,1E,1F,1G,1H,1I,1J,1K,1L,1M,1N,1P 太陽電池用封止膜
2 EVAフィルム
3,3A,3E 凹部
4,4A 凹溝
5,5A,5B,5C,5D,5E 凸部
11 ガラス基板
12 バックカバー
13A,13B EVAフィルム
14 シリコン発電素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solar cell sealing film, in particular, a solar cell sealing film made of an ethylene-vinyl acetate copolymer resin, in which a solar cell is damaged in a sealing step during solar cell production. The present invention relates to a solar cell sealing film to be prevented.
[0002]
[Prior art and prior art]
In recent years, solar cells that directly convert sunlight into electric energy have attracted attention and are being developed from the viewpoint of effective use of resources and prevention of environmental pollution.
[0003]
As shown in FIG. 16, a solar cell generally includes an ethylene-vinyl acetate copolymer resin (EVA) film 13 </ b> A between a glass substrate 11 as a front surface side transparent protective member and a back surface side protective member (back cover) 12. It is set as the structure which sealed the cell for solar cells, such as the silicon power generation element 14, with the sealing film of 13B.
[0004]
In such a solar cell, the glass substrate 11, the sealing film EVA film 13 </ b> A, the silicon power generation element 14, the sealing film EVA film 13 </ b> B and the back cover 12 are laminated in this order, and heated and pressurized to cross-link the EVA. Manufactured by curing and adhesive integration.
[0005]
Note that the sealing film EVA films 13A and 13B are generally formed by a T-die method, a calendar method, or the like in which a molten resin is extruded from a die having a linear slit and rapidly cooled and solidified by a cooling roll or a water tank.
[0006]
By the way, when the solar cell is manufactured, the EVA film is pressed against the solar cell at the time of heating and pressurization in the sealing step, and thus the solar cell is broken by this pressing force. In addition, there has been a problem that the yield of the product is reduced due to the air being entrained due to poor deaeration at the time of sealing, or when the EVA film flows and the resin protrudes when heated and pressurized.
[0007]
Conventionally, in order to improve the deaeration failure at the time of sealing, it has been proposed to emboss an EVA film to form a recess on the film surface (Japanese Patent Publication No. 1-52428).
[0008]
In addition, the applicant firstly increases the depth of the recesses by embossing, thereby improving the solar cell damage, deaeration failure, resin outflow, etc. in the sealing process during solar cell production. A battery sealing film was proposed (Japanese Patent Application No. 2000-227388).
[0009]
[Problems to be solved by the invention]
If it is an embossed film, poor deaeration, damage to solar cell cells, resin flow, etc. are prevented, but it cannot be said that a sufficiently satisfactory effect has been obtained. Improvement is desired.
[0010]
In particular, in recent years, it has been required to reduce the thickness of the solar cell in order to reduce the amount of silicon constituting the solar cell and to reduce the cost. In this case, the solar cell is more likely to be damaged and removed. Development of a sealing film for solar cells that can further alleviate the strain applied to the cells for solar cells at the time of sealing, and can reliably prevent air bubbles from remaining because it is likely to cause illness. Is desired.
[0011]
Accordingly, the present invention can more reliably prevent solar cell damage, degassing failure, resin outflow, etc. in the sealing process during solar cell production, and efficiently produce solar cells with high yield. It aims at providing the sealing film for solar cells which can be performed.
[0012]
[Means for Solving the Problems]
This onset Ming solar cell sealing film, ethylene - by embossing a film obtained by forming a vinyl acetate copolymer resin, by forming a plurality of recesses in the film plane solar cell The sealing film for solar cells is provided with a concave groove as a communication path communicating between the adjacent concave portions, wherein the concave portion has a circular shape in plan view and a diameter R of 0.1. ˜2 mm, and the width W of the groove as the communication path is 0.1 to 1 mm .
[0013]
In the case of a film in which recesses are formed by embossing, when sealing a solar cell, when the local pressing force is concentrated, the stress is absorbed by the cushion effect on the recess forming surface, and the solar cell. Since the concentration of local stress on the solar cell can be prevented, damage to the solar cell can be prevented. In addition, the embossed uneven surface can enhance the deaeration at the time of sealing and prevent the protrusion due to the flow of the resin at the time of heating and pressing.
[0014]
However, in a film in which a recess is simply formed by embossing, air is enclosed in the recess during sealing, and sufficient cushioning and stress absorption performance may not be obtained due to the repulsive force of the enclosed air. . That is, in a film having a recess, when the film surface is brought into surface contact with the object to be sealed at the time of sealing, the recess becomes a sealed space covered with the object to be sealed, and the air escape space Disappears. In addition, degassing may be caused by trapping air in the recess.
[0015]
In the present invention, since the communication path communicating between the recesses by embossing is provided, the air can escape from the communication path to the adjacent recesses, and the containment of the air in the recesses is prevented, and sufficient cushioning properties and stress are provided. Absorbability can reliably prevent cell breakage and poor deaeration. Moreover, the protrusion of the resin due to the flow of the resin is also effectively prevented.
[0016]
In particular, it is preferable to provide a communication path that communicates with the film end face because air can be discharged out of the film. Moreover, it is preferable that two or more communication paths communicating with the film end face are provided.
[0017]
In the present invention, the recesses by embossing may be provided on both sides of the film, and in this case, the communication path is preferably provided on both sides of the film .
[0018]
Et styrene - In the solar cell sealing film consisting of the film obtained by forming a vinyl acetate copolymer resin, if sealing film solar cell formed in a large number of protrusions on the film surface, Since the convex portion is provided instead of the concave portion, there is no problem of the above-described air containment, and the convex and concave surface cushioning property and the stress absorption property by the convex portion can surely prevent cell breakage and poor deaeration. it can. Moreover, the protrusion of the resin due to the flow of the resin is also effectively prevented.
[0019]
In this solar cell sealing film, projections, arbitrary preferable to be formed at regular equidistant to the film surface.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0021]
1 to 6 are views illustrating an embodiment of the sealing film present onset Ming solar cell, each part (a) shows is a plan view, (b) drawing (a) view of the line B-B FIG.
[0022]
The solar cell sealing film 1 </ b> A in FIG. 1 is provided with a large number of concave portions 3 and concave grooves 4 as communication passages that connect adjacent concave portions 3, 3 by embossing on one surface of the EVA film 2. Is.
[0023]
The solar cell sealing film 1A in FIG. 1 has the recesses 3 in a staggered arrangement, whereas the solar cell sealing film 1B in FIG. 2 has the recesses 3 arranged at equal intervals in the horizontal and vertical directions. A concave groove 4 is provided between the concave portions 3 and 3 adjacent in the direction.
[0024]
Thus, by providing the concave groove 4 as a communication path that communicates the adjacent concave portions 3 and 3, the air in the concave portion 3 can move to the adjacent concave portion 3. It is possible to prevent the air from being confined in 3, and to obtain good cushioning and stress absorption.
[0025]
As shown in FIGS. 1 and 2, by providing the groove 4 between the adjacent recesses 3 and 3, the air can move between the recesses 3 and 3, but preferably the air is excluded from the sealing interface. It is desirable.
[0026]
The solar cell sealing films 1C, 1D, 1E, and 1F shown in FIGS. 3 to 6 have a concave groove 4A as a communication path communicating with the film end surface of the concave portion 3A closest to the film edge. It is provided. With such solar cell sealing films 1 </ b> C to 1 </ b> F, the air on the sealing surface can be discharged to the film end surface via the recesses 4 and 4 </ b> A, and a much better effect can be obtained.
[0027]
As shown in the solar cell sealing film 1G in FIG. 7, the concave portions 3 and 3A and the concave grooves 4 and 4A may be provided on both surfaces of the EVA film 2. In this case, the projection position of the concave portion 3 is set to EVA. By shifting between one surface and the other surface of the film 2, good cushioning properties, stress absorption properties, and gas venting properties can be obtained.
[0028]
In the present invention, the depth D of the recess 3 (3A) is also different between the case where when the double-sided to provide a recess on one surface of the film, also varies depending on the size and formation ratio of the recess diameter R Is provided with a recess having a depth D of about 20 to 95% of the thickness T of the film so that the total formation area of the recess with respect to the total area of the film is about 20 to 99%. Is preferred.
[0029]
Further, the groove as the communication passage is 50 to 90% of the thickness T of the depth d in view of transfer efficiency of the air film, the width W is Ru Ah at 0.1 to 1 m m.
[0030]
In addition, the cross-sectional shape of the recess is not limited to a semicircle or a semicircle-like shape as shown in FIGS . Planar shape of the recessed portion is circular.
[0031]
Such recesses are preferably provided regularly at equal intervals on one or both sides of the film.
[0032]
Figure 8-15 is a view showing an embodiment of a solar cell sealing film according to the reference example, (a) drawing a plan view of FIG. 8, (b) drawing of (a) Figure B-B It is sectional drawing which follows a line.
[0033]
The solar cell sealing film 1 </ b> H in FIG. 8 is formed by regularly forming a large number of convex portions 5 at equal intervals on one surface of the EVA film 2.
[0034]
Even in such a solar cell sealing film 1H, since air smoothly flows between the convex portions 5 and 5, good cushioning property, stress absorption property and degassing property by the convex portions 5 and 5 are obtained. be able to.
[0035]
The solar cell sealing film 1H in FIG. 8 is provided with a conical convex portion 5. However, the shape of the convex portion is not particularly limited, and is hemispherical like the solar cell sealing film 1I in FIG. The convex portion 5A may be used. Moreover, as shown in the solar cell sealing film 1J of FIG. 10, the frustum-shaped convex part 5B may be sufficient.
[0036]
Further, the shape and arrangement of the projections in plan view are not particularly limited, and as shown in FIG. 11, a solar cell sealing film 1K in which the projections 5C having a square shape in plan view are arranged regularly at regular intervals in a staggered arrangement. There may be.
[0037]
Furthermore, as shown in FIG. 12, a solar cell sealing film 1 </ b> L in which convex portions 5 </ b> D are provided on both surfaces of the EVA film 2 may be used. Thus, when providing the convex part 5D on both surfaces of the EVA film 2, by shifting the projection position of the convex part 5D between one surface and the other surface of the EVA film 2, good cushioning properties and stress Absorption and degassing properties can be obtained.
[0038]
Moreover , what provided the convex part and the recessed part may be sufficient, for example, as shown in FIG. 13, the convex part 5E is provided in one surface of the EVA film 2, and it corresponds to this convex part 5E in the other surface. It may be a solar cell sealing film 1M provided with a recess 3E at a position. In this case, you may provide the ditch | groove as a communicating path which connects between the recessed parts 3E and 3E.
[0039]
Further, as shown in FIG. 14, a solar cell sealing film 1 </ b> N in which convex portions 5 </ b> E and concave grooves 3 </ b> E are alternately and evenly arranged on one surface of the EVA film 2 may be used. Further, as shown in FIG. 15, the solar cell sealing film 1P in which the convex portions 5E and the concave portions 3E are alternately and alternately arranged on both surfaces of the EVA film 2 may be used. The positions of the convex portions 5E and 3E are shifted between the one surface and the other surface, and the concave portion 3E is located on the opposite surface of the film at the position where the convex portion 5E is formed, opposite to the film where the concave portion 3E is formed. By providing the convex portion 5E on the side surface, it is possible to obtain good cushioning properties, stress absorption properties and gas venting properties .
[0040]
The height H of the projection 5,5A~5E, if provided when the both surfaces of providing a protrusion on one surface of the film, or different in the case of providing the projections and recesses, also Ya size of the convex portion Although it depends on the formation ratio, in general, a convex portion with a base diameter R of about 0.1 to 2 mm and a height H of about 20 to 95% of the thickness T of the film is a convex portion with respect to the total area of the film. It is preferable to provide the total formation area of 1 to 50%.
[0041]
In addition, about the recessed part provided with a convex part, it can be set as the depth and diameter similar to the recessed part concerning the above-mentioned this invention, The formation ratio is the sum total of the formation area of the convex part and a recessed part with respect to the total area of a film. It is preferable to provide so that it may become about 20 to 99%.
[0042]
Such a sealing film for a solar cell of the present invention is formed by forming an EVA resin composition containing a crosslinking agent according to a conventional method, and further forming a recess and a groove having a predetermined depth by embossing, Or it can manufacture easily by forming a convex part.
[0043]
In addition, the thickness T of the sealing film for solar cells of the present invention is usually 50 μm to 2000 μm, preferably 100 to 1000 μm, particularly preferably about 200 to 800 μm.
[0044]
Such a solar cell sealing film of the present invention is used so that a concave-convex surface in which concave portions and concave grooves or convex portions are formed becomes a sealing surface.
[0045]
Next, an EVA resin composition suitable as a film forming raw material according to the present invention will be described.
[0046]
The EVA resin used in the present invention has a vinyl acetate content of 40% by weight or less, preferably 10 to 36% by weight, particularly preferably 10 to 33% by weight, and particularly preferably 10 to 26% by weight.
[0047]
When the content of vinyl acetate in the EVA resin exceeds 40% by weight, the resin is very easy to flow and easily flows out from between the glass substrate and the back cover at the time of heat crosslinking. In addition, the tackiness is increased and it becomes easy to tack, and the handleability is deteriorated.
[0048]
EVA resin having a vinyl acetate content of less than 10% by weight has poor processability, and the film is too hard and the deaeration property is poor, and the cells for solar cells are liable to be damaged.
[0049]
The EVA resin used in the present invention preferably has a melt flow rate of 0.7 to 20, more preferably 1.5 to 10.
[0050]
In order to improve weather resistance, the EVA resin composition used in the present invention has a crosslinking structure by adding a crosslinking agent. Generally, the crosslinking agent is an organic peroxide that generates radicals at 100 ° C. or higher. In particular, if the stability at the time of blending is taken into consideration, it is preferable that the decomposition temperature with a half-life of 10 hours is 70 ° C. or higher. Examples of such an organic peroxide include 2,5-dimethylhexane; 2,5-dihydroperoxide; 2,5-dimethyl-2,5-di (t-butylperoxy) hexane; -T-butyl peroxide; t-dicumyl peroxide; 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne; dicumyl peroxide; α, α'-bis (t-butylperoxide Oxyisopropyl) benzene; n-butyl-4,4-bis (t-butylperoxy) butane; 2,2-bis (t-butylperoxy) butane; 1,1-bis (t-butylperoxy) cyclohexane 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane; t-butylperoxybenzoate; benzoyl peroxide, etc. Kill. The compounding amount of these organic peroxides is generally 5 parts by weight or less, preferably 1 to 3 parts by weight with respect to 100 parts by weight of the EVA resin.
[0051]
Moreover, a silane coupling agent can be added to EVA resin as a sealing film of a solar cell for the purpose of improving the adhesive force with a power generating element. Known silane coupling agents for this purpose are, for example, γ-chloropropyltrimethoxysilane; vinyltrichlorosilane; vinyltriethoxysilane; vinyl-tris- (β-methoxyethoxy) silane; γ-methacryloxy. Propyltrimethoxysilane; β- (3,4-ethoxycyclohexyl) ethyltrimethoxysilane; γ-glycidoxypropyltrimethoxysilane; vinyltriacetoxysilane; γ-mercaptopropyltrimethoxysilane; γ-aminopropyltrimethoxysilane N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane and the like can be mentioned. The amount of these silane coupling agents is generally 5 parts by weight or less, preferably 0.1 to 2 parts by weight, based on 100 parts by weight of the EVA resin.
[0052]
Furthermore, a crosslinking aid can be added to the EVA resin in order to improve the gel fraction of the EVA resin and improve the durability. Examples of crosslinking aids provided for this purpose include trifunctional crosslinking aids such as triallyl isocyanurate; triallyl isocyanate as well as monofunctional crosslinking aids such as NK esters. it can. The amount of these crosslinking aids is generally 10 parts by weight or less, preferably 1 to 5 parts by weight with respect to 100 parts by weight of the EVA resin.
[0053]
Furthermore, hydroquinone; hydroquinone monomethyl ether; p-benzoquinone; methyl hydroquinone, etc. can be added for the purpose of improving the stability of the EVA resin. The amount of these compounds is generally 5 parts by weight with respect to 100 parts by weight of the EVA resin. It is as follows.
[0054]
Furthermore, if necessary, a colorant, an ultraviolet absorber, an anti-aging agent, a discoloration preventing agent and the like can be added in addition to the above. Examples of the colorant include inorganic pigments such as metal oxides and metal powders, and organic pigments such as azo-based, phthalocyanine-based, additive-based, acidic or basic dye-based lakes. Examples of ultraviolet absorbers include 2-hydroxy-4-octoxybenzophenone; benzophenones such as 2-hydroxy-4-methoxy-5-sulfobenzophenone; 2- (2′-hydroxy-5-methylphenyl) benzotriazole Benzotriazoles; phenyl salsylates; hindered amines such as pt-butylphenyl salsylates. Antiaging agents include amines; phenols; bisphenyls; hindered amines, such as di-t-butyl-p-cresol; bis (2,2,6,6-tetramethyl-4-piperazyl). ) Sebacate.
[0055]
In order to manufacture a solar cell using the EVA film thus formed, a glass substrate 11, an EVA film 13A, a silicon power generation element 14, an EVA film 13B and a back cover 12 are laminated as shown in FIG. According to a conventional method, the laminate may be heated and pressure-bonded with a vacuum laminator at a temperature of 125 to 150 ° C., a degassing time of 5 to 12 minutes, a pressing pressure of 0.5 to 1 kg / cm 2 , and a pressing time of 8 to 45 minutes. During the heating and pressurization, the EVA films 13A and 13B can be cross-linked to form a sealing film having excellent weather resistance. In this sealing, since the EVA film of the present invention has a good cushioning property, it is possible to prevent cell damage due to the unmelted film being pressed against the cell, and the deaeration property is good. Therefore, there is no problem of air entrainment, and furthermore, there is no problem of resin outflow and tack, and a high-quality product can be manufactured with a high yield.
[0056]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0057]
Example 1
Using an EVA resin composition having the following composition, an EVA film was formed, and by embossing, on one side, a recess having a diameter R = 0.6 mm and a depth D = 300 μm, and a width W for communicating them, W = 0.5 mm A film having a thickness of T = 600 μm and a ditch having a depth of d = 100 μm was obtained. In addition, the shape and arrangement | positioning of a recessed part and a recessed groove are as showing to Fig.6 (a), (b), and the ratio of the formation area of a recessed part with respect to the area of a film is 50%.
[EVA resin composition blend (parts by weight)]
EVA resin (vinyl acetate content 26% by weight): 100
Cross-linking agent (1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane): 2.0
Silane coupling agent (γ-methacryloxypropyltrimethoxysilane)
: 1.0
Cross-linking aid (triallyl isocyanurate): 3.0
UV adsorbent (2-hydroxy-4-octylbenzophenone): 0.3
[0058]
This film is used as the sealing film EVA films 13A and 13B. As shown in FIG. 16, the silicon power generation element 14 is interposed between the glass plate 11 having a thickness of 3 mm and the back cover 12 made of a fluorinated polyethylene film having a thickness of 38 μm. Was sealed to produce a solar cell. The films 13A and 13B were arranged so that their embossed surfaces were on the element 14 side. Sealing was performed by using a vacuum laminator and hot-pressing the hot plate temperature of 150 ° C., degassing time of 5 minutes, pressing pressure of 1 atm, pressing time of 45 minutes, and crosslinking EVA resin.
[0059]
Thus, when 100 solar cells were produced, damage to the element, poor deaeration, poor tack, and no protrusion of EVA resin were observed.
[0060]
Comparative Example 1
When a solar cell was produced in the same manner as in Example 1 except that only the concave portion was formed by embossing and an EVA film without a concave groove was used, cell damage was observed for two out of 100 solar cells.
[0061]
【The invention's effect】
As described above in detail, according to the sealing film for solar cell of the present invention, the sealing film is pressed against the cell for solar cell in the sealing process at the time of manufacturing the solar cell, and the cell is damaged or detached at the time of sealing. It is possible to reliably prevent the occurrence of badness and tack, and to prevent the EVA resin from protruding, so that a solar cell can be manufactured with a high yield.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a solar cell sealing film of the present invention, in which FIG. 1 (a) is a plan view, and FIG. 1 (b) is a sectional view taken along line BB in FIG. It is.
FIGS. 2A and 2B are diagrams showing another embodiment of the sealing film for solar cell of the present invention, in which FIG. 2A is a plan view, and FIG. 2B is along the line BB in FIG. It is sectional drawing.
FIGS. 3A and 3B are diagrams showing another embodiment of the solar cell sealing film of the present invention, in which FIG. 3A is a plan view, and FIG. 3B is a sectional view taken along line BB in FIG. It is sectional drawing.
4A and 4B are diagrams showing another embodiment of the solar cell sealing film of the present invention, in which FIG. 4A is a plan view, and FIG. 4B is a cross-sectional view along line BB in FIG. It is sectional drawing.
5A and 5B are diagrams showing another embodiment of the solar cell sealing film of the present invention, in which FIG. 5A is a plan view, and FIG. 5B is a sectional view taken along line BB in FIG. 5A. It is sectional drawing.
6A and 6B are diagrams showing another embodiment of the solar cell sealing film of the present invention, in which FIG. 6A is a plan view, and FIG. 6B is a sectional view taken along line BB in FIG. It is sectional drawing.
FIG. 7 is a cross-sectional view showing another embodiment of the solar cell sealing film of the present invention.
8A and 8B are diagrams showing a solar cell sealing film according to a reference example, in which FIG. 8A is a plan view, and FIG. 8B is a cross-sectional view taken along line BB of FIG.
FIG. 9 is a cross-sectional view showing a solar cell sealing film according to a reference example .
FIG. 10 is a cross-sectional view showing a solar cell sealing film according to a reference example .
FIG. 11 is a plan view showing a sealing film for a solar cell according to a reference example .
FIG. 12 is a cross-sectional view showing a solar cell sealing film according to a reference example .
FIG. 13 is a cross-sectional view showing a solar cell sealing film according to a reference example .
FIG. 14 is a cross-sectional view showing a solar cell sealing film according to a reference example .
FIG. 15 is a cross-sectional view showing a solar cell sealing film according to a reference example .
FIG. 16 is a cross-sectional view showing a method for manufacturing a solar cell.
[Explanation of symbols]
1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, 1L, 1M, 1N, 1P Solar cell sealing film 2 EVA film 3, 3A, 3E Recess 4, 4A Recess 5 , 5A, 5B, 5C, 5D, 5E Convex part 11 Glass substrate 12 Back cover 13A, 13B EVA film 14 Silicon power generation element

Claims (5)

エチレン−酢酸ビニル共重合体樹脂を成膜して得られるフィルムにエンボス加工を施すことにより、該フィルム面に多数の凹部を形成してなる太陽電池用封止膜において、
隣接する該凹部間を連通する連通路としての凹溝が設けられている太陽電池用封止膜であって、
凹部は平面視形状が円形でその直径Rが0.1〜2mmで、連通路としての凹溝の幅Wが0.1〜1mmであることを特徴とする太陽電池用封止膜。
By embossing a film obtained by forming an ethylene-vinyl acetate copolymer resin into a film, a solar cell sealing film in which a large number of recesses are formed on the film surface,
A solar cell sealing film provided with a concave groove as a communication path communicating between adjacent concave portions ,
The sealing film for solar cells, wherein the recess has a circular shape in plan view, a diameter R of 0.1 to 2 mm, and a width W of the recess as a communication path is 0.1 to 1 mm .
請求項1において、前記凹部のうち少なくとも一部とフィルム端面とを連通する連通路が設けられていることを特徴とする太陽電池用封止膜。  2. The solar cell sealing film according to claim 1, wherein a communication passage that communicates at least a part of the recess and the film end surface is provided. 3. 請求項2において、前記凹部とフィルム端面とを連通する連通路が2以上設けられていることを特徴とする太陽電池用封止膜。  The solar cell sealing film according to claim 2, wherein two or more communication passages are provided to communicate the recess and the film end surface. 請求項1ないし3のいずれか1項において、前記エンボス加工による凹部がフィルムの両面に形成されていることを特徴とする太陽電池用封止膜。  4. The solar cell sealing film according to claim 1, wherein the embossed recesses are formed on both surfaces of the film. 請求項4において、前記連通路がフィルムの両面に設けられていることを特徴とする太陽電池用封止膜。  The solar cell sealing film according to claim 4, wherein the communication path is provided on both surfaces of the film.
JP2000383926A 2000-12-18 2000-12-18 Sealing film for solar cell Expired - Fee Related JP4513204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000383926A JP4513204B2 (en) 2000-12-18 2000-12-18 Sealing film for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000383926A JP4513204B2 (en) 2000-12-18 2000-12-18 Sealing film for solar cell

Publications (2)

Publication Number Publication Date
JP2002185027A JP2002185027A (en) 2002-06-28
JP4513204B2 true JP4513204B2 (en) 2010-07-28

Family

ID=18851486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000383926A Expired - Fee Related JP4513204B2 (en) 2000-12-18 2000-12-18 Sealing film for solar cell

Country Status (1)

Country Link
JP (1) JP4513204B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134969A (en) * 2004-11-02 2006-05-25 Mitsui Chemical Fabro Inc Sheet for solar cell sealing
JP2006134970A (en) * 2004-11-02 2006-05-25 Mitsui Chemical Fabro Inc Sheet for solar cell sealing
JP5484663B2 (en) * 2007-09-25 2014-05-07 三洋電機株式会社 Manufacturing method of solar cell module
US20100065105A1 (en) * 2008-09-12 2010-03-18 Francois Andre Koran Thin Film Photovoltaic Module Having a Contoured Substrate
KR100984136B1 (en) * 2008-12-02 2010-09-28 에스케이씨 주식회사 Sealing material sheet for solar battery module and solar battery module comprising the same
JP4877353B2 (en) * 2009-04-02 2012-02-15 トヨタ自動車株式会社 Manufacturing method of solar cell module
US8609225B2 (en) 2009-05-21 2013-12-17 Bridgestone Corporation Ethylene-unsaturated ester copolymer film for forming laminate
JP4879298B2 (en) * 2009-06-30 2012-02-22 三洋電機株式会社 Manufacturing method of solar cell module
KR101154727B1 (en) 2009-06-30 2012-06-08 엘지이노텍 주식회사 Solar cell and method of fabricating the same
KR101081506B1 (en) * 2009-07-31 2011-11-08 고려대학교 산학협력단 A solar cell having high light transmissivity and improved self-cleaning ability and the method thereof
JP5604191B2 (en) * 2010-06-25 2014-10-08 株式会社ブリヂストン Ethylene-vinyl acetate copolymer film, and laminated glass and solar cell using the same
KR101183390B1 (en) 2010-12-15 2012-09-14 도레이첨단소재 주식회사 Encapsulation sheet for a solarcell module and preparing process thereof
KR101318986B1 (en) 2012-01-13 2013-10-16 도레이첨단소재 주식회사 Low shrinkable encapsulant sheet for solar cell module with high strength and solar cell module using the same
KR102184894B1 (en) * 2012-11-12 2020-12-01 다우 실리콘즈 코포레이션 Method of forming an electronic article
JP6233196B2 (en) * 2013-08-30 2017-11-22 信越化学工業株式会社 Manufacturing method of solar cell module
KR101556445B1 (en) 2013-10-31 2015-10-02 도레이첨단소재 주식회사 Encapsulation sheet for a solarcell using a barrier layer and preparing process thereof
DE102016222130A1 (en) * 2016-11-10 2018-05-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Encapsulation foil for a photovoltaic module in shingle construction
DE102018112104A1 (en) * 2018-05-18 2019-11-21 Institut Für Solarenergieforschung Gmbh LAMINATE FOIL AND METHOD OF EMBEDDING SOLAR CELLS FOR FORMING A PHOTOVOLTAIC MODULE AND METHOD FOR MANUFACTURING A LAMINATE FOIL
AU2020226978B1 (en) * 2020-06-16 2021-07-29 Jinko Green Energy (shanghai) Management Co., Ltd. Functional part, photovoltaic module and method for manufacturing photovoltaic module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922978A (en) * 1982-07-30 1984-02-06 Du Pont Mitsui Polychem Co Ltd Caulking adhesive sheet and its manufacture
JPH0132776B2 (en) * 1981-03-12 1989-07-10 Mitsubishi Monsanto Chem
JPH09241045A (en) * 1996-03-07 1997-09-16 Sekisui Chem Co Ltd Intermediate film for laminated glass
JP2000183388A (en) * 1998-12-17 2000-06-30 Bridgestone Corp Sealing film for solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0132776B2 (en) * 1981-03-12 1989-07-10 Mitsubishi Monsanto Chem
JPS5922978A (en) * 1982-07-30 1984-02-06 Du Pont Mitsui Polychem Co Ltd Caulking adhesive sheet and its manufacture
JPH09241045A (en) * 1996-03-07 1997-09-16 Sekisui Chem Co Ltd Intermediate film for laminated glass
JP2000183388A (en) * 1998-12-17 2000-06-30 Bridgestone Corp Sealing film for solar cell

Also Published As

Publication number Publication date
JP2002185027A (en) 2002-06-28

Similar Documents

Publication Publication Date Title
JP4513204B2 (en) Sealing film for solar cell
JP3473605B2 (en) Solar cell manufacturing method
JP4467222B2 (en) Solar cell
JP4207456B2 (en) Solar cell module and temporary fixing tape therefor
JP5090570B2 (en) Solar cell module sealing material sheet and solar cell module including the same
JP2000174296A (en) Solar cell, and cover material and seal film therefor
JP3978912B2 (en) Solar cell cover material, sealing film, and solar cell
JP2004063673A (en) Method for manufacturing sealing film for solar cell and solar cell module
JP2003204073A (en) Solar battery module using frp substrate and its manufacturing method
JP2000183388A (en) Sealing film for solar cell
JP3978911B2 (en) Solar cell cover material, sealing film, and solar cell
KR20110087194A (en) Sealing film for use in solar cell module and method for producing the sealing film
JP2011023415A (en) Sheet for sealing material of solar cell
JP3972482B2 (en) Method for producing thermoplastic resin film for sealing
JP2006134970A (en) Sheet for solar cell sealing
JP2000174299A (en) Solar cell, and cover material and seal film therefor
JPH09153635A (en) Sealing material film for solar battery and solar battery module
JP2005079332A (en) Sheet for sealing solar cell
JP2000085086A (en) Manufacture of laminated film
KR101752652B1 (en) Sealing Material Sheet for Solar Battery Module and Solar Battery Module Comprising the Same
JP2000084967A (en) Production of sealing eva film
KR20130095537A (en) Solar battery module comprising high viscosity white eva resin layer
JP2002185026A (en) Method for manufacturing solar battery module
JP2013105802A (en) Sealing sheet for solar battery
JP2006134969A (en) Sheet for solar cell sealing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100503

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees