JP4512857B2 - Pile hole drilling rod - Google Patents

Pile hole drilling rod Download PDF

Info

Publication number
JP4512857B2
JP4512857B2 JP2000021397A JP2000021397A JP4512857B2 JP 4512857 B2 JP4512857 B2 JP 4512857B2 JP 2000021397 A JP2000021397 A JP 2000021397A JP 2000021397 A JP2000021397 A JP 2000021397A JP 4512857 B2 JP4512857 B2 JP 4512857B2
Authority
JP
Japan
Prior art keywords
kneading
rod
spiral
pile
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000021397A
Other languages
Japanese (ja)
Other versions
JP2001207768A (en
Inventor
隆司 辰口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitani Sekisan Co Ltd
Original Assignee
Mitani Sekisan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitani Sekisan Co Ltd filed Critical Mitani Sekisan Co Ltd
Priority to JP2000021397A priority Critical patent/JP4512857B2/en
Publication of JP2001207768A publication Critical patent/JP2001207768A/en
Application granted granted Critical
Publication of JP4512857B2 publication Critical patent/JP4512857B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Earth Drilling (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、中掘工法に使用する杭穴掘削ロッドに関する。
【0002】
【従来の技術】
中堀工法に使用するオーガーヘッドで、軸に練付板を取り付けたものが提案されている(実開昭62−185785)。このオーガヘッドで、杭穴掘削中は、練付板を中空杭の中空部に収容して、所定深さで、練付板を中空杭の下方から突出させ、土圧の抵抗で練付板を開いて杭穴壁を均していた。
【0003】
また、排土用の螺旋翼付きの掘削ロッドの下端と、掘削ヘッドの間に拡開して杭穴壁を均す練付機能を有する練付できる練付羽根を設けた掘削ロッドが提案されている(特開平6−173254号)。
【0004】
【発明が解決しようとする課題】
前記従来の技術の内、前者のものでは、土圧で練付板を開いていたため、オーガーヘッドを引き上げる際に、オーガーヘッドを逆回転して土圧で練付板を閉じていたため、練付板を支えるアームに掘削土が詰った場合には、練付板が閉じないおそれがあった。この場合には、オーガヘッドの引き上げが困難となる問題点があった。
【0005】
また、後者の場合、練付羽根を設けることにより、掘削ロッドに螺旋翼が形成されていない部分が生じ、螺旋翼が途切れるので排土能力の低下をまねく問題点があった。また、いずれの場合でも、中空杭の中空部から排土する際に、練付板や練付羽根が排土の障害となる場合もある問題点があった。
【0006】
【課題を解決するための手段】
然るにこの発明では、螺旋翼の外周に、練付用の螺旋帯や練付縦杆を設けたので、前記問題点を解決した。
【0007】
即ちこの発明は、中掘工法に使用する掘削ロッドであって、中空円管の周囲に中空杭の中空部に収容できる螺旋翼を形成したロッド本体を有する掘削ロッドにおいて、前記螺旋翼の外周側に位置して杭穴壁を練付できる練付縦杆を縦に配置し、該練付縦杆を支持材で前記ロッド本体に設けて練付手段を構成し、該練付手段は、構成する弾性材料の変形により変形して、前記中空杭の中空部に収納できるように形成したことを特徴とする杭穴掘削ロッドである。
【0008】
また、この発明は、中掘工法に使用する掘削ロッドであって、中空円管の周囲に中空杭の中空部に収容できる螺旋翼を形成したロッド本体を有する掘削ロッドにおいて、前記螺旋翼の外周に沿って、該螺旋翼に連続して弾性材料からなる螺旋帯を取り付け、該螺旋帯の外径を前記中空杭の外径より大きく形成したことを特徴とする杭穴掘削ロッドである。また、ここで、螺旋翼の外周と螺旋帯との間に、該螺旋帯を前記螺旋翼の外周に連続した形状に付勢できるバネ材料を介在した杭穴掘削ロッドである。また、螺旋帯の外周縁に練付面を形成した杭穴掘削ロッドである。
【0009】
また、この発明は、中掘工法に使用する掘削ロッドであって、中空円管の周囲に中空杭の中空部に収容できる螺旋翼を形成したロッド本体を有する掘削ロッドにおいて、螺旋翼の外周に沿って、複数の練付縦杆を平面円状で、縦方向に配置し、該練付縦杆はロッド本体に対して放射状に出没可能であり、かつ突出状態に付勢された状態でロッド本体に取付けられ、更に閉じた状態で前記中空杭の中空部に収容できる形状としたことを特徴とする杭穴掘削ロッドである。また、ここで、練付縦杆間に、螺旋翼の外周を覆う練付用ネットを取り付けた杭穴掘削ロッドである。また、練付縦杆は、柔軟性を有する材料から形成し、又は硬質材料の外面を弾性材料で被覆して形成したことを特徴とする杭穴掘削ロッドである。また、練付縦杆を、弾力性を有する材料から形成した整形リングで連結した杭穴掘削ロッドである。
【0010】
更に、前記各発明において、練付手段、螺旋帯又は練付縦杆は、ロッド本体の少なくとも掘削ヘッドの直上部分に形成する杭穴掘削ロッドである。
【0011】
【発明の実施の形態】
スパイラル状の螺旋翼2を有するロッド本体5に、螺旋翼2の外周3に沿った、弾性材料(ゴムなど)からなる螺旋帯7を、スプリングばね12、12を介して連結固定する。以上のようにして、杭穴掘削ロッド10を構成する(図1(a)(b))。
【0012】
前記螺旋帯7の外周9の径Dは、練り付ける杭穴21の径に応じて形成し、中空杭17の中空部から下方に突出して、杭穴壁を均すことができる(図1、図6(b)(c))。また、収納時には、螺旋帯7自体が弾性材料から形成され、更にスプリングばね12で連結されているので、螺旋帯7が屈曲変形すると共に位置を変え、中空杭17の中空部18に収納される(図6(a)(e))。
【0013】
前記において、練付手段として、スプリングばね12で螺旋翼2と連結した弾性材料からなる螺旋帯7から形成したが、中空杭17の下端19から下方に突出して杭穴壁22を練付でき、かつ非練付時に、弾性材料を屈曲させて中空杭17の中空部18に収納できれば、他の練付手段の構成とすることもできる。
【0014】
例えば、ロッド本体5の螺旋翼2に、練付縦杆31をスプリングばね34を介して、放射状に出没可能に取り付けて構成することもできる(図3)。また、ロッド本体5の螺旋翼2又は中空円管1に、練付縦杆31を、ばね等で屈折できる支持材38、39を介して、取付けることもできる(図4)。これらの練付縦杆31を使用する場合で、練付縦杆31、31間に柔軟材料からなるネット37を取付けることもできる。また、練付縦杆31、31を整形リング46で連結することもできる(図7)。
【0015】
ここで、比較的杭穴壁の崩壊が少ない地盤には、上記したいずれの練付手段を使用しても対応できるが、杭穴壁の崩壊が激しい地盤に対しては、比較的練付面積を大きくとれる図3、図4、図7に示した形態で施工(実施)することが望ましい。
【0016】
【実施例1】
(1) 図1、2、6に基づきこの発明の実施例を説明する。
【0017】
中空円管1の外周に、ほぼ全長に亘り、螺旋翼2をスパイラル状に巻き付けて、ロッド本体5を形成する。前記ロッド本体5の螺旋翼2の外周3に沿って、該螺旋翼2に連続して、弾性材料からなる螺旋帯7を配置する。前記螺旋翼2の外周3面と螺旋帯7の内周8面との間に、放射状に、1周で6つのスプリングばね12、12を等間隔に配置して、該スプリングばね12の両端部13、13を、螺旋翼2と螺旋帯7とに夫々埋め込んで連結する。前記スプリングばね12、12により、螺旋帯7は、螺旋翼2の外周3に沿った位置でかつ螺旋翼2に連続した位置を保つように付勢されている。
【0018】
螺旋翼2と螺旋帯7の接合端面の周辺は、スプリングばね12が埋設されるので、所定の肉厚(4cm程度)が必要である。また、スプリングばね12は、中空杭17内で螺旋帯7が縦に配置できるように折り曲がる柔軟性と、練付の際には、螺旋帯7が杭穴壁22に当接した際に、付勢状態を保ち、容易に折り曲がらない堅さとを兼ね備えている。
【0019】
以上のようにして、杭穴掘削ロッド10を構成する(図1(a)(b))。前記螺旋帯7は、掘削ロッド本体5で、掘削ヘッド15の直上に4周程度形成する(図6(a))。また、前記螺旋帯7の外周9の径Dは、練り付ける杭穴21の径に応じて形成する(図1(a))。
【0020】
(2) 次に、前記実施例に基づくこの発明の杭穴掘削ロッド10の使用について説明する。
【0021】
(a) 通常の中堀工法と同様に、中掘用の中空杭17の中空部18に杭穴掘削ロッド10を、挿通して、中空杭17の下端19から掘削ヘッド15を突出させて、杭穴軸部24を掘削しながら中空杭17を下降させる(図6(a)。この際、螺旋帯7は、上方に折られて、中空杭17の内壁に押し当てられている。また、螺旋帯7が設けられている部分でも、螺旋翼2が存在して、螺旋翼2は上方まで連続しているので、従来同様の高い排土能力を有する。
【0022】
また、従来、排土中に比較的大きな礫などが存在した場合、螺旋翼2(通常鋼材から形成される)の外周と中空杭17の内壁との間に挟まり、中空杭17が破損することがあったが、螺旋翼2の外周に螺旋帯7を設けることによって、螺旋帯7が緩衝材となり、中空杭17の破損を防止できる。更に、螺旋帯7が中空杭17の内壁に押し当てられた状態で、杭穴掘削ロッド10が回転しているため、中空杭17の内壁に付着した泥土等を除去できる。
【0023】
(b) 杭穴21が所定深さ(根固め部付近)に達したならば、中空杭17の下降を中止して、杭穴掘削ロッド10のみを降下して、掘削を続け、螺旋帯7を中空杭17の下方に突出させる(図6(b))。この際、螺旋帯7の外周9は杭穴21の穴壁22に当接し、杭穴掘削ロッド10の回転に伴い回転して、螺旋帯7の外周9側で穴壁22を均すことができる。また、螺旋帯7と螺旋翼2とで、排土するので、杭穴の全断面で排土し、螺旋翼2単独による排土より排土効率を高めることができる。
【0024】
(c) 続いて、杭穴掘削ロッド10を逆転させて杭穴拡底部25を掘削する(図6(c))。杭穴拡底部25の上方に連続する杭穴軸部24に、深さHの練付区間が形成される。杭穴掘削ロッド10の逆回転時にも螺旋帯の外周部は杭穴壁に当接しているので、杭穴壁22は均される。
【0025】
(d) 杭穴掘削が完了したならば、杭穴掘削ロッド10の先端からセメントミルクを吐出しながら、掘削土と置換して、あるいは掘削土と撹拌混合してソイルセメントを形成しながら、正回転させて杭穴掘削ロッド10を引き上げる(図6(d))。この際、螺旋帯は上方から順に下方に折り畳まれ、中空杭17の中空部18内に収容される。
【0026】
(e) 続いて、中空杭17をその下端を杭穴拡底部25内まで下降させて保持し、引き続き杭穴掘削ロッド10を引き上げる(図6(e))。この際、折り畳まれた螺旋帯7が中空杭17の内壁に弾性当接するので、多少の摩擦抵抗は生じるが、該部に泥水等水分が介在するので、杭穴掘削ロッド10の引き抜きに大きな支障はない。
【0027】
杭穴掘削ロッド10を地上まで引き上げ、セメントミルク又はソイルセメントが固化したならば基礎杭の構築が完了する(図示していない)。
【0028】
(f) 前記において、練付区間は杭穴拡底部25の周辺としたが、杭穴軸部24の全長に亘り、練り付けることもできる(図示していない)。また、当然に拡底部25を形成しない杭穴21にも適用できる(図示していない)。
【0029】
また、螺旋帯7は弾性材料から形成したので、中空杭17に収容した際や、中空杭17から螺旋帯7を出し入れする際に中空杭の下端部や内面を傷つけるおそれがない。
【0030】
(3)他の実施例
また、前記実施例において、螺旋帯7は、掘削ロッド本体5で、掘削ヘッド15の直上に4周程度形成したが、少なくともロッド本体5の下端部に2周程度形成されていれば良い。通常は、練付け区間に対応させて、4周程度形成されていれば、練付作用を十分に果たす。
【0031】
また、螺旋帯7は、杭穴掘削ロッド10の全長に亘って設けることもできる。この場合、連続して設けることもでき、また所定間隔毎に断続的に設けることもできる。
【0032】
また、前記実施例において、螺旋帯7の外周9縁に垂直状に、帯状の練付板27を形成し、該練付板27の上縁部28、及び下縁部29を中心側(中空円管1側)に折り曲げて、係る一体形状の螺旋帯7を形成することもできる(図2)。この場合には、螺旋帯7の外周9の面積(杭穴壁22と当接する面積)を広く取れるので、掘削土を練付ける効率を高めることができる。また、上記形状の螺旋帯7で形成した場合でも、弾性帯7は弾性材料で形成されているので、中空杭17の中空部18を通過する際にも支障がない。
【0033】
また、前記実施例において、スプリングばね12を使用したが、同様の機能を有すれば、板ばね等他の形状のばねでも可能である。また、ばねは金属製、樹脂製など材質も任意であり、これらの単独又は組み合わせた構成とすることもできる。また、別部材のばねを使用せず、合成樹脂などの弾性材料から螺旋条と同一材料として一体に形成することもできる(いずれも図示していない)。
【0034】
【実施例2】
図3、7に基づきこの発明の他の実施例を説明する。
【0035】
中空円管1の外周に、ほぼ全長に亘り、螺旋翼2をスパイラル状に巻き付けて、ロッド本体5を形成する。前記ロッド本体5の螺旋翼2の外周3側に、練付縦杆31、31を縦に配置する。
【0036】
前記練付縦杆31は、4本づつ平面視で等間隔環状に配置される。また、練付縦杆31は、上下に隣接する螺旋翼2を跨いで配置され、上端部32は上側の螺旋翼2の上面4側(中空円管1側)に屈曲され、下端部33は下側の螺旋翼2の下面4a側(中空円管1側)に屈曲されている。また、前記螺旋翼2の外周3面と練付縦杆31との間に、放射状に、スプリングばね34を等間隔に配置して、該スプリングばね34の一端部35を螺旋翼2に埋込み、他端36を練付縦杆31に固定する。
【0037】
尚、ここで、練付縦杆31、31は4本設けたが、複数本であれば、2本、3本又は5本以上でも可能であり、本数に制限はない。
【0038】
前記練付縦杆31、31は、ロッド本体5上で、掘削ヘッド15の直上部に少なくとも形成する(図示していない)。
【0039】
続いて、隣接する練付縦杆31、31間に、柔軟性を有するネット37を張設する。前記ネット37は、任意の素材から構成することもできるが、練り付ける作用を考慮すれば表面はねじり模様などが生じない平坦な形状が望ましい。
【0040】
以上のようにして、杭穴掘削ロッド10を構成する(図3(a)(b))。
【0041】
(2)前記実施例に基づくこの発明の杭穴掘削ロッド10の使用については、実施例1と同様であるので、概要のみを説明する。
【0042】
(a) 即ち、通常の中堀工法と同様に、中掘用中空杭17の中空部18に杭穴掘削ロッド10を、挿通して、杭穴軸部24を掘削しながら中空杭17を下降する。この際、練付縦杆31、31はスプリングばね34、34を縮めた状態で閉じ、中空部18内に収容される。この場合、練付縦杆31、31は中空杭17の内壁に弾性当接しているが、杭穴掘削ロッド10の回転や昇降に影響を与える程強く弾性当接していない。また、杭穴掘削ロッド10上全長に亘る螺旋翼2を使用して中空杭17内を排土されるので、排土効率が良く、ネット37は中空杭17の中空部18内壁に沿って縮んだ状態に収容されているので(図3(c))、排土に支障がない。
【0043】
(b) 次に、実施例1と同様に、杭穴掘削ロッド10のみ降下して、掘削を続け、練付縦杆31を中空杭17の下方に突出させ、杭穴壁22を練り付ける(図3(b))。この際、練付縦杆31とネット37とで練り付け、杭穴壁22を均すので、練付効率が良い。
【0044】
(c) 続いて、杭穴掘削ロッド10を逆転させて杭穴拡底部25を掘削する。杭穴掘削ロッド10の逆回転時にも練付縦杆31、31及びネット37は杭穴壁22に当接しているので、杭穴壁22は所定の練付区間だけ均すことができる。
【0045】
(d) 杭穴掘削が完了したならば、実施例1と同様に、必要ならばセメントミルクを吐出しながら、杭穴掘削ロッド10を引き上げる。この際、練付縦杆31、31の上端部32は中心側に屈曲しているので、螺旋翼2に掘削土が付着した場合でも、スプリングばね34、34に抗して、徐々に練付縦杆31、31は閉じて、容易に中空杭17の中空部18内に収容することができる。
【0046】
(e) 続いて、実施例1と同様に、中空杭17を下降させて保持し、杭穴掘削ロッド10を地上まで引き上げる。この際、練付縦杆31、31が中空杭17の内壁22に弾性当接するが、同様に杭穴掘削ロッド10の引き抜きに大きな支障はない。セメントミルク等が固化したならば基礎杭の構築が完了する。
【0047】
(f) 前記において、練付区間は杭穴拡底部25の周辺としたが、杭穴軸部24の全長に亘り、練り付けることもできる(図示していない)。また、当然に拡底部25を形成しない杭穴21にも適用できる(図示していない)。
【0048】
(3)他の実施例
前記実施例において、練付縦杆31は、上下に隣接する螺旋翼2を跨いで配置したが、上下方向で、上下に隣接する螺旋翼2内に配置することもできる(図示していない)。この場合、練付縦杆31は、上下に隣接する螺旋翼2間より短い長さで、形成される。
【0049】
また、本実施例の練付手段(練付縦杆31、ネット37)を杭穴掘削ロッド10に所定間隔毎に、複数箇所に設けることもできる(図示していない)。
【0050】
また、前記実施例において、ネット37を張設したので、杭穴掘削ロッド10の揚土能力以上の掘削土が生じても、ネット37の外に掘削土を逃がすことができ、掘削土が杭穴掘削ロッド10(螺旋翼2、中空円管1の外面)につまることを防止できるが、ネット37を省略することもできる(図示していない)。この場合には、練付縦杆31、31のみで、杭穴壁22を練り付けるので、練付効率は弱まるが、螺旋翼2による排土性能は維持される。
【0051】
また、前記実施例において、ネット37を張設したが、ネット37に代えて、シートを張設することもできる(図示していない)。この場合、掘削土等により杭穴掘削ロッド10の回転に負担が係り又はシートが破れることを防止する為に、シートは、掘削土(泥水)が通過できる素材から構成するか又は透孔を穿設して構成することが望ましい。
【0052】
また、前記実施例において、スプリングばね34は、実施例1のスプリングばね12と同様に、板ばねその他の弾性材料の単独又は組合せから形成することもできる(図示していない)。
【0053】
また、前記実施例において、練付縦杆31、31の材質は任意であるが、弾性材料から形成し、又は硬質材料の外面側(中空杭17の内壁と当接する部分)に硬質ゴムなどの緩衝材を被覆させて構成すれば、中空杭17の下端部や内壁の損傷を防止することもできる(図示していない)。
【0054】
また、前記実施例において、各練付縦杆31、31の外周側に、ゴム等の弾性材料からなり略水平に配置した整形リング46、46を固定し、ネット37を整形リングに固定することもできる(図7)。この場合、練付時に、整形リング46が杭穴壁22に接して、ネット37及び練付縦杆31と共に杭穴壁22の練付けに作用し、練付け効率が高められる(図7(a)(b))。中空杭17の中空部18内では、整形リング46は中空杭17の内壁に当接して、屈曲して折り畳まれる(図7(b))。
【0055】
この場合、整形リング46は水平に配置したが、斜めに配置することもできる(図示していない)。また、整形リング46は、練付縦杆31、31の外周に固定したが、内周に固定することもでき、また、練付縦杆31、31と略同一円上に形成することもできる(図示していない)。また、整形リング46は一体の円状としたが、隣接する練付縦杆31、31間をつなぐような部分円状(図7の場合では四分の一円となる)とし、その両端練付縦杆31、31に固定することもできる(図示していない)。
【0056】
【実施例3】
次に、図4、5、7に基づきこの発明の他の実施例を説明する。前記実施例2では、練付縦杆31、31を螺旋翼2に固定したが、練付縦杆31、31をロッド本体5の中空円管1に固定した実施例である。
【0057】
中空円管1の外周に、ほぼ全長に亘り、螺旋翼2をスパイラル状に巻き付けて、ロッド本体5を形成する。前記ロッド本体5の螺旋翼2の外周側に、練付縦杆31、31を縦に配置する。前記練付縦杆は、4本づつ平面視で等間隔環状に配置される。
【0058】
尚、ここで、尚、練付縦杆31、31は4本設けたが、実施例2と同様に、複数本であれば、2本、3本又は5本以上でも可能であり、本数に制限はない。
【0059】
前記練付縦杆31の上端部32は、ロッド本体5の中空円管1の外面に固定された上支持材38の先端38aと回動自在に連結され、練付縦杆31の下端部は、中空円管1の外面に固定された下支持材39の先端39aと回動自在に連結される。前記上支持材38は先端38a側が下がった状態で傾斜して固定され、下支持材39は先端39a側が上がった状態で傾斜して固定されている。
【0060】
また、上下支持材38、39は円管1に固定される基端部40と練付縦材31に取付ける先端部41とをスプリングばね44で連結して構成される(図5(c))。
【0061】
前記上支持材38と練付縦杆31との連結部では、練付縦杆31が開いた状態(中空円管1から放射状に離れた状態)で、上支持材38と練付縦杆31とが所定角度θを保つように、練付杆体31側に凸部42が形成され、上支持材38に該凸部42と嵌合する凹部43が形成されている(図5(a)(b))。
【0062】
続いて、隣接する練付縦杆31、31間に、実施例2と同様の柔軟性を有するネット37を張設して、杭穴掘削ロッド10を構成する(図4(a)(b))。
【0063】
前記練付縦杆31、31は、実施例2と同様に、ロッド本体5上で、掘削ヘッド15の直上部に少なくとも形成する(図示していない)。
【0064】
この実施例の杭穴掘削ロッド10の使用については、実施例2と同様である。
【0065】
前記実施例において、練付杆体31は、円形断面の棒状に形成してあるが、板状に形成することもできる(図示していない)。この場合、螺旋翼2の外周3に沿った断面形状とすることもできる。
【0066】
また、前記実施例において、上支持材38の先端38a側が下がった状態で、下支持材39の先端39a側は上がった状態で夫々傾斜して形成したので、上下方向(縦方向)・周方向(横方向)のいずれの側にも折り畳み易いが、上下支持材38、39は略水平方向に形成することもできる。または上支持材38の先端38a側を上がった状態で、下支持材39の先端39a側を下がった状態で、それぞれ形成することもできる(いずれも図示していない)。
【0067】
また、前記実施例において、実施例2と同様に、練付縦杆31、31間に、練付リング46を固定することもできる(図示していない。図7参照)。
【0068】
【発明の効果】
杭穴掘削ロッドは、螺旋翼の外周に練付用の螺旋帯を形成し、またはロッド本体に練付縦杆を取付けたので、練付手段を取付けた部分で、ロッド本体から螺旋翼を除去する必要がなく、螺旋翼は途切れなくほぼ全長に亘り連続して形成することができるので、螺旋翼の揚土作用が損なわれることなく、杭穴壁の練付ができる効果がある。
【0069】
また、練付手段は、弾性材料を有する構成としたので、中空杭内で変形して折り畳まれるので、中空杭の外径以上の掘削穴を形成したときに、練付手段は練付位置で確実に開き杭穴壁を練り付けることができる。杭穴壁の練り付けにより、排土量を減らし、中空杭の沈設も容易となる。
【0070】
また、弾性材料からなる螺旋帯を使用し、または練付縦杆はロッド本体に対して放射状に出没可能としたので、螺旋帯又は閉じた練付縦杆は、中空杭の中空部内に容易に収容できると共に、螺旋帯又は開いた練付縦杆は杭穴穴壁を確実に練付できる効果があり、施工間隔が短縮され、施工効率を向上させることができる。
【0071】
また、螺旋翼は弾性材料から形成し、また練付縦杆を柔軟性を有する材料から形成し、又は硬質材料の外面を弾性材料で被覆して形成し、あるいは練付用のネットを設けたので、これら練付手段が使用中に、中空杭に強く当接した場合であっても中空杭や練付手段を破損するおそれがない。また、防錆など特殊加工が不要であるので、金属材料から形成した場合に比して、安価に製作又は補修ができる。
【図面の簡単な説明】
【図1】この発明の実施例1の杭穴掘削ロッドで、(a)は縦断面図、(b)は一部横断面図である。
【図2】同じく他の杭穴掘削ロッドで、(a)は縦断面図、(b)は一部横断面図である。
【図3】この発明の実施例2の杭穴掘削ロッドで、(a)はネットを省略した一部正面図、(b)は練付縦杆を開いた状態の縦断面図、(c)は練付縦杆を閉じた状態の縦断面図である。
【図4】同じく他の杭穴掘削ロッドで、(a)はネットを省略した一部正面図、(b)は(a)のA−A線における断面図である。
【図5】(a)は図4(a)のX部拡大図、(b)は(a)のA−A線における拡大断面図、(c)は図4(a)のY部拡大図である。
【図6】(a)〜(e)はこの発明の実施例1の杭穴掘削ロッドを使用した施工例の縦断面図である。
【図7】他の実施例で、(a)は正面図、(b)は練付状態の一部横断面図、(c)は中空杭へ収納状態の一部横断面図である。
【符号の説明】
1 中空円管
2 螺旋翼
3 螺旋翼の外周
5 ロッド本体
7 螺旋帯
8 内周(螺旋帯)
9 外周(螺旋帯)
10 杭穴掘削ロッド
12 スプリングばね
15 掘削ヘッド
17 中空杭
18 中空部(中空杭)
19 下端(中空杭)
21 杭穴
22 穴壁(杭穴)
23 練付区間(杭穴)
24 軸部(杭穴)
25 拡底部(杭穴)
27 練付板
31 練付縦杆
34 スプリングばね
37 ネット
38 上支持材
39 下支持材
40 基端部(上下支持材)
41 先端部(上下支持材)
42 凸部(上下支持材)
43 凹部(上下支持材)
44 スプリングばね
46 整形リング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pile hole excavating rod used in a medium excavation method.
[0002]
[Prior art]
An auger head for use in the Nakabori method, which has a kneading plate attached to the shaft, has been proposed (Japanese Utility Model Publication Sho 62-185785). With this auger head, during excavation of the pile hole, the kneading plate is accommodated in the hollow part of the hollow pile, and the kneading plate is projected from the lower side of the hollow pile at a predetermined depth, and the kneading plate is resisted by earth pressure. Opened and leveled the hole wall.
[0003]
Also proposed is a drilling rod provided with kneading blades that can be kneaded to expand between the lower end of the drilling rod with spiral wings for earth removal and the drilling head to level the pile hole wall. (JP-A-6-173254).
[0004]
[Problems to be solved by the invention]
Among the prior arts, in the former, the kneading plate was opened by earth pressure, so when lifting the auger head, the auger head was reversely rotated and the kneading plate was closed by earth pressure. When excavated soil is clogged with the arm that supports the plate, the kneaded plate may not close. In this case, there is a problem that it is difficult to raise the auger head.
[0005]
Further, in the latter case, the provision of the kneading blades causes a portion where the spiral blade is not formed on the excavation rod, and the spiral blade is interrupted, which causes a problem in that the soil removal ability is lowered. In either case, there is a problem that when the soil is discharged from the hollow portion of the hollow pile, the kneading plate or the kneading blade may be an obstacle to the soil removal.
[0006]
[Means for Solving the Problems]
However, in the present invention, since the spiral band for kneading and the vertical gutter for kneading are provided on the outer periphery of the spiral blade, the above-mentioned problems are solved.
[0007]
That the invention provides a drill rod to be used for medium-drilling method, in drill rod having a rod body to form a helical blade which can be accommodated in the hollow portion of the hollow pile around the hollow round tube, the outer periphery of the pre-Symbol spiral wrap A kneading gutter that can be kneaded on the side of the pile hole wall is arranged vertically, and the kneading gutter is provided on the rod body with a support material to constitute a kneading means , and the kneading means comprises: A pile hole excavation rod, which is formed by being deformed by deformation of an elastic material to be configured and accommodated in a hollow portion of the hollow pile.
[0008]
The present invention also relates to an excavation rod for use in an intermediate excavation method, wherein the excavation rod has a rod body in which a spiral wing that can be accommodated in a hollow portion of a hollow pile is formed around a hollow circular pipe. A spiral hole excavation rod characterized in that a spiral band made of an elastic material is attached continuously to the spiral blade, and the outer diameter of the spiral band is formed larger than the outer diameter of the hollow pile. Further, here is a pile hole excavating rod having a spring material interposed between the outer periphery of the spiral wing and the spiral strip, which can urge the spiral band into a shape continuous with the outer periphery of the spiral wing. Moreover, it is a pile hole excavation rod which formed the kneading surface in the outer periphery of a spiral belt.
[0009]
The present invention also relates to an excavation rod for use in an intermediate excavation method, the excavation rod having a rod body formed with a spiral wing that can be accommodated in a hollow portion of a hollow pile around a hollow circular pipe. A plurality of kneaded vertical rods are arranged in a plane circle and in a vertical direction, and the kneaded vertical rods can be projected and retracted radially with respect to the rod body and are urged into a protruding state. It is a pile hole excavation rod characterized by having a shape that can be accommodated in the hollow portion of the hollow pile in a state of being attached to the main body and further closed. Moreover, it is a pile hole excavation rod which attached here the net for kneading which covers the outer periphery of a spiral blade between kneading vertical shafts. The kneading vertical rod is a pile hole excavation rod formed from a material having flexibility, or formed by coating the outer surface of a hard material with an elastic material. Moreover, it is a pile hole excavation rod which connected the kneading downpile with the shaping ring formed from the material which has elasticity.
[0010]
Furthermore, in each said invention, a kneading means, a spiral belt, or a kneading vertical rod is a pile hole excavation rod formed in the rod body at least a part directly above an excavation head.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
A spiral band 7 made of an elastic material (rubber or the like) along the outer periphery 3 of the spiral blade 2 is connected and fixed to the rod body 5 having the spiral spiral blade 2 via spring springs 12 and 12. The pile hole excavation rod 10 is configured as described above (FIGS. 1A and 1B).
[0012]
The diameter D of the outer periphery 9 of the spiral band 7 is formed according to the diameter of the pile hole 21 to be kneaded, protrudes downward from the hollow part of the hollow pile 17 and can level the pile hole wall (FIG. 1, 6B and 6C). Further, at the time of storage, the spiral band 7 itself is formed of an elastic material and is further connected by the spring spring 12, so that the spiral band 7 is bent and deformed and the position thereof is changed and stored in the hollow portion 18 of the hollow pile 17. (FIGS. 6A and 6E).
[0013]
In the above, the kneading means was formed from the spiral band 7 made of an elastic material connected to the spiral blade 2 by the spring spring 12, but the pile hole wall 22 can be kneaded by protruding downward from the lower end 19 of the hollow pile 17, If the elastic material can be bent and stored in the hollow portion 18 of the hollow pile 17 at the time of non-kneading, other kneading means can be configured.
[0014]
For example, it is also possible to configure the spiral wings 2 of the rod body 5 by attaching the kneading warps 31 via spring springs 34 so as to be able to appear and retract radially (FIG. 3). Further, the kneading longitudinal rod 31 can be attached to the spiral blade 2 or the hollow circular tube 1 of the rod body 5 via support members 38 and 39 that can be refracted by a spring or the like (FIG. 4). In the case of using these kneaded vertical rods 31, a net 37 made of a flexible material can be attached between the kneaded vertical rods 31, 31. Moreover, the kneading vertical rods 31 and 31 can also be connected by the shaping ring 46 (FIG. 7).
[0015]
Here, it is possible to cope with the ground with relatively little collapse of the pile hole wall by using any of the above-mentioned kneading means. It is desirable to construct (implement) in the form shown in FIG. 3, FIG. 4, and FIG.
[0016]
[Example 1]
(1) An embodiment of the present invention will be described with reference to FIGS.
[0017]
The rod body 5 is formed on the outer periphery of the hollow circular tube 1 by spirally winding the spiral blade 2 over almost the entire length. A spiral band 7 made of an elastic material is disposed along the outer periphery 3 of the spiral blade 2 of the rod body 5 so as to be continuous with the spiral blade 2. Six spring springs 12, 12 are arranged radially at equal intervals between the outer peripheral surface 3 of the spiral blade 2 and the inner peripheral surface 8 of the spiral band 7, and both end portions of the spring spring 12. 13 and 13 are embedded and connected to the spiral blade 2 and the spiral band 7, respectively. By means of the spring springs 12, 12, the spiral band 7 is biased so as to maintain a position along the outer periphery 3 of the spiral blade 2 and a position continuous with the spiral blade 2.
[0018]
Since the spring spring 12 is embedded around the joint end surface of the spiral blade 2 and the spiral band 7, a predetermined thickness (about 4 cm) is required. Further, the spring spring 12 is flexible so that the spiral band 7 can be arranged vertically in the hollow pile 17 and, when kneaded, when the spiral band 7 contacts the pile hole wall 22, It keeps the biased state and has the rigidity that doesn't bend easily.
[0019]
The pile hole excavation rod 10 is configured as described above (FIGS. 1A and 1B). The spiral band 7 is the excavation rod body 5 and is formed about four rounds immediately above the excavation head 15 (FIG. 6A). The diameter D of the outer periphery 9 of the spiral band 7 is formed according to the diameter of the pile hole 21 to be kneaded (FIG. 1A).
[0020]
(2) Next, the use of the pile hole excavating rod 10 of the present invention based on the above embodiment will be described.
[0021]
(a) In the same manner as in the normal Nakabori method, the pile hole excavation rod 10 is inserted into the hollow portion 18 of the hollow pile 17 for medium excavation, and the excavation head 15 is protruded from the lower end 19 of the hollow pile 17 to The hollow pile 17 is lowered while excavating the hole shaft portion 24 (FIG. 6A) .At this time, the spiral band 7 is folded upward and pressed against the inner wall of the hollow pile 17. The spiral Even in the portion where the band 7 is provided, the spiral blade 2 is present and the spiral blade 2 is continuous to the upper side, so that it has a high soil removal capacity as in the prior art.
[0022]
Conventionally, when relatively large gravel is present in the soil, the hollow pile 17 is damaged by being sandwiched between the outer periphery of the spiral blade 2 (usually formed of steel) and the inner wall of the hollow pile 17. However, by providing the spiral band 7 on the outer periphery of the spiral blade 2, the spiral band 7 serves as a cushioning material, and the hollow pile 17 can be prevented from being damaged. Furthermore, since the pile hole excavation rod 10 is rotating in a state where the spiral band 7 is pressed against the inner wall of the hollow pile 17, mud or the like attached to the inner wall of the hollow pile 17 can be removed.
[0023]
(b) When the pile hole 21 reaches a predetermined depth (near the root consolidation part), the descent of the hollow pile 17 is stopped, only the pile hole excavating rod 10 is lowered, and the excavation is continued. Is protruded below the hollow pile 17 (FIG. 6B). At this time, the outer periphery 9 of the spiral band 7 comes into contact with the hole wall 22 of the pile hole 21, and rotates with the rotation of the pile hole excavating rod 10, so that the hole wall 22 is leveled on the outer periphery 9 side of the spiral band 7. it can. Moreover, since the earth is removed by the spiral band 7 and the spiral blade 2, the earth is discharged from the entire cross-section of the pile hole, and the earth removal efficiency can be improved compared to the earth removal by the spiral blade 2 alone.
[0024]
(c) Subsequently, the pile hole excavating rod 10 is reversed to excavate the pile hole widened portion 25 (FIG. 6C). A kneading section having a depth H is formed in the pile hole shaft portion 24 continuous above the pile hole widening portion 25. Even when the pile hole excavating rod 10 is rotated in the reverse direction, the outer peripheral portion of the spiral band is in contact with the pile hole wall, so that the pile hole wall 22 is leveled.
[0025]
(d) When the pile hole excavation is completed, while discharging cement milk from the tip of the pile hole excavation rod 10, replacing the excavated soil or mixing with the excavated soil to form a soil cement, The pile hole excavating rod 10 is pulled up by rotating (FIG. 6D). At this time, the spiral band is folded downward in order from above, and is accommodated in the hollow portion 18 of the hollow pile 17.
[0026]
(e) Subsequently, the lower end of the hollow pile 17 is held down into the pile hole widened portion 25, and the pile hole excavating rod 10 is subsequently pulled up (FIG. 6 (e)). At this time, since the folded spiral band 7 is elastically contacted with the inner wall of the hollow pile 17, some frictional resistance is generated, but since water such as muddy water is present in the portion, it is a great hindrance to the extraction of the pile hole excavating rod 10. There is no.
[0027]
When the pile hole excavating rod 10 is pulled up to the ground and the cement milk or the soil cement is solidified, the construction of the foundation pile is completed (not shown).
[0028]
(f) In the above description, the kneading section is the periphery of the pile hole widening portion 25, but it can be kneaded over the entire length of the pile hole shaft portion 24 (not shown). Of course, the present invention can also be applied to a pile hole 21 that does not form the expanded bottom portion 25 (not shown).
[0029]
Further, since the spiral band 7 is formed of an elastic material, there is no possibility that the lower end portion or the inner surface of the hollow pile is damaged when the spiral band 7 is accommodated in the hollow pile 17 or when the spiral band 7 is taken in or out of the hollow pile 17.
[0030]
(3) Other Embodiments In the above embodiment, the spiral band 7 is formed on the excavation rod body 5 at about four rounds immediately above the excavation head 15, but at least about two rounds at the lower end of the rod main body 5. It only has to be done. Usually, if it is formed about four rounds corresponding to the kneading section, the kneading action is sufficiently achieved.
[0031]
The spiral band 7 can also be provided over the entire length of the pile hole excavating rod 10. In this case, they can be provided continuously or intermittently at predetermined intervals.
[0032]
Further, in the above-described embodiment, the belt-like kneading plate 27 is formed perpendicularly to the outer periphery 9 edge of the spiral band 7, and the upper edge portion 28 and the lower edge portion 29 of the kneading plate 27 are arranged on the center side (hollow The integrated spiral band 7 can also be formed by bending it to the circular tube 1 side (FIG. 2). In this case, since the area of the outer periphery 9 of the spiral band 7 (the area in contact with the pile hole wall 22) can be increased, the efficiency of kneading excavated soil can be increased. Even when the elastic band 7 is formed of the above-described shape, the elastic band 7 is formed of an elastic material, so there is no problem even when passing through the hollow portion 18 of the hollow pile 17.
[0033]
In the above embodiment, the spring spring 12 is used. However, a spring having another shape such as a leaf spring can be used as long as it has a similar function. In addition, the spring may be made of any material such as metal or resin, and may be configured singly or in combination. Moreover, it is also possible to integrally form the same material as the spiral strip from an elastic material such as a synthetic resin without using a separate member spring (both are not shown).
[0034]
[Example 2]
Another embodiment of the present invention will be described with reference to FIGS.
[0035]
The rod body 5 is formed on the outer periphery of the hollow circular tube 1 by spirally winding the spiral blade 2 over almost the entire length. On the outer periphery 3 side of the spiral wing 2 of the rod body 5, kneaded vertical rods 31, 31 are arranged vertically.
[0036]
The kneading vertical rods 31 are arranged in an annular shape at regular intervals in a plan view of four each. Further, the kneading vertical rod 31 is disposed so as to straddle the vertically adjacent spiral blades 2, the upper end portion 32 is bent toward the upper surface 4 side (hollow circular tube 1 side) of the upper spiral blade 2, and the lower end portion 33 is The lower spiral blade 2 is bent toward the lower surface 4a side (hollow circular tube 1 side). In addition, spring springs 34 are arranged radially at equal intervals between the outer peripheral three surfaces of the spiral blade 2 and the kneading longitudinal rod 31, and one end portion 35 of the spring spring 34 is embedded in the spiral blade 2. The other end 36 is fixed to the kneading warp 31.
[0037]
Here, although the four kneading vertical rods 31 and 31 are provided, if there are a plurality of them, two, three or five or more can be used, and the number is not limited.
[0038]
The kneading vertical rods 31, 31 are formed at least directly above the excavation head 15 on the rod body 5 (not shown).
[0039]
Subsequently, a flexible net 37 is stretched between adjacent kneading longitudinal bars 31, 31. The net 37 can be made of any material, but considering the kneading action, the surface preferably has a flat shape with no twist pattern or the like.
[0040]
The pile hole excavation rod 10 is configured as described above (FIGS. 3A and 3B).
[0041]
(2) Since the use of the pile hole excavation rod 10 of the present invention based on the above-described embodiment is the same as that of Embodiment 1, only the outline will be described.
[0042]
(a) That is, like the normal Nakabori method, the pile hole excavation rod 10 is inserted into the hollow part 18 of the hollow pile 17 for excavation, and the hollow pile 17 is lowered while excavating the pile hole shaft part 24. . At this time, the kneading vertical rods 31 and 31 are closed with the spring springs 34 and 34 being contracted, and are accommodated in the hollow portion 18. In this case, the kneading vertical rods 31 and 31 are in elastic contact with the inner wall of the hollow pile 17 but are not in strong elastic contact so as to affect the rotation and elevation of the pile hole excavation rod 10. Moreover, since the inside of the hollow pile 17 is discharged | emitted using the spiral blade 2 over the full length on the pile hole excavation rod 10, the earth removal efficiency is good and the net 37 shrinks along the inner wall of the hollow part 18 of the hollow pile 17. Since it is accommodated in the state (FIG. 3 (c)), there is no problem in soil removal.
[0043]
(b) Next, as in Example 1, only the pile hole excavating rod 10 is lowered, the excavation is continued, the kneading vertical rod 31 protrudes below the hollow pile 17 and the pile hole wall 22 is kneaded ( FIG. 3 (b)). At this time, kneading is performed with the kneading vertical rod 31 and the net 37, and the pile hole wall 22 is leveled, so that the kneading efficiency is good.
[0044]
(c) Subsequently, the pile hole excavation rod 10 is reversed to excavate the pile hole widened portion 25. Even when the pile hole excavating rod 10 is rotated in the reverse direction, the kneading vertical rods 31 and 31 and the net 37 are in contact with the pile hole wall 22, so that the pile hole wall 22 can be leveled only in a predetermined kneading section.
[0045]
(d) When the pile hole excavation is completed, the pile hole excavation rod 10 is pulled up while discharging cement milk if necessary, as in the first embodiment. At this time, since the upper ends 32 of the kneading vertical rods 31 and 31 are bent toward the center, even when excavated soil adheres to the spiral blade 2, the kneading is gradually performed against the spring springs 34 and 34. The vertical fences 31 and 31 can be closed and easily accommodated in the hollow portion 18 of the hollow pile 17.
[0046]
(e) Subsequently, similarly to the first embodiment, the hollow pile 17 is lowered and held, and the pile hole excavating rod 10 is pulled up to the ground. At this time, the kneading vertical rods 31 and 31 are elastically contacted with the inner wall 22 of the hollow pile 17, but there is no big trouble in pulling out the pile hole excavating rod 10. When cement milk is solidified, construction of the foundation pile is completed.
[0047]
(f) In the above description, the kneading section is the periphery of the pile hole widening portion 25, but it can be kneaded over the entire length of the pile hole shaft portion 24 (not shown). Of course, the present invention can also be applied to a pile hole 21 that does not form the expanded bottom portion 25 (not shown).
[0048]
(3) Other Embodiments In the above-described embodiment, the kneading warp 31 is disposed across the spiral blades 2 adjacent to each other in the vertical direction, but may be disposed in the spiral blades 2 adjacent in the vertical direction. Yes (not shown). In this case, the kneading warp 31 is formed with a shorter length than between the spiral blades 2 adjacent in the vertical direction.
[0049]
Also, the kneading means (kneading vertical rod 31 and net 37) of the present embodiment can be provided in the pile hole excavation rod 10 at a plurality of predetermined intervals (not shown).
[0050]
In the above embodiment, since the net 37 is stretched, even if excavated soil exceeding the excavation capacity of the pile hole excavating rod 10 is generated, the excavated soil can be released outside the net 37, and the excavated soil is piled. Although it is possible to prevent clogging with the hole excavation rod 10 (the spiral blade 2, the outer surface of the hollow circular tube 1), the net 37 can be omitted (not shown). In this case, since the pile hole wall 22 is kneaded only with the kneading vertical rods 31, 31, the kneading efficiency is weakened, but the soil removal performance by the spiral blade 2 is maintained.
[0051]
In the above embodiment, the net 37 is stretched, but a sheet can be stretched instead of the net 37 (not shown). In this case, in order to prevent the rotation of the pile hole excavating rod 10 due to the excavating soil or the like and to prevent the sheet from being torn, the sheet is made of a material through which the excavating soil (muddy water) can pass or a through hole is formed. It is desirable to install and configure.
[0052]
Moreover, in the said Example, the spring spring 34 can also be formed from the independent or combination of a leaf | plate spring and other elastic materials similarly to the spring spring 12 of Example 1 (not shown).
[0053]
Moreover, in the said Example, although the material of the kneading vertical rods 31 and 31 is arbitrary, it forms from an elastic material or hard rubber etc. are formed in the outer surface side (part contact | abutted with the inner wall of the hollow pile 17) of a hard material. If the buffer material is covered, the lower end of the hollow pile 17 and the inner wall can be prevented from being damaged (not shown).
[0054]
Moreover, in the said Example, the shaping rings 46 and 46 which consist of elastic materials, such as rubber | gum, and are arrange | positioned substantially horizontally are fixed to the outer peripheral side of each kneading vertical rod 31 and 31, and the net 37 is fixed to a shaping ring. (Fig. 7). In this case, at the time of kneading, the shaping ring 46 comes into contact with the pile hole wall 22 and acts on the kneading of the pile hole wall 22 together with the net 37 and the kneading vertical rod 31 to increase the kneading efficiency (FIG. 7A (B)). In the hollow part 18 of the hollow pile 17, the shaping ring 46 contacts the inner wall of the hollow pile 17 and is bent and folded (FIG. 7B).
[0055]
In this case, the shaping ring 46 is arranged horizontally, but can also be arranged obliquely (not shown). Further, the shaping ring 46 is fixed to the outer periphery of the kneading vertical rods 31 and 31, but can also be fixed to the inner periphery, and can be formed on substantially the same circle as the kneading vertical rods 31 and 31. (Not shown). Further, the shaping ring 46 is formed as an integral circle, but it is formed into a partial circle shape (a quarter circle in the case of FIG. 7) that connects between the adjacent kneading vertical rods 31 and 31, and both ends of the shaping ring 46 are kneaded at both ends. It can also be fixed to the attached vertical rods 31, 31 (not shown).
[0056]
[Example 3]
Next, another embodiment of the present invention will be described with reference to FIGS. In the second embodiment, the kneading vertical rods 31 and 31 are fixed to the spiral blade 2, but the kneading vertical rods 31 and 31 are fixed to the hollow circular tube 1 of the rod body 5.
[0057]
The rod body 5 is formed on the outer periphery of the hollow circular tube 1 by spirally winding the spiral blade 2 over almost the entire length. On the outer peripheral side of the spiral wing 2 of the rod body 5, kneading vertical rods 31 are arranged vertically. The kneading longitudinal rods are arranged in an annular shape at regular intervals in a plan view every four.
[0058]
Here, four kneading vertical rods 31 and 31 are provided. However, as in the case of the second embodiment, if there are a plurality of kneading rods, two, three or five or more can be used. There is no limit.
[0059]
The upper end portion 32 of the kneading vertical rod 31 is rotatably connected to the tip 38a of the upper support member 38 fixed to the outer surface of the hollow circular tube 1 of the rod body 5, and the lower end portion of the kneading vertical rod 31 is The tip of the lower support member 39 fixed to the outer surface of the hollow circular tube 1 is rotatably connected. The upper support member 38 is inclined and fixed with the tip 38a side lowered, and the lower support member 39 is inclined and fixed with the tip 39a side raised.
[0060]
The upper and lower support members 38 and 39 are configured by connecting a base end portion 40 fixed to the circular tube 1 and a tip end portion 41 attached to the kneaded vertical member 31 with a spring spring 44 (FIG. 5C). .
[0061]
At the connecting portion between the upper support member 38 and the kneading vertical rod 31, the upper support member 38 and the kneaded vertical rod 31 are in a state in which the kneading vertical rod 31 is open (a state radially away from the hollow circular tube 1). Are formed on the side of the kneading case 31 so as to maintain a predetermined angle θ, and the upper support member 38 is formed with a recess 43 that fits with the protrusion 42 (FIG. 5A). b)).
[0062]
Subsequently, a net 37 having flexibility similar to that of the second embodiment is stretched between the adjacent kneading longitudinal bars 31 and 31 to constitute the pile hole excavating rod 10 (FIGS. 4A and 4B). ).
[0063]
The kneading vertical rods 31, 31 are formed at least on the rod body 5 directly above the excavation head 15 (not shown), as in the second embodiment.
[0064]
The use of the pile hole excavating rod 10 of this embodiment is the same as that of the second embodiment.
[0065]
In the above embodiment, the kneading rod 31 is formed in a rod shape with a circular cross section, but can also be formed in a plate shape (not shown). In this case, a cross-sectional shape along the outer periphery 3 of the spiral blade 2 may be used.
[0066]
Further, in the above-described embodiment, the upper support member 38 is formed to be inclined with the tip 38a side of the upper support member 38 lowered, and the tip 39a side of the lower support member 39 is raised, so that the vertical direction (vertical direction) and the circumferential direction are formed. Although it is easy to fold to either side (lateral direction), the upper and lower support members 38 and 39 can be formed in a substantially horizontal direction. Alternatively, the upper support member 38 can be formed with the tip 38a side raised, and the lower support member 39 with the tip 39a side lowered (both not shown).
[0067]
Moreover, in the said Example, the kneading ring 46 can also be fixed between the kneading vertical rods 31 and 31 similarly to Example 2 (not shown, refer FIG. 7).
[0068]
【The invention's effect】
Pile hole drilling rods have a spiral band for kneading on the outer periphery of the spiral wing, or a kneading vertical rod attached to the rod body, so the spiral wing is removed from the rod body at the part where the kneading means are attached. The spiral wings can be formed continuously over almost the entire length without any interruption, so that there is an effect that the pile hole wall can be kneaded without impairing the earthing action of the spiral wings.
[0069]
Further, since the kneading means is configured to have an elastic material, it is deformed and folded in the hollow pile, so that when the excavation hole having the outer diameter of the hollow pile or more is formed, the kneading means is in the kneading position. The pile hole wall can be kneaded with certainty. By kneading the pile hole walls, the amount of soil removed is reduced, and the hollow piles can be easily laid.
[0070]
In addition, since a spiral band made of an elastic material is used, or the kneaded warp can be projected and retracted radially with respect to the rod body, the spiral band or the closed kneaded vertical can easily be placed in the hollow portion of the hollow pile. In addition to being able to be accommodated, the spiral band or the open kneading girder has an effect of reliably kneading the pile hole wall, shortening the construction interval and improving the construction efficiency.
[0071]
In addition, the spiral wing is formed from an elastic material, and the kneading warp is formed from a material having flexibility, or the outer surface of a hard material is formed by covering with an elastic material, or a kneading net is provided. Therefore, even if these kneading means are in strong contact with the hollow pile during use, there is no possibility of damaging the hollow pile or the kneading means. Further, since special processing such as rust prevention is not required, it can be manufactured or repaired at a lower cost than when formed from a metal material.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a pile hole excavation rod according to Embodiment 1 of the present invention, in which (a) is a longitudinal sectional view and (b) is a partial transverse sectional view.
FIG. 2 is another pile hole excavation rod, in which (a) is a longitudinal sectional view and (b) is a partial transverse sectional view.
FIGS. 3A and 3B are pile hole excavation rods according to Embodiment 2 of the present invention, in which FIG. 3A is a partial front view in which a net is omitted, FIG. 3B is a longitudinal cross-sectional view in a state where a kneading longitudinal rod is opened, FIG. FIG. 2 is a longitudinal sectional view showing a state in which a kneading vertical gutter is closed.
4A and 4B are other pile hole excavation rods, in which FIG. 4A is a partial front view in which a net is omitted, and FIG. 4B is a cross-sectional view taken along line AA in FIG.
5A is an enlarged view of a portion X in FIG. 4A, FIG. 5B is an enlarged sectional view taken along line AA in FIG. 4A, and FIG. 5C is an enlarged view of a Y portion in FIG. It is.
FIGS. 6A to 6E are longitudinal sectional views of a construction example using the pile hole excavation rod of Example 1 of the present invention.
7A is a front view, FIG. 7B is a partial cross-sectional view in a kneaded state, and FIG. 7C is a partial cross-sectional view in a state of being housed in a hollow pile.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hollow circular pipe 2 Spiral wing 3 Outer periphery of spiral wing 5 Rod body 7 Spiral belt 8 Inner circumference (spiral belt)
9 Outer circumference (spiral belt)
10 Pile hole drilling rod 12 Spring spring 15 Drilling head 17 Hollow pile 18 Hollow part (hollow pile)
19 Lower end (hollow pile)
21 Pile hole 22 Hole wall (pile hole)
23 Kneading section (pile hole)
24 Shaft (Pile hole)
25 Expanded bottom (pile hole)
27 Kneading plate 31 Kneading vertical rod 34 Spring spring 37 Net 38 Upper support material 39 Lower support material 40 Base end (upper and lower support material)
41 Tip (up / down support)
42 Convex (upper / lower support material)
43 Concave (upper and lower support material)
44 Spring spring 46 Shaping ring

Claims (9)

中掘工法に使用する掘削ロッドであって、中空円管の周囲に中空杭の中空部に収容できる螺旋翼を形成したロッド本体を有する掘削ロッドにおいて、前記螺旋翼の外周側に位置して杭穴壁を練付できる練付縦杆を縦に配置し、該練付縦杆を支持材で前記ロッド本体に設けて練付手段を構成し、該練付手段は、構成する弾性材料の変形により変形して、前記中空杭の中空部に収納できるように形成したことを特徴とする杭穴掘削ロッド。A drill rod for use in medium-drilling method, in drill rod having a rod body to form a helical blade which can be accommodated in the hollow portion of the hollow pile around the hollow round tube, located on the outer peripheral side of the front Symbol spiral wrap A kneading gutter capable of kneading the pile hole wall is arranged vertically, and the kneading gutter is provided on the rod body with a support material to constitute a kneading means. A pile hole excavating rod, which is formed by being deformed by deformation so as to be accommodated in a hollow portion of the hollow pile. 中掘工法に使用する掘削ロッドであって、中空円管の周囲に中空杭の中空部に収容できる螺旋翼を形成したロッド本体を有する掘削ロッドにおいて、前記螺旋翼の外周に沿って、該螺旋翼に連続して弾性材料からなる螺旋帯を取り付け、該螺旋帯の外径を前記中空杭の外径より大きく形成したことを特徴とする杭穴掘削ロッド。An excavation rod for use in an intermediate excavation method, the excavation rod having a rod body in which a spiral wing that can be accommodated in a hollow portion of a hollow pile is formed around a hollow circular pipe, the spiral along the outer periphery of the spiral wing A pile hole excavating rod, wherein a spiral band made of an elastic material is attached continuously to a wing, and the outer diameter of the spiral band is formed larger than the outer diameter of the hollow pile. 螺旋翼の外周と螺旋帯との間に、該螺旋帯を前記螺旋翼の外周に連続した形状に付勢できるバネ材料を介在した請求項2記載の杭穴掘削ロッド。The pile hole excavation rod according to claim 2, wherein a spring material capable of biasing the spiral band into a shape continuous with the outer periphery of the spiral blade is interposed between the outer periphery of the spiral blade and the spiral band. 螺旋帯の外周縁に練付面を形成した請求項2記載の杭穴掘削ロッド。The pile hole excavation rod according to claim 2, wherein a kneading surface is formed on the outer peripheral edge of the spiral band. 中掘工法に使用する掘削ロッドであって、中空円管の周囲に中空杭の中空部に収容できる螺旋翼を形成したロッド本体を有する掘削ロッドにおいて、螺旋翼の外周に沿って、複数の練付縦杆を平面円状で、縦方向に配置し、該練付縦杆はロッド本体に対して放射状に出没可能であり、かつ突出状態に付勢された状態でロッド本体に取付けられ、更に閉じた状態で前記中空杭の中空部に収容できる形状としたことを特徴とする杭穴掘削ロッド。An excavation rod for use in an intermediate excavation method, the excavation rod having a rod body in which a spiral wing that can be accommodated in a hollow portion of a hollow pile is formed around a hollow circular pipe, and a plurality of drills are provided along an outer periphery of the spiral wing. The vertical gutter is arranged in a plane circle in the vertical direction, and the kneaded vertical gutter can be projected and retracted radially with respect to the rod main body, and is attached to the rod main body in a state of being biased to the protruding state. A pile hole excavation rod characterized by having a shape that can be accommodated in a hollow portion of the hollow pile in a closed state. 練付縦杆間に、螺旋翼の外周を覆う練付用ネットを取り付けた請求項5記載の杭穴掘削ロッド。The pile hole excavation rod according to claim 5, wherein a kneading net that covers the outer periphery of the spiral blade is attached between the kneading warps. 練付縦杆は、柔軟性を有する材料から形成し、又は硬質材料の外面を弾性材料で被覆して形成したことを特徴とする請求項5記載の杭穴掘削ロッド。6. The pile hole excavation rod according to claim 5, wherein the kneading warp is formed from a material having flexibility, or is formed by coating an outer surface of a hard material with an elastic material. 練付縦杆を、弾力性を有する材料から形成した整形リングで連結した請求項5記載の杭穴掘削ロッド。The pile hole excavation rod according to claim 5, wherein the kneaded vertical rods are connected by a shaping ring formed of a material having elasticity. 練付手段、螺旋帯又は練付縦杆は、ロッド本体の少なくとも掘削ヘッドの直上部分に形成する請求項1、2、5のいずれか1項記載の杭穴掘削ロッド。The pile hole excavation rod according to any one of claims 1, 2, and 5, wherein the kneading means, the spiral band, or the kneading vertical rod is formed at least directly on the excavation head of the rod body.
JP2000021397A 2000-01-31 2000-01-31 Pile hole drilling rod Expired - Lifetime JP4512857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000021397A JP4512857B2 (en) 2000-01-31 2000-01-31 Pile hole drilling rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000021397A JP4512857B2 (en) 2000-01-31 2000-01-31 Pile hole drilling rod

Publications (2)

Publication Number Publication Date
JP2001207768A JP2001207768A (en) 2001-08-03
JP4512857B2 true JP4512857B2 (en) 2010-07-28

Family

ID=18547811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000021397A Expired - Lifetime JP4512857B2 (en) 2000-01-31 2000-01-31 Pile hole drilling rod

Country Status (1)

Country Link
JP (1) JP4512857B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087582A (en) * 2011-10-21 2013-05-13 Takenaka Komuten Co Ltd Excavation rod and excavation method
CN108505957B (en) * 2018-05-07 2023-08-04 上海广大基础工程有限公司 Reaming stirring drilling tool assembly
CN109538114B (en) * 2018-11-06 2020-11-24 江苏和信石油机械有限公司 Attaching type raise boring machine
CN109252811B (en) * 2018-11-06 2020-11-24 江苏和信石油机械有限公司 Floating interval adjusting type raise boring machine
CN109184577B (en) * 2018-11-06 2020-11-24 江苏和信石油机械有限公司 Clamping type raise boring machine
KR102347012B1 (en) 2020-09-11 2022-01-04 주식회사 이지지오텍 Under reaming auger apparatus and under reamed pile construction method using the same
KR20220035632A (en) 2020-09-14 2022-03-22 주식회사 이지지오텍 Under reaming auger apparatus and under reamed pile construction method using the same
KR102613542B1 (en) 2021-10-22 2023-12-13 주식회사 이지지오텍 Under reaming auger apparatus and under reamed pile construction method using the same
JP7073028B1 (en) * 2021-10-27 2022-05-23 株式会社エスエスティー協会 Ground restoration auger and ground restoration method
CN114503809A (en) * 2022-01-13 2022-05-17 沧州智语达建筑装饰工程有限公司 Automatic digging equipment for tree planting in landscaping engineering construction

Also Published As

Publication number Publication date
JP2001207768A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
JP4512857B2 (en) Pile hole drilling rod
JP2009249893A (en) Rotary press-in pile and construction method therefor
CN206486915U (en) Power shovel that is a kind of wear-resistant and being easy to cleaning
JP4085492B2 (en) Winged screw pile
JP4221487B2 (en) Method of preventing biting in medium digging method and pile hole digging rod for medium digging
JP6348158B2 (en) Drain pipe
JP7184007B2 (en) steel pipe pile
JP4210297B2 (en) Expanded pipe with tip blade and steel pipe pile with tip blade provided with the same
JPH0782744A (en) Pile-drawing method and casing pipe used therefor
JP3661863B2 (en) Expanded bottom plate for rotating buried steel pipe pile, and method of attaching the expanded plate to the rotated buried steel pipe pile
JP3581336B2 (en) Extraction method of existing pile and drilling casing used for it
KR20190137293A (en) Construction method for rotational penetration pile
KR100932952B1 (en) Piles that have variable end
JP3168500B2 (en) Steel pipe pile and method of manufacturing the same
JP6993747B1 (en) Rotating press-fit pile
JP3844043B2 (en) Winged pile
JP3932978B2 (en) Pile
JP4232743B2 (en) Rotating penetrating pile and its construction method
CN217352535U (en) Slope protection protector for civil engineering
JP2014031622A (en) Method of burying precast pile
JPH04194226A (en) Drain pipe for reinforcing slope
JP3168264B2 (en) No earth removal auger rod
JP6766858B2 (en) Screw-in type steel pipe pile
JP4191451B2 (en) Advanced components for rotary press-fit steel piles and steel piles
JP5413336B2 (en) Steel pipe pile manufacturing method and pile construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100421

R150 Certificate of patent or registration of utility model

Ref document number: 4512857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term