JP4511450B2 - Vacuum magnetic levitation type anti-vibration anechoic box - Google Patents

Vacuum magnetic levitation type anti-vibration anechoic box Download PDF

Info

Publication number
JP4511450B2
JP4511450B2 JP2005330549A JP2005330549A JP4511450B2 JP 4511450 B2 JP4511450 B2 JP 4511450B2 JP 2005330549 A JP2005330549 A JP 2005330549A JP 2005330549 A JP2005330549 A JP 2005330549A JP 4511450 B2 JP4511450 B2 JP 4511450B2
Authority
JP
Japan
Prior art keywords
box
vibration
inner box
outer box
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005330549A
Other languages
Japanese (ja)
Other versions
JP2007139002A (en
Inventor
福司 川上
Original Assignee
福司 川上
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福司 川上 filed Critical 福司 川上
Priority to JP2005330549A priority Critical patent/JP4511450B2/en
Publication of JP2007139002A publication Critical patent/JP2007139002A/en
Application granted granted Critical
Publication of JP4511450B2 publication Critical patent/JP4511450B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

本発明は、真空磁気浮上型防振無響箱に係り、特に、低騒音型OA機器の発生騒音パワーの測定や、騒音計など測定器自体の評価、あるいは聴覚や音声をはじめとする種々の実験・研究などに使用可能に構成された真空磁気浮上型防振無響箱に関する。   The present invention relates to a vacuum magnetic levitation type anti-vibration anechoic box, and in particular, measurement of generated noise power of a low noise type OA device, evaluation of a measuring device such as a noise meter, and various types including hearing and voice. The present invention relates to a vacuum magnetic levitation type anti-vibration anechoic box that can be used for experiments and research.

近年、世の中の音環境は、室内・室外を問わず(暗)騒音レベルが年々上昇している。一方で、コンピュータの周辺機器をはじめ多くのOA機器は年々静穏化の方向で設計が進んでいる。また、高出力・高感度マイクロフォンや精密騒音計などについても、それらを受けて非常に低い音圧レベルまで計測できるものが開発・市販され始めている。これらを、一般の事務所などで手軽に測定・評価できるようにするには、非常に高度な遮音性を備えて内部に十分な静寂性を有し、かつ、大掛かりな防音室や無響室とは異なる小型の防音無響箱が求められる。   In recent years, the sound environment in the world has been increasing year by year (dark) noise levels, both indoors and outdoors. On the other hand, many OA devices including computer peripheral devices are being designed in a direction of calming year by year. In addition, high-output and high-sensitivity microphones and precision sound level meters that are capable of measuring even very low sound pressure levels are being developed and marketed. In order to enable easy measurement and evaluation of these in general offices, etc., they have extremely high sound insulation and sufficient interior silence, and are large soundproof rooms and anechoic rooms. A small soundproof anechoic box is required.

従来、防音箱あるいは防音室としては、図9に示すものが知られている。図9に示す防音室100は、録音スタジオなどに用いられ、二重構成浮き構造となっている。すなわち、防音室100は、外部遮音壁102や内部遮音壁104に適当な透過損失(TL(dB))を有する材料を用いて二重・三重の壁とし、さらに、高度な遮音性能が必要な場合は、内部遮音壁104を外部遮音壁102に対して、図10に示す防振ゴム106やバネ108などで防振支持するようになっている。   Conventionally, what is shown in FIG. 9 is known as a soundproof box or a soundproof room. A soundproof room 100 shown in FIG. 9 is used in a recording studio or the like and has a double structure floating structure. In other words, the soundproof room 100 is a double or triple wall made of a material having an appropriate transmission loss (TL (dB)) for the external sound insulation wall 102 or the internal sound insulation wall 104, and when a high level of sound insulation performance is required. The internal sound insulation wall 104 is supported by the vibration insulation rubber 106 and the spring 108 shown in FIG.

二重壁の遮音とその等価回路を図11に示す。また、二重壁の透過損失(TL)の理論値として、周波数と透過損失の関係を図12に示す。   FIG. 11 shows sound insulation of a double wall and its equivalent circuit. Further, FIG. 12 shows the relationship between the frequency and the transmission loss as a theoretical value of the transmission loss (TL) of the double wall.

一方、磁気防振については、図13に示すように、レコードプレーヤ110のターンテーブル112を永久磁石114の反発力で防振浮上させようとした試みなどが知られている。   On the other hand, as shown in FIG. 13, for magnetic vibration isolation, an attempt has been made to make the turntable 112 of the record player 110 anti-vibration by the repulsive force of the permanent magnet 114.

従来の防音室100では、二重・三重構造を採用しているが、以下のような不都合がある。   The conventional soundproof room 100 employs a double / triple structure, but has the following disadvantages.

(1)板材料と中間の空気層により、「共鳴透過」と称する、図12に示すような無視できない遮音低下(落ち込み、dip)が複数の周波数で発生し、一定以上遮音性能を上げることができない。   (1) Due to the plate material and the intermediate air layer, a non-negligible sound insulation drop (dip, dip) as shown in FIG. 12 called “resonance transmission” occurs at a plurality of frequencies, and the sound insulation performance is improved to a certain level or more. Can not.

(2)特に、最低のdip周波数、frm(Hz)で構成材料単体より悪い「全透過(遮音性ゼロ)」、すなわち、TL=0(dB)となる通過現象が発生してしまう。因みに、三重構造では、このような谷が複数出現する。 (2) In particular, at the lowest dip frequency, f rm (Hz), a “total transmission (no sound insulation)” worse than that of the constituent material alone, that is, a passing phenomenon of TL = 0 (dB) occurs. Incidentally, in the triple structure, a plurality of such valleys appear.

(3)更に、内部遮音壁104を支持する防振ゴム106、ばね108などは、支持部分を通した固体音(固体伝播音=振動)の通過を低減する性能はあるが、それ自体が振動伝導路となったり、支持・固定という基本機能と絡むバネ定数選定の制約(無制限に小さくできない)から、固体音の伝播を完全にゼロにすることはできない。
また、従来の磁気防振についても、以下のような不都合や問題がある.
(4)図13に示すような一方向の防振では、ターンテーブルの軸などを介しての振動(固体伝播音)エネルギーが残存するため、やはり伝播を完全にゼロにすることはできない。
(3) Further, the anti-vibration rubber 106 and the spring 108 that support the internal sound insulation wall 104 have the performance of reducing the passage of the solid sound (solid propagation sound = vibration) through the support portion, but the vibration isolation itself The propagation of solid sound cannot be made completely zero because of the restriction of spring constant selection (cannot be made unlimitedly small) that is related to the basic function of supporting and fixing.
In addition, the conventional magnetic isolation has the following inconveniences and problems.
(4) In the one-way vibration isolation as shown in FIG. 13, the vibration (solid sound propagation) energy through the shaft of the turntable or the like remains, so that the propagation cannot be made completely zero.

(5)また、超伝導リニアモーターカーのように完全非接触で防振が実現できたとしても、空気を介して空気伝播音が伝播する以上、防音無響箱全体として外部からの騒音エネルギーをゼロにすることはできない。   (5) Even if vibration isolation can be achieved completely without contact as in the case of a superconducting linear motor car, the noise propagation from the outside will propagate the noise energy from the outside as the entire soundproof anechoic box. It cannot be zero.

このように本発明は、前記従来技術の課題に鑑みて為されたものであり、固体伝播音と空気伝播音の両者の伝播経路を同時に遮断することにより、従来に無い高度に静寂な空間を、軽微な構成材料で実現することを目的としている。   As described above, the present invention has been made in view of the problems of the prior art described above, and by simultaneously blocking the propagation paths of both the solid propagation sound and the air propagation sound, an unprecedented highly quiet space can be obtained. It is aimed to be realized with minor constituent materials.

前記目的を達成するために、本発明は、内側が吸音処理された内箱と、前記内箱の周囲を覆う外箱と、前記内箱の外側に固定された内箱用磁石と、前記磁石と同じ極同士が相対向して前記外箱の内側に固定された外箱用磁石とを備え、前記内箱は、前記内箱用磁石と前記外箱用磁石との間に作用する反発力により、前記外箱に対して非接触で防振支持され、前記内箱と前記外箱との空間部の空気は真空引きされてなる真空磁気浮上型防振無響箱を構成したものである。   In order to achieve the above object, the present invention provides an inner box that is sound-absorbed on the inside, an outer box that covers the periphery of the inner box, a magnet for an inner box that is fixed to the outside of the inner box, and the magnet. And an outer box magnet fixed to the inner side of the outer box with the same poles facing each other, and the inner box has a repulsive force acting between the inner box magnet and the outer box magnet Thus, a vacuum magnetic levitation type anti-vibration anechoic box is formed which is supported in a vibration-proof manner in a non-contact manner with respect to the outer box, and the air in the space between the inner box and the outer box is evacuated. .

前記した手段によれば、内箱は外箱に非接触で防振支持され、振動的に全く接触せず、かつ内箱と外箱との間の空気が真空引きされているので、音(空気伝播音)が伝わる媒体そのものを除去することができ、固体伝播音と空気伝播音の両者について伝播経路をほぼ完全に遮断できる。すなわち、音響伝播経路(例えば、空気音については空気、固体音については防振材料)そのものを除去し、伝播を司る媒体自体を除去することにより、比較的軽微な材料構成で、圧倒的に大きな遮音性能を得ることができるわけである。   According to the above-described means, the inner box is supported in a vibration-proof manner without contact with the outer box, is not in contact with vibration at all, and the air between the inner box and the outer box is evacuated. The medium itself (air propagation sound) can be removed, and the propagation path of both solid propagation sound and air propagation sound can be cut off almost completely. That is, by removing the acoustic propagation path (for example, air for air sound and vibration-proof material for solid sound) itself, and removing the medium that controls the propagation itself, it is overwhelmingly large with a relatively light material structure. Sound insulation performance can be obtained.

また、前記真空磁気浮上型防振無響箱を構成するに際しては、前記外箱と前記内箱の一部をそれぞれ透明部材で構成し、前記各透明部材を少なくとも一部が相対向するように配置する。この場合、透明部材を介して、防振無響箱の内部の変化や状態を観察することができ、音響や音声以外の研究領域における種々の実験や測定への利用も可能となる。   Further, when configuring the vacuum magnetic levitation type vibration-proof anechoic box, a part of the outer box and the inner box are each formed of a transparent member, and at least a part of the transparent members are opposed to each other. Deploy. In this case, the change and state inside the vibration-proof anechoic box can be observed through the transparent member, and it can be used for various experiments and measurements in research areas other than sound and speech.

防振性能を更に向上させる手段として電磁石の電流を外部から侵入する騒音や振動に応じて適応制御することができる。   As means for further improving the vibration isolation performance, the current of the electromagnet can be adaptively controlled according to noise and vibration entering from the outside.

具体的には、内箱および外箱に固定された磁石のうち、少なくとも一方を電磁石とし、これに流す電流を外部からの騒音、或いは振動に応じて適応制御することにより内箱に伝わる騒音、或いは振動のエネルギーを最小化するように制御・構成する。   Specifically, at least one of the magnets fixed to the inner box and the outer box is an electromagnet, and a current transmitted to the inner box or noise transmitted to the inner box by adaptive control according to vibration from the outside, Alternatively, control / configuration is performed to minimize vibration energy.

このような適応処理が理想的な条件で機能すれば、騒音制御の視点からは、丁度、真空引きされた塔屋の中を自然落下するエレベータの内部のような条件を構築できる(エレベータのワイヤを伝わる固体伝播音を無視しエレベータ筐体の遮音性が十分だとすると、内部には外部からいかなる騒音も侵入しない宇宙空間に準ずる静寂さとなる)。   If such adaptive processing functions under ideal conditions, from the viewpoint of noise control, it is possible to construct conditions just like the interior of an elevator that naturally falls inside a vacuumed tower (elevator wires If the sound insulation of the elevator housing is sufficient, ignoring the transmitted solid sound, the interior will be quiet in the same space as no noise from the outside.

本発明によれば、比較的軽微な材料構成で、圧倒的に大きな遮音性能を得ることができ、結果として大掛かりな防音室や無響室でなく、事務所などの一般居室において0dB−SPLに迫る超静寂空間を実現することができる。   According to the present invention, an overwhelmingly large sound insulation performance can be obtained with a relatively light material structure. As a result, in a general living room such as an office instead of a large soundproof room or anechoic room, 0 dB-SPL is achieved. It is possible to realize an approaching ultra-quiet space.

以下、本発明の一実施形態を図面に基づいて説明する。図1は、本発明の一実施例を示す真空磁気浮上型防振無響箱の断面図である。図1において、真空磁気浮上型防振無響箱10は、内箱12と、内箱12の周囲を覆う外箱14とを有する二重構造であって、外形寸法が略250×360×450mm程度、重量が30kg以下になっており、内箱12と外箱14は、例えば、ケイ酸カルシウム板のような比較的面密度の大きな材料を用いて構成されている。内箱12の内側には、吸音処理として、例えば、厚さ25〜50mm程度のグラスウール(図中GWと略記)などが全面に亘って貼り付けられている。具体的には、当該無響箱10は、50mm程度の真空層を間にしてその両側に、厚さ略30mmと20mm程度のケイ酸カルシウム板が配置され、各ケイ酸カルシウム板の内側に、厚さ50mm程度のグラスウールを全面に亘って貼り付けた構成となっている。なお、内箱12の外側と外箱14の内側に、厚さ50mm程度のグラスウールを全面に亘って貼り付けることで、内箱12と外箱14との間の空気が真空引きされる前の状態でも、ある程度の遮音性向上を図ることができる。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a vacuum magnetic levitation type vibration-proof anechoic box showing an embodiment of the present invention. In FIG. 1, a vacuum magnetic levitation type anti-vibration anechoic box 10 has a double structure having an inner box 12 and an outer box 14 covering the periphery of the inner box 12, and has an outer dimension of approximately 250 × 360 × 450 mm. The inner box 12 and the outer box 14 are made of a material having a relatively large surface density, such as a calcium silicate plate, for example. For example, glass wool (abbreviated as GW in the figure) having a thickness of about 25 to 50 mm is attached to the inner side of the inner box 12 as a sound absorption process. Specifically, the anechoic box 10 is provided with a calcium silicate plate having a thickness of about 30 mm and about 20 mm on both sides with a vacuum layer of about 50 mm in between, and inside each calcium silicate plate, It is the structure which affixed glass wool about 50 mm in thickness over the whole surface. In addition, by attaching glass wool having a thickness of about 50 mm over the entire surface of the inner box 12 and the outer box 14 before the air between the inner box 12 and the outer box 14 is evacuated. Even in the state, a certain degree of sound insulation can be improved.

内箱12の外側底面と外側側面には、内箱用磁石として、永久磁石、例えば、ネオジウムマグネット16が内箱12の重さに応じて、複数個分散して固定されている。また、各ネオジウムマグネット16に相対向して、同じ極同士、例えば、S極同士またはN極同士が相対向するように、外箱用磁石として、ネオジウムマグネット18が複数個分散して固定されている。各ネオジウムマグネット16、18は、同じ極同士相対向して配置されているため、各ネオジウムマグネット16と各ネオジウムマグネット18との間には、図2に示すように、磁気反発力が作用するようになっている。すなわち、内箱12は、外箱14の底面から浮上し、外箱14に対して非接触で防振支持されるようになっている。このため、固定伝播音(振動)が極めて伝わりにくく、しかも、各ネオジウムマグネット16、18は、内箱12と外箱14の底面と周囲側面の複数の領域に配置されているので、内箱12を安定に防振支持できる。なお、ネオジウムマグネット16、18の代わりに、電磁石を用いることもできる。この場合、一方または両方を電磁石とし、外部から外箱14に伝わった振動に応じて電流を適応制御することにより、内箱12に伝わる騒音をアクティブに最小化できる。   A plurality of permanent magnets, for example, neodymium magnets 16, are dispersed and fixed as inner box magnets on the outer bottom surface and the outer side surface of the inner box 12 according to the weight of the inner box 12. Further, a plurality of neodymium magnets 18 are dispersed and fixed as outer box magnets so that the same poles, for example, S poles or N poles, face each other and face each other. Yes. Since each of the neodymium magnets 16 and 18 is disposed opposite to each other, the magnetic repulsive force acts between each neodymium magnet 16 and each neodymium magnet 18 as shown in FIG. It has become. That is, the inner box 12 floats from the bottom surface of the outer box 14 and is supported in a vibration-proof manner without contact with the outer box 14. For this reason, fixed propagation sound (vibration) is extremely difficult to be transmitted, and the neodymium magnets 16 and 18 are arranged in a plurality of regions on the bottom surface and the peripheral side surface of the inner box 12 and the outer box 14. Can be stably supported. In place of the neodymium magnets 16 and 18, electromagnets can be used. In this case, the noise transmitted to the inner box 12 can be actively minimized by using one or both of the electromagnets and adaptively controlling the current according to the vibration transmitted from the outside to the outer box 14.

また、外箱14の側面側底部に形成された貫通孔20には、コンプレッサ22に連結されたパイプ24が挿入されており、パイプ24の管路途中に配置されたコック26を開いて、コンプレッサ22を駆動することで、外箱14と内箱12との間の空間部28の空気が真空引きされ、少なくとも含有酸素が略5%以下の真空に保たれている。このため、空気音が内箱12内に伝播するのをほぼ完全に遮断することができる。また、空間部28の空気は完全に取り除かれ真空となるので、真空引きの後、コック26を閉めて空気の漏れを遮断すれば、長時間にわたって内箱12内部に超静寂が空間を実現することができる。さらに、振動と空気を十分に遮断するように設計された「防振貫通ダクト」を両者の間に通せば、動物や植物を使った音響実験も可能になる。   A pipe 24 connected to the compressor 22 is inserted into the through hole 20 formed in the bottom of the side surface of the outer box 14, and a cock 26 disposed in the middle of the pipe 24 is opened to open the compressor By driving 22, the air in the space 28 between the outer box 14 and the inner box 12 is evacuated, and at least the contained oxygen is kept at a vacuum of about 5% or less. For this reason, it is possible to almost completely block the air sound from propagating into the inner box 12. In addition, since the air in the space 28 is completely removed and becomes a vacuum, if the cock 26 is closed after the evacuation to shut off the air leakage, ultra-quietness is realized in the inner box 12 for a long time. be able to. Furthermore, if a “vibration-proof penetrating duct” designed to sufficiently block vibration and air is passed between the two, acoustic experiments using animals and plants will be possible.

内箱12と外箱14の上部側(天井面側)には、透明部材、例えば、ガラス板やアクリル板で構成されて覗き窓30、32が設けられている。このため、外部から内部の変化や状態を観察する必要があるときには、遮音性を何ら損なうことなく、覗き窓30、32から内部の変化や常態を観察することができる。   On the upper side (ceiling surface side) of the inner box 12 and the outer box 14, viewing windows 30 and 32 made of a transparent member, for example, a glass plate or an acrylic plate are provided. For this reason, when it is necessary to observe an internal change or state from the outside, the internal change or normal state can be observed from the viewing windows 30 and 32 without impairing the sound insulation.

また、内箱12と外箱14の上部側(天井面側)には、試験体や供試体あるいはマイク34を挿入するための穴(図示せず)が形成されており、この穴の周囲には、図3のような気密型の開閉板(子扉)36、38が着脱自在に固定されている。各開閉板36、38は、図3に示すように、矩形形状に形成されており、中央部には電源ケーブルや信号ケーブルなど振動伝播の無い十分に柔らかい細線(極細線)40を挿入するための貫通孔(図示せず)が形成されている。この貫通孔には、コーキングなどの気密処理が施され、略円柱状に形成された気密型の二重構造蓋体42の外側が挿入・固定されている。蓋体42をなす内側管・外側管にはそれぞれネジ(図示せず)が形成されており、外側管内に挿入された内側管を右方向に回すことで外側管と締結されて気密が確保され、逆方向に回すと締結が解除されるようになっている。図3cのようにそれぞれ2枚で構成される蓋体42の内・外管体中央のケーブル穴は、締結後コーキングなどで密閉する。また、各開閉板36、38は、ケイ酸カルシウム板の両面側に鋼板を貼り付け、内側の鋼板に、厚さ50mm程度のグラスウールを貼り付けて構成され、十分な遮音性と機密性を確保するためゴム板などを介して無響箱本体にネジ止めされている。   In addition, a hole (not shown) for inserting a test specimen, a specimen, or a microphone 34 is formed on the upper side (ceiling surface side) of the inner box 12 and the outer box 14. In FIG. 3, air-tight opening / closing plates (child doors) 36 and 38 as shown in FIG. 3 are detachably fixed. As shown in FIG. 3, each of the opening and closing plates 36 and 38 is formed in a rectangular shape, and a sufficiently soft thin wire (extremely thin wire) 40 having no vibration propagation such as a power cable or a signal cable is inserted into the center portion. Through-holes (not shown) are formed. The through-hole is subjected to an airtight process such as caulking, and the outside of the airtight double structure lid 42 formed in a substantially cylindrical shape is inserted and fixed. A screw (not shown) is formed on each of the inner tube and the outer tube forming the lid 42, and the inner tube inserted into the outer tube is turned clockwise to be fastened with the outer tube to ensure airtightness. When turned in the opposite direction, the fastening is released. As shown in FIG. 3c, the cable hole at the center of the inner and outer tube bodies of the lid body 42 constituted by two pieces is sealed by caulking after fastening. Each open / close plate 36, 38 is constructed by attaching steel plates to both sides of the calcium silicate plate and attaching glass wool of about 50mm thickness to the inner steel plate to ensure sufficient sound insulation and confidentiality. In order to do so, it is screwed to the anechoic box body through a rubber plate or the like.

上記構成による真空磁気防振無響箱10の遮音性能を示す実効遮音度NIF(dB)は、略以下の式で表わさせると推定される。   It is estimated that the effective sound insulation NIF (dB) indicating the sound insulation performance of the vacuum magnetic anti-vibration anechoic box 10 having the above-described configuration is approximately expressed by the following equation.

Figure 0004511450
Figure 0004511450

Figure 0004511450
Figure 0004511450

ここに、TL1、TL2、A,S、α(上線バーが付されたα)は、それぞれ、外箱構成材料の総合透過損失(箱全体の平均的な総合透過損失)、内箱構成材料の総合透過損失、内箱内部の総吸音力、内表面積、平均吸音率である.また、Δ(dB)は、内箱12と外箱14に挟まれる中間層部分の真空による音響エネルギーの減衰量で、音波(空気音)を伝える媒体自体がないため、理論的には無限大∞となる。ただし、残留空気や磁気防振部分でわずかな伝播があると考えられるので、実際には20dB程度と推察される。実際のΔは真空引きの度合いや、磁気防振の仕様により左右されると考えられるが、これらの程度や精度を上げる事でそれ以上の減衰を確保することも可能と考えられる。 Here, TL 1 , TL 2 , A, S, and α (α with an overline bar) are the total transmission loss of the outer box constituent material (average total transmission loss of the entire box) and the inner box configuration, respectively. The total transmission loss of the material, the total sound absorption capacity inside the inner box, the inner surface area, and the average sound absorption coefficient. Further, Δ (dB) is an attenuation amount of acoustic energy due to the vacuum in the intermediate layer portion sandwiched between the inner box 12 and the outer box 14, and there is no medium that transmits sound waves (air sound). ∞. However, since it is considered that there is slight propagation in the residual air and the magnetic vibration isolating portion, it is estimated that it is actually about 20 dB. The actual Δ is considered to depend on the degree of evacuation and the specifications of magnetic vibration isolation. However, it is considered that further attenuation can be secured by increasing the degree and accuracy.

次の表1に、NC曲線を周波数ごとに数値化したときの概略数値を示し、表2に、内箱12と外箱14をケイ酸カルシウム板などで構成した場合のNIF(dB)の試算例を示す.表1で、NC−10以下の値は基準外であるが、比較参照用として基準値から外挿法により求め、あくまで「相当値」として記載している。両者をグラフ化し図4に示す。また、試算では当該無響箱の設置環境として一般的な事務所などを想定し、NC−40としている。   Table 1 shows the approximate numerical values when the NC curve is digitized for each frequency. Table 2 shows the estimated NIF (dB) when the inner box 12 and the outer box 14 are made of calcium silicate plates. Here is an example. In Table 1, values of NC-10 and below are outside the standard, but are obtained by extrapolation from the standard value for comparison and are described as “equivalent values” to the last. Both are graphed and shown in FIG. In addition, in the calculation, a general office is assumed as the installation environment of the anechoic box, and NC-40 is assumed.

Figure 0004511450
Figure 0004511450

Figure 0004511450
Figure 0004511450

数値化NC曲線から、真空磁気防振無響箱10により得られたNIF(dB)の推定値は、各帯域60(dB)以上となり、内箱12の内部においては、通常問題とされる全周波数帯域(63Hz〜8kHz)で凡そ0(dB−SPL)となり、JISのホン(dB(A))によれば0dB(A)をはるかに下回る負の値(例えば、−10ホン、−15dB(A)など)となることが予想される。   From the numerical NC curve, the estimated value of NIF (dB) obtained by the vacuum magneto-vibration anechoic box 10 is equal to or more than each band 60 (dB). It becomes approximately 0 (dB-SPL) in the frequency band (63 Hz to 8 kHz), and according to the JIS phone (dB (A)), a negative value far below 0 dB (A) (for example, -10 phone, -15 dB ( A) etc. are expected.

本実施例によれば、内箱12は外箱14に対して、非接触で防振支持され、振動的に(固体音伝播の視点で)全く接触せず、かつ内箱12と外箱14との間の空気が真空引きされているので、音が伝わる媒体そのものが無く、固体伝播音と空気伝播音の両者について伝播経路をほぼ完全に遮断できる。この結果、高度な遮音を比較的軽い材料(特に内箱12)で実現することができる。   According to the present embodiment, the inner box 12 is supported in a vibration-proof manner in a non-contact manner with respect to the outer box 14, does not contact at all vibrationally (in terms of solid sound propagation), and the inner box 12 and the outer box 14. Since the air between the two is evacuated, there is no medium through which the sound is transmitted, and the propagation path for both the solid propagation sound and the air propagation sound can be cut off almost completely. As a result, a high level of sound insulation can be realized with a relatively light material (in particular, the inner box 12).

具体的には、一般の事務所程度の暗騒音環境下(50〜60ホン)でも、内部暗騒音を0ホン、あるいはそれ以下の超低音圧レベル、例えば、0(dB−SPL)以下(NC値−10相当)にまで騒音レベルを低減できる。   Specifically, even in a background noise environment of a general office level (50 to 60 phones), the internal background noise is 0 phones, or a very low sound pressure level of less than that, for example, 0 (dB-SPL) or less (NC The noise level can be reduced to a value equivalent to -10).

また、内箱12と外箱14の材料として、ガラスや鋼板ではなく、アクリル板やアルミ板など軽くて気密性があり、かつ剛性の高いものを用いれば、比較的面密度の小さい軽微な材料を用いることができる(特に、内箱12)。   In addition, as a material for the inner box 12 and the outer box 14, a light and airtight material such as an acrylic plate or an aluminum plate, and not a glass or steel plate, and a light material having high rigidity, a light material having a relatively small surface density. (In particular, the inner box 12).

さらに、内箱12の内部には空気が存在してもよいので、前記の「防振貫通ダクト」(防振貫通システム)などにより振動を伝えることなく空気を内箱内部に還流させ、ほぼ実況に近い条件で種々の実験や測定を行うことが可能となる。   Further, since air may exist inside the inner box 12, the air is circulated into the inner box without transmitting vibration by the above-mentioned “vibration-proof penetration duct” (anti-vibration penetration system), etc. Various experiments and measurements can be performed under conditions close to.

また、内箱内部の照明や設備用の電源ケーブル、或いはマイクケーブルなどの信号線や関連機器(たとえばマイクアンプやスピーカ)の通信線まで、防振上排除する必要がある場合には、内部にバッテリーを設置したり、信号のワイヤレス化(無線通信化)によりこれを実現することができる。   In addition, if it is necessary to eliminate the signal lines such as the lighting inside the inner box, the power cable for equipment, the signal line such as the microphone cable and the communication line of the related equipment (for example, microphone amplifier or speaker) in terms of vibration isolation, This can be realized by installing a battery or by wireless signal transmission (wireless communication).

更に、内箱12を内部に人間が入れるような大きな環境として構築する場合、すなわち、「防音室」として全体のシステムを構成する場合、空調設備をはじめ種々の建築設備のダクトや配管類を内箱(室)12と外箱(室)14の間に設置する必要があるが、これについても通常録音スタジオの浮き構造などに用いる「防振貫通システム/技術」を導入し、必要遮音度に応じた十分な防振性能と遮音性能を確保すれば、無理なくこれを実現することができる。   Further, when the inner box 12 is constructed as a large environment where humans can enter it, that is, when the entire system is configured as a “soundproof room”, ducts and piping of various building equipment including air conditioning equipment are included. It is necessary to install between the box (room) 12 and the outer box (room) 14, but this also introduces the “vibration-proof penetration system / technique” that is usually used for the floating structure of recording studios, etc. If sufficient vibration-proof performance and sound-insulation performance are secured, this can be achieved without difficulty.

また、内箱12と外箱14に取り付けて各ネオジウムマグネット16、18の位置及び強さを以下のように選択することにより、内箱12を外箱14内部で安定に浮上させることができる。   Moreover, the inner box 12 can be stably floated inside the outer box 14 by attaching to the inner box 12 and the outer box 14 and selecting the position and strength of each neodymium magnet 16 and 18 as follows.

まず、平面内で内箱12が安定にバランスする条件を述べる。この場合、内箱12及び外箱14は筒状とするが、その平面形状は長方形、円形、または任意のもっと複雑な形状でもよい。最も簡単な例として、例えば、図5に示すように、円形断面(円筒形)を考える。この場合、ネオジウムマグネット16、18も円環状とし、例えば、内箱12は外側がN極、内側がS極、外箱14は、その逆として、同じ極同士が対向するようにネオジウムマグネット16、18を内箱12と外箱14にそれぞれ取り付ける。   First, conditions for the inner box 12 to stably balance in the plane will be described. In this case, the inner box 12 and the outer box 14 are cylindrical, but the planar shape may be rectangular, circular, or any more complicated shape. As the simplest example, for example, a circular cross section (cylindrical shape) is considered as shown in FIG. In this case, the neodymium magnets 16 and 18 are also annular, for example, the inner box 12 has an N pole on the outside, an S pole on the inside, and the outer box 14 has the opposite, and the neodymium magnets 16, 18 are attached to the inner box 12 and the outer box 14, respectively.

この状態で何らかの理由で内箱12、外箱14、ネオジウムマグネット16、18を含む系のバランスが崩れ、一部でネオジウムマグネット16、18が互いに接近したとする。すると、ネオジウムマグネット16、18は、同じ極同士の距離が小さくなって反発力が増すことになる。このため、ネオジウムマグネット16、18には押し戻す方向に力が働き、結果として、系は再び均衡状態に戻る。このように系全体は谷型のバランスを形成して平衡を保つことになる。   In this state, it is assumed that the balance of the system including the inner box 12, the outer box 14, and the neodymium magnets 16 and 18 is lost for some reason, and the neodymium magnets 16 and 18 partially approach each other. Then, in the neodymium magnets 16 and 18, the distance between the same poles is reduced and the repulsive force is increased. For this reason, force acts on the neodymium magnets 16 and 18 in the direction of pushing back, and as a result, the system returns to the equilibrium state again. In this way, the entire system forms a trough-shaped balance and maintains the equilibrium.

また、矩形断面の場合には、図6に示すように、内箱12と外箱14のコーナー部に同極同士が対向するように、ネオジウムマグネット16、18をそれぞれ取り付ければ、円形断面の場合と同様に系全体のバランスを保つことができる。   Further, in the case of a rectangular cross section, as shown in FIG. 6, if the neodymium magnets 16 and 18 are respectively attached so that the same poles face each other at the corners of the inner box 12 and the outer box 14, As well as the overall balance of the system.

一方、立断面内のバランスとして、筒状の内箱12が傾斜せずに鉛直を保つためには、図7に示すように、同極同士が対向したネオジウムマグネット16、18を2対ずつ内箱12と外箱14の上下両端部に取り付ける。この場合、ネオジウムマグネット16、18の上下方向の寸法は、内箱12の移動範囲、例えば、L=10mmと同程度が必要になる。鉛直方向で供試体を含む内箱12の重量を支える床部分のネオジウムマグネット18はそれに応じた強さのものが必要であるが、その強さは上記設計寸法L(mm)の範囲に納まるようにネオジウムマグネット18の磁力密度、個数などを選定すればよい。   On the other hand, in order to keep the cylindrical inner box 12 vertical without being inclined as a balance within the vertical section, as shown in FIG. It is attached to the upper and lower ends of the box 12 and the outer box 14. In this case, the vertical dimension of the neodymium magnets 16 and 18 needs to be approximately the same as the movement range of the inner box 12, for example, L = 10 mm. The neodymium magnet 18 of the floor portion that supports the weight of the inner box 12 including the specimen in the vertical direction needs to have a strength corresponding to that, but the strength should be within the design dimension L (mm). The magnetic density, the number, etc. of the neodymium magnet 18 may be selected.

更に、ネオジウムマグネット16、18の一方または両方を電磁石とし、電磁石の電流を適応制御し防振性能を最適化する場合は、システムを次のように構築する。   Further, when one or both of the neodymium magnets 16 and 18 are electromagnets and the current of the electromagnets is adaptively controlled to optimize the vibration isolation performance, the system is constructed as follows.

例えば、ネオジウムマグネット16、18のうち少なくとも一方を電磁石とし、この電磁石を設置環境の室内騒音(外箱14への侵入騒音)、あるいは、これによる外箱14表面の振動(固体音)に応じて制御する。以下、FIR(Finite Impulse Response)フィルタを用いて、外箱14の電磁石50を制御する例を図8に示す。   For example, at least one of the neodymium magnets 16 and 18 is an electromagnet, and the electromagnet is used in accordance with room noise in the installation environment (intrusion noise into the outer box 14) or vibration (solid sound) of the outer box 14 due to this. Control. Hereinafter, an example in which the electromagnet 50 of the outer box 14 is controlled using an FIR (Finite Impulse Response) filter is shown in FIG.

図8において、外箱14の外側には、防音無響箱が置かれた実験室などの室内騒音(外箱14へ侵入する外部騒音エネルギー)を収音するマイク52が配置され、内箱12内にはエラーセンサとして機能するマイク54が配置されている。マイク52はヘッドアンプ56を介してFIRフィルタ58に接続され、マイク54はヘッドアンプ60を介してFIRフィルタ58に接続されている。FIRフィルタ58はパワーアンプ62を介して外箱14の電磁石50に接続されている。   In FIG. 8, a microphone 52 that collects indoor noise (external noise energy entering the outer box 14) such as a laboratory in which a soundproof anechoic box is placed is arranged outside the outer box 14. A microphone 54 functioning as an error sensor is disposed in the inside. The microphone 52 is connected to the FIR filter 58 via the head amplifier 56, and the microphone 54 is connected to the FIR filter 58 via the head amplifier 60. The FIR filter 58 is connected to the electromagnet 50 of the outer box 14 via the power amplifier 62.

ここで、マイク52の出力に応じFIRフィルタ58とパワーアンプ62を介して電磁石50の電流を能動的に制御するに際して、FIRフィルタ58として、固定型FIRフィルタを用いる場合には、マイク54の出力が最小になるように、予め測定などを通して各種パラメータの値を設定しておく。一方、FIRフィルタ58として、適応型FIRフィルタを用いる場合には、マイク54の出力が最小になるように、時々刻々最適にパラメータが制御される。   Here, when the current of the electromagnet 50 is actively controlled via the FIR filter 58 and the power amplifier 62 in accordance with the output of the microphone 52, when a fixed FIR filter is used as the FIR filter 58, the output of the microphone 54 is used. The values of various parameters are set in advance through measurement or the like so that is minimized. On the other hand, when an adaptive FIR filter is used as the FIR filter 58, the parameters are optimally controlled from moment to moment so that the output of the microphone 54 is minimized.

マイク52とマイク54は必要に応じ、または適応の精度を上げるために、それぞれ振動ピックアップ64、66に置き換えることもできる。振動ピックアップ64は内箱12の壁面或いは床面に設置され、振動ピックアップ66は外箱14の床面などに設置される。この場合、内箱12を常に水平に保つための姿勢制御を行うときには、振動ピックアップ66として、変位出力型のものを用い、この出力で各々独立化した電磁石50および制御系のFIRフィルタ58を制御する。   The microphone 52 and the microphone 54 can be replaced with vibration pickups 64 and 66, respectively, as necessary or to increase the accuracy of adaptation. The vibration pickup 64 is installed on the wall surface or floor surface of the inner box 12, and the vibration pickup 66 is installed on the floor surface of the outer box 14. In this case, when performing posture control to keep the inner box 12 always horizontal, a displacement pickup type is used as the vibration pickup 66, and the electromagnet 50 and the FIR filter 58 of the control system are controlled by this output. To do.

このように、ネオジウムマグネット16、18のうち少なくとも一方を電磁石50とし、この電磁石50に流す電流を固定的に、或いは能動的に制御して、内箱12の振動、或いは内箱内部空間の騒音を最小化することにより、内箱12の内部に侵入する騒音の遮断性能を極限まで高めることができる。   In this way, at least one of the neodymium magnets 16 and 18 is the electromagnet 50, and the current flowing through the electromagnet 50 is fixedly or actively controlled to vibrate the inner box 12 or the noise in the inner box internal space. By minimizing the noise, it is possible to enhance the performance of blocking noise entering the inner box 12 to the limit.

すなわち、磁気浮上を介して僅かに内箱12に伝播する騒音エネルギー(固体音・振動)に関して、電磁石50に流す電流を騒音に応じて適応制御することにより、騒音エネルギー伝播量を最小化するように能動制御することができるわけである。この時、制御には、固定型、或いは適応型のFIRフィルタ58を用い、後者の場合、エラーセンサとして、内箱12の表面に取り付けた振動ピックアップ66、あるいは内箱内部に設置したマイクロフォン54を用いる。制御を電磁石50ごとに独立とし、エラーセンサに変位制御型振動センサを用いれば、供試品の位置の偏りなどに因らず内箱12を常に水平に保つなどの姿勢制御も可能となる。   That is, with respect to noise energy (solid sound / vibration) that is slightly propagated to the inner box 12 via magnetic levitation, the amount of noise energy propagation is minimized by adaptively controlling the current flowing through the electromagnet 50 according to the noise. Therefore, it can be actively controlled. At this time, a fixed or adaptive FIR filter 58 is used for control. In the latter case, a vibration pickup 66 attached to the surface of the inner box 12 or a microphone 54 installed in the inner box is used as an error sensor. Use. If the control is independent for each electromagnet 50 and a displacement control type vibration sensor is used as the error sensor, it is possible to perform posture control such as keeping the inner box 12 horizontal regardless of the position deviation of the specimen.

本発明の一実施例を示す真空磁気浮上型防振無響箱の断面図。1 is a cross-sectional view of a vacuum magnetic levitation type vibration-proof anechoic box showing an embodiment of the present invention. ネオジウムマグネットの側面図。A side view of a neodymium magnet. (a)開閉板の正面図、(b)開閉板の側面図、(c)蓋体の正面図。(A) Front view of opening / closing plate, (b) Side view of opening / closing plate, (c) Front view of lid. NC曲線の特性図。NC curve characteristic diagram. 円形断面内におけるバランスを説明するための平断面図。The plane sectional view for explaining the balance in a circular section. 矩形断面内におけるバランスを説明するための平断面図。The plane sectional view for explaining the balance in a rectangular section. 立断面内におけるバランスを説明するための断面図。Sectional drawing for demonstrating the balance in an upright section. 本発明の他の実施例を示す真空磁気浮上型防振無響箱の断面図。Sectional drawing of the vacuum magnetic levitation type vibration-proof anechoic box which shows the other Example of this invention. 従来の防音室の断面図。Sectional drawing of the conventional soundproof room. 防振材の例を示す図。The figure which shows the example of a vibration isolator. 二重壁の遮音と等価回路を示す図。The figure which shows the sound insulation of a double wall, and an equivalent circuit. 周波数と透過損失との関係を示す二重壁のTL理論値の特性図。The characteristic figure of the TL theoretical value of the double wall which shows the relationship between a frequency and transmission loss. 磁気浮上方式のレコードプレーヤの側面図。The side view of a magnetic levitation type record player.

符号の説明Explanation of symbols

10 真空磁気防振無響箱
12 内箱
14 外箱
16、18 ネオジウムマグネット
22 コンプレッサ
30、32 覗き窓
36、38 開閉板

10 Vacuum magnetic vibration-proof anechoic box 12 Inner box 14 Outer box 16, 18 Neodymium magnet 22 Compressor 30, 32 Viewing window 36, 38 Opening / closing plate

Claims (3)

内側が吸音処理された内箱と、前記内箱の周囲を覆う外箱と、前記内箱の外側に固定された内箱用磁石と、前記磁石と同じ極同士が相対向して前記外箱の内側に固定された外箱用磁石とを備え、前記内箱は、前記内箱用磁石と前記外箱用磁石との間に作用する反発力により、前記外箱に対して非接触で防振支持され、前記内箱と前記外箱との空間部の空気は真空引きされ、前記内箱用磁石は、前記内箱の外側のうち底面と側面にそれぞれ固定され、前記外箱用磁石は、前記外箱の内側のうち底面と側面にそれぞれ固定され、前記内箱および前記外箱に固定された磁石のうち、少なくとも一方は、電磁石で構成され、前記電磁石は、前記電磁石を制御する制御手段に接続され、前記制御手段は、前記内箱内に配置された第一のマイクと前記外箱外に配置された第二のマイクに接続され、前記第一のマイクの出力と前記第二のマイクの出力に基づいて前記内箱に伝わる騒音、或いは振動のエネルギーを最小化するように前記電磁石の電流を制御してなる真空磁気浮上型防振無響箱。 An inner box that is sound-absorbed on the inner side, an outer box that covers the periphery of the inner box, a magnet for an inner box that is fixed to the outer side of the inner box, and the same poles as the magnet are opposed to each other. A magnet for the outer box fixed to the inner side of the inner box, and the inner box is prevented from contacting the outer box in a non-contact manner by a repulsive force acting between the inner box magnet and the outer box magnet. The air in the space between the inner box and the outer box is evacuated , the inner box magnet is fixed to the bottom and side surfaces of the outer side of the inner box, and the outer box magnet is The magnet is fixed to the bottom and side surfaces of the inner side of the outer box, and at least one of the magnets fixed to the inner box and the outer box is composed of an electromagnet, and the electromagnet controls the electromagnet. And the control means includes a first microphone disposed in the inner box and the outer box. The electromagnet is connected to a second microphone arranged at the position of the electromagnet so as to minimize noise or vibration energy transmitted to the inner box based on the output of the first microphone and the output of the second microphone. Vacuum magnetic levitation type anti-vibration anechoic box controlled by current . 請求項1に記載の真空磁気浮上型防振無響箱において、前記外箱と前記内箱の一部はそれぞれ透明部材で構成され、前記各透明部材は少なくとも一部が相対向して配置されてなることを特徴とする真空磁気浮上型防振無響箱。  2. The vacuum magnetic levitation type vibration-proof anechoic box according to claim 1, wherein a part of each of the outer box and the inner box is formed of a transparent member, and each of the transparent members is disposed so as to face each other. A vacuum magnetic levitation type anti-vibration anechoic box. 請求項1に記載の真空磁気浮上型防振無響箱において、前記第一のマイクの代わりに、前記内箱に設置された第一の振動ピックアップを用い、前記第二のマイクの代わりに、前記外箱に設置された第二の振動ピックアップを用いてなる真空磁気浮上型防振無響箱。
In the vacuum magnetic levitation type anti-vibration anechoic box according to claim 1, instead of the first microphone, a first vibration pickup installed in the inner box is used, and instead of the second microphone, A vacuum magnetic levitation type vibration -proof anechoic box using a second vibration pickup installed in the outer box.
JP2005330549A 2005-11-15 2005-11-15 Vacuum magnetic levitation type anti-vibration anechoic box Expired - Fee Related JP4511450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005330549A JP4511450B2 (en) 2005-11-15 2005-11-15 Vacuum magnetic levitation type anti-vibration anechoic box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005330549A JP4511450B2 (en) 2005-11-15 2005-11-15 Vacuum magnetic levitation type anti-vibration anechoic box

Publications (2)

Publication Number Publication Date
JP2007139002A JP2007139002A (en) 2007-06-07
JP4511450B2 true JP4511450B2 (en) 2010-07-28

Family

ID=38202138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005330549A Expired - Fee Related JP4511450B2 (en) 2005-11-15 2005-11-15 Vacuum magnetic levitation type anti-vibration anechoic box

Country Status (1)

Country Link
JP (1) JP4511450B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992701A (en) * 2015-07-08 2015-10-21 中国船舶重工集团公司第七一九研究所 Active-passive hybrid vibration isolator resistant to lateral impact
JP2017502227A (en) * 2013-12-23 2017-01-19 コリア エアロスペース リサーチ インスティトゥートKorea Aerospace Research Institute Vibration reduction device using magnet
WO2022180280A1 (en) * 2021-02-25 2022-09-01 Defensya Ingeniería Internacional, S.L. System to eliminate sound noise inside a receptacle

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100909229B1 (en) * 2008-02-01 2009-07-23 이기억 An appartus for reducing the noise of the compressor and cooling the heat of it
WO2011007915A1 (en) * 2009-07-17 2011-01-20 (주)기하정밀 Noise prevention and cooling apparatus for small compressor
KR101789717B1 (en) * 2016-12-20 2017-11-20 현대아이에이치엘 주식회사 The rattle noise measurement system for lamp
CN107750031A (en) * 2017-11-18 2018-03-02 苏州岸肯电子科技有限公司 A kind of vacuum mute case
CN108387644B (en) * 2018-03-07 2020-11-24 广东诺瓦安评检测有限公司 Noise reduction performance testing device and testing method for industrial noise protection earplug
CN108627240A (en) * 2018-03-23 2018-10-09 南京大学 A kind of evaluation method of constant volume speed sound source low frequency acoustical power
CN114453991B (en) * 2021-12-10 2023-04-25 安徽科技学院 But self-cleaning's high-efficient processing digit control machine tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048507U (en) * 1983-09-24 1985-04-05 日本板硝子株式会社 Assembly soundproof room
JPS62119630U (en) * 1986-01-23 1987-07-29
JPS63289343A (en) * 1987-05-20 1988-11-25 Tokico Ltd Vibration control equipment
JPH06137375A (en) * 1992-10-29 1994-05-17 Kajima Corp Magnetic levitation system vibration resistant device for vertical type structure
JPH07279274A (en) * 1994-04-14 1995-10-24 Yasaka Dentaru Syst:Kk Soundproof equipment and soundproof panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048507U (en) * 1983-09-24 1985-04-05 日本板硝子株式会社 Assembly soundproof room
JPS62119630U (en) * 1986-01-23 1987-07-29
JPS63289343A (en) * 1987-05-20 1988-11-25 Tokico Ltd Vibration control equipment
JPH06137375A (en) * 1992-10-29 1994-05-17 Kajima Corp Magnetic levitation system vibration resistant device for vertical type structure
JPH07279274A (en) * 1994-04-14 1995-10-24 Yasaka Dentaru Syst:Kk Soundproof equipment and soundproof panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502227A (en) * 2013-12-23 2017-01-19 コリア エアロスペース リサーチ インスティトゥートKorea Aerospace Research Institute Vibration reduction device using magnet
CN104992701A (en) * 2015-07-08 2015-10-21 中国船舶重工集团公司第七一九研究所 Active-passive hybrid vibration isolator resistant to lateral impact
CN104992701B (en) * 2015-07-08 2018-06-19 中国船舶重工集团公司第七一九研究所 A kind of master passive hybrid isolator of anti-side knock
WO2022180280A1 (en) * 2021-02-25 2022-09-01 Defensya Ingeniería Internacional, S.L. System to eliminate sound noise inside a receptacle

Also Published As

Publication number Publication date
JP2007139002A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP4511450B2 (en) Vacuum magnetic levitation type anti-vibration anechoic box
EP3340236B1 (en) Soundproof structure, louver, and soundproof wall
ES2953305T3 (en) Outdoor unit of an air conditioner equipped with noise control system
WO2009136498A1 (en) Vibration-proof supporting method and vibration-proof supporting structure for microphones
WO2012086680A1 (en) Soundproofing plate which does not obstruct airflow
Oldham et al. Reducing the ingress of urban noise through natural ventilation openings
CN101487300A (en) Ultra-low background noise whole elimination room
CN203145544U (en) Sound insulation shielding room
JP6889036B2 (en) Microphone
KR20210015619A (en) Apparatus and method of reducing noise
JP2014045236A (en) Surface sound pressure measurement microphone with windbreak layer
JPS63153592A (en) Silencer
JPWO2019146095A1 (en) Audio output device
Carme et al. Active opening windows
WO2023021735A1 (en) Sensor module, active control device, active control method, and program
JP4086743B2 (en) Noise control device
Chen et al. Measures to alleviate fume hood noise
Velis et al. The anechoic chamber at the Laboratorio de Acústica y Luminotecnia CIC
JP3819891B2 (en) Sound insulation structure, sound insulation device, and sound insulation method
Sun et al. Experiments on performances of active-passive hybrid mufflers
JP3973482B2 (en) Inner wall structure
WO2022055432A1 (en) A system and method for actively cancelling a noise signal entering through an aperture
Sakuma et al. Numerical simulation and scale model experiment of low-frequency noise transmission into house
JP2965791B2 (en) Measurement equipment for sound insulation performance of building wall members
JP2012111583A (en) Elevator control panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4511450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees