JP4510967B2 - Conductive light selective transmission sheet - Google Patents

Conductive light selective transmission sheet Download PDF

Info

Publication number
JP4510967B2
JP4510967B2 JP34454899A JP34454899A JP4510967B2 JP 4510967 B2 JP4510967 B2 JP 4510967B2 JP 34454899 A JP34454899 A JP 34454899A JP 34454899 A JP34454899 A JP 34454899A JP 4510967 B2 JP4510967 B2 JP 4510967B2
Authority
JP
Japan
Prior art keywords
thin film
sheet
selective transmission
sputtering
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34454899A
Other languages
Japanese (ja)
Other versions
JP2001164382A (en
Inventor
倉一 小川
正明 吉竹
忠則 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKAPREFECTURAL GOVERNMENT
Original Assignee
OSAKAPREFECTURAL GOVERNMENT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKAPREFECTURAL GOVERNMENT filed Critical OSAKAPREFECTURAL GOVERNMENT
Priority to JP34454899A priority Critical patent/JP4510967B2/en
Publication of JP2001164382A publication Critical patent/JP2001164382A/en
Application granted granted Critical
Publication of JP4510967B2 publication Critical patent/JP4510967B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、導電性光選択透過シートに関し、より詳細には導電性と光選択透過性に優れる高機能プラスチックシートに関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来より、導電性と光選択透過性を有する導電性光選択透過シートとしては、例えば、透明なシート上にITO(酸化インジウム錫)薄膜を成膜したものがあり、フラットパネルディスプレイの透明電極、ディフロスタや透明ヒーター等の面発熱体、タッチパネル等の面スイッチ、赤外線反射膜及び透明フレキシブル回路等に広く利用されている。
【0003】
また、最近では、携帯電話やテレビのブラウン管から発生する電磁波対策として、技術開発が非常に要望されている。これに対して、上記のITO薄膜や、金属薄膜と金属酸化物薄膜とを積層した薄膜が検討されているが、可視光透過率と導電性とを十分高いレベルで両立したものは得られていないのが実情である。
【0004】
本発明は、かかる実情に鑑みてなされたものであり、優れた導電性と良好な光選択透過機能を持つプラスチックシートを提供することを目的とする。
【0005】
【課題を解決するための手段】
導電性の金属膜は、膜厚を薄くすることにより光を透過するようになるが、膜表面での反射が大きいため、金属薄膜単独では十分な可視光透過率が得られない。本発明者らは、このような金属薄膜の膜表面での反射を抑えるために、比較的屈折率の高いセラミック薄膜で金属薄膜を挟み込むことにより、導電性を確保しながら可視光透過率を向上できることに着目して鋭意検討した結果、上記セラミック薄膜として金属窒化物からなる薄膜を用いることにより、可視光透過率と導電性を高いレベルで両立できることを見出し本発明を完成するに至った。
【0006】
すなわち、本発明の導電性光選択透過シートは、プラスチックからなる透明な基体シート上に、銅からなる導電性の金属薄膜とその上下に積層された窒化アルミニウムからなるセラミック薄膜とで構成される積層膜を設けてなり、波長550nmでの可視光透過率が83%以上であり、面抵抗値が2.5Ω以下のものである。
また、本発明に係る導電性光選択透過シートの製造方法は、プラスチックからなる透明な基体シート上に、銅からなる導電性の金属薄膜とその上下に積層された窒化アルミニウムからなるセラミック薄膜とで構成される積層膜を設けてなる導電性光選択透過シートの製造方法であって、スパッタ電圧を印加するターゲットとは別に、プラズマ発生機構としてのカソードフィラメント及び安定化電極とアノードとを有する成膜装置を用いて、前記ターゲットに−50〜−300Vのスパッタ電圧を印加してスパッタリングを行う低エネルギースパッタ法により、前記基体シート上に、前記セラミック薄膜、前記金属薄膜、及び前記セラミック薄膜を順次に積層するものである。
【0007】
【発明の実施の形態】
以下に、本発明の実施に関連する事項について説明する。
【0008】
上記基体シートとしては、透光性の良好な各種の高分子フィルム及びシートを用いることができる。シートを構成する高分子は、特に限定されないが、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリフェニレンスルフィド(PPS)、ポリテトラフルオロエチレン(PTFE)、トリアセチルセルロース(TAC)、ポリ塩化ビニール(PVC)、ポリイミド(PI)、ポリアミド(PA)等が挙げられる。
【0009】
該基体シートの光透過率としては、波長550nmの可視光透過率で85%以上であることが好ましい。基体シートの厚みは、特に限定されないが、通常は5〜250μmのものが用いられる。
【0010】
上記金属薄膜は、導電性光選択透過シートに高い導電性を付与するために、面抵抗値(膜表面1cm平方当たり面積抵抗値をいう。以下同じ。)が16Ω以下の優れた導電性を有することが好ましい。金属薄膜の面抵抗値は、10Ω以下であることがより好ましく、さらに好ましくは1Ω以下である。
【0011】
該金属薄膜は、光透過性を阻害しないように、一般に極薄膜と呼ばれる非常に薄い膜で構成される。詳細には、金属薄膜は、膜厚が1〜50nmである金属極薄膜であることが好ましい。50nmを越えると、高い光透過性を確保することが困難となり、また、1nm未満では、優れた導電性を得にくくなる。
【0012】
該金属薄膜を構成する金属は、単一元素の金属でも、2種類以上の金属の合金でもよい。具体的には、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、チタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、モリブデン(Mo)、ニッケル(Ni)、クロム(Cr)、亜鉛(Zn)、錫(Sn)、インジウム(In)等が挙げられ、その中でも、低コストで比抵抗が小さいという観点からCuが特に好ましい。
【0013】
上記セラミック薄膜は、金属薄膜の膜表面での反射を抑えて良好な可視光透過率を得るために、屈折率が比較的高く透明な金属窒化物からなる。詳細には、セラミック薄膜は、屈折率が1.4〜2.5であることが好ましい。屈折率が1.4未満では、金属薄膜の膜表面での反射を効果的に抑えることが困難であり、2.5を越えると、可視光透過率を十分に確保することが困難となる。屈折率の下限はより好ましくは1.7であり、上限はより好ましくは2.3である。また、セラミック薄膜は、基体シート上に単独成膜した状態での可視光透過率(波長550nm)が75%以上であることが好ましく、より好ましくは80%以上である。光透過率が75%未満では、セラミック薄膜により導電性光選択透過シートとしての光透過率を下げてしまうことになる。
【0014】
このような金属窒化物としては、窒化アルミニウム、窒化シリコン、窒化ガリウム、窒化インジウム、窒化錫、窒化亜鉛等が挙げられ、その中でも、屈折率が比較的大きく、可視光透過率が高いという観点から窒化アルミニウムが特に好ましい。
【0015】
該セラミック薄膜は、膜厚が10〜500nmであることが好ましい。10nm未満では、反射防止効果を十分に得にくく、500nmを越えると、光の干渉効果により透過率を十分に確保しにくくなる。なお、セラミック薄膜は、通常、金属薄膜よりも厚く形成される。
【0016】
図1に示すように、これらの薄膜は、プラスチックの基体シート(1)上に積層した状態に形成されており、積層は、金属薄膜(2)の上下両側をセラミック薄膜(3,4)で挟んだサンドイッチ構造とされている。すなわち、図1に示す1実施形態に係る導電性光選択透過シートでは、基体シート(1)の上面に、セラミック薄膜(3)を成膜し、その上に金属薄膜(2)、さらにその上にセラミック薄膜(4)を順次に積層した3層構造の積層膜(5)が形成されている。
【0017】
なお、セラミック薄膜(4)の上に、さらに金属薄膜とセラミック薄膜を形成して5層構造の積層膜を形成してもよく、さらにこれを繰り返して、金属薄膜とセラミック薄膜が交互に積層された多層構造の積層膜を形成してもよい。また、基体シート(1)上にアンダーコート層を設けて、その上に上記積層膜を形成してもよい。また、上記積層膜上に別のトップコート層を設けてもよい。
【0018】
これらの金属薄膜とセラミック薄膜の成膜方法としては、真空蒸着法やスパッタ法等の物理的蒸着(PVD)法、及び、化学的蒸着(CVD)法などを挙げることができるが、より好ましくは、PVD法の一種である低エネルギースパッタ法を用いることである。低エネルギースパッタ法は、通常−300Vよりも低電圧、詳細には−50〜−300Vのスパッタ電圧でスパッタリングする成膜方法である。この低エネルギースパッタ法によれば、プラスチックからなる基体シート上に低温プロセスで成膜を行うことができる。また、通常のPVD法に比べて、欠陥が少なく、結晶性の良好な金属極薄膜が得られ、金属薄膜の導電性と膜表面の平滑性を向上することができる。さらに、表面が平滑で屈折率の比較的大きな金属窒化物のセラミック薄膜を形成することができ、また、該セラミック薄膜を金属薄膜の表面に凹凸損傷を与えることなく積層することができる。
【0019】
図2には、このような低エネルギースパッタ法による成膜を行うことができる成膜装置の一例を示している。この装置は、円筒形の真空槽(10)内に、シート保持板(12)とターゲット(14)とを左右に相対向させて配し、その間にプラズマ(16)が形成されるように、上下にプラズマ発生機構のアノード(18)とカソードフィラメント(20)及び安定化電極(22)とを配し、さらに、プラズマ(16)を閉じ込めるための磁場発生用コイル(24)を設けて構成されている。この装置は、比較的高真空で成膜することができ、しかも、ターゲット(14)に印加するスパッタ電圧を、プラズマ発生機構と独立に制御することができるため、0V〜−1,500Vと低電圧から高電圧までのスパッタ電圧でのスパッタリングが可能である。
【0020】
この成膜装置を用いてセラミック薄膜を成膜する際には、セラミック薄膜を構成する金属窒化物の金属をターゲット(14)に用い、シート保持板(12)に基体シートをセットして、真空槽(10)を真空ポンプ(26)により真空排気し、スパッタガスと、反応性ガスとして窒素ガスとを、真空槽(10)に所定量加えて、−50〜−300Vの所定のスパッタ電圧で、所定時間、スパッタリングすればよい。また、金属薄膜を成膜する際には、金属薄膜を構成する金属をターゲット(14)に用いて、真空槽(10)を真空ポンプ(26)により真空排気し、スパッタガスを真空槽(10)に所定量加えて、−50〜−300Vの所定のスパッタ電圧で、所定時間、スパッタリングすればよい。
【0021】
このようにして得られた本発明の導電性光選択透過シートは、優れた導電性を有し、しかも、可視光透過率が高く、紫外線及び赤外線を遮断し得るという、良好な光選択透過機能を有する。特に、セラミック薄膜として窒化アルミニウムを、金属薄膜として銅を選択して、これらの薄膜を低エネルギースパッタ法により形成した場合には、後記の実施例で示されているように、面抵抗値が数Ω以下、かつ、可視光透過率が80%以上であるプラスチック製の導電性光選択透過シートを低コストで得ることができる。
【0022】
また、表面にセラミック薄膜を備えることからプラスチックシートの耐擦傷性、耐薬品性及び耐候性が改善される。さらに、金属薄膜上に形成されたセラミック薄膜により金属薄膜の酸化を防止することができる。
【0023】
このようにして得られた本発明の導電性光選択透過シートは、フラットパネルディスプレイの透明電極、ディフロスタや透明ヒーター等の面発熱体、タッチパネル等の面スイッチ、赤外線反射膜及び透明フレキシブル回路等の用途は勿論のこと、さらに、プラズマディスプレイやテレビのブラウン管等から発生する電磁波のシールドや、次世代液晶ディスプレイの透明電極などといった用途にも好適に用いることができる。
【0024】
【実施例】
試験例1
基体シートとして50mm×50mm×50μmのPETフィルム(波長550nmの可視光透過率=95%)を用いて、図2に示す成膜装置により低エネルギースパッタ法で、該シート上に膜厚50nmのCu薄膜を形成した。詳細には、Cuをターゲット(14)として、上記PETフィルムを脱脂、洗滌、乾燥後、シート保持板(12)にセットし、真空槽(10)内を10−8Torr以下に真空排気し、流量調節器(28)により、スパッタガスであるArガスの流量を調節しながら加えて、真空槽(10)内を1.5×10−3Torrに設定し、スパッタ電圧−300Vで、5分間スパッタリングして、膜厚50nmのCu薄膜を形成した。
【0025】
得られたシートについて、面抵抗値と、波長550nmの可視光透過率とを測定した。結果を表1に示す。
【0026】
試験例2〜6
表1に示すスパッタ電圧及びスパッタ時間で、試験例1と同様にして、PETフィルム上にCu薄膜を形成した。得られた試験例2〜6のシートについて、試験例1と同様にして、面抵抗値と可視光透過率を測定した。結果を表1に示す。
【0027】
【表1】

Figure 0004510967
試験例7〜8
試験例1と同じPETフィルムを用いて、図2に示す成膜装置により低エネルギースパッタ法で、該シート上に膜厚100nmのAlN薄膜を形成した。詳細には、Alをターゲット(14)として、真空槽(10)内を10−8Torr以下に真空排気し、流量調節器(28)により、スパッタガスであるArガスの流量を調節しながら加えて、真空槽(10)内を1.5×10−3Torrに設定し、さらに、反応性ガスであるNガスを8×10−4Torrだけ混合して、スパッタ電圧−300Vと−150Vで、それぞれ20分間と30分間スパッタリングして、膜厚100nmのAlN薄膜を形成した。
【0028】
得られたシートについて、屈折率と、波長550nmの可視光透過率とを測定した。結果を表2に示す。
【0029】
【表2】
Figure 0004510967
表1,2に示すように、低エネルギースパッタ法で成膜した薄膜は、欠陥が少なく、結晶性がよいと考えられることから、面抵抗値の小さい導電性に優れたCu薄膜が得られ、また、表面の平滑性が高い光学特性に優れるAlN薄膜が得られることが分かった。特に、スパッタ電圧を−150Vまで低電圧化した場合には、これらの効果がより一層発現されることが分かった。
【0030】
実施例1
上記した試験例の方法と同様に低エネルギースパッタ法を用いて、PETフィルム上に、表3に示す膜厚で、AlN薄膜、Cu薄膜及びAlN薄膜を順次に積層して、実施例1の導電性光選択透過シートを作成した。スパッタ電圧は−150Vとした。
【0031】
得られた導電性光選択透過シートについて、面抵抗値と、波長550nmの可視光透過率とを測定した。結果を表3に示す。
【0032】
実施例2〜4
実施例1と同様にして、表3に示す膜厚で、AlN/Cu/AlNの積層膜を形成して、実施例2〜4の導電性光選択透過シートを作成した。スパッタ電圧は、いずれも−150Vとした。得られた導電性光選択透過シートについて、面抵抗値と、波長550nmの可視光透過率とを測定した。結果を表3に示す。
【0033】
【表3】
Figure 0004510967
比較例1,2
セラミック薄膜として、金属窒化物薄膜を用いる代わりに、金属酸化物である酸化チタン薄膜を用いて、その他は実施例1と同様にして、低エネルギースパッタ法により、TiO/Cu/TiOの積層膜を形成して、比較例1,2の導電性光選択透過シートを作成した。得られた導電性光選択透過シートについて、面抵抗値と、波長550nmの可視光透過率とを測定した。結果を表3に示す。
【0034】
表3に示すように、実施例1〜4の導電性光選択透過シートでは、比較例1,2の導電性光選択透過シートに比べて、導電性と可視光透過率とが高いレベルで両立されていた。特に、実施例1では、面抵抗値が1Ω以下で、かつ、可視光透過率が80%以上であり、極めて優れた電気特性と光学特性を有するプラスチックシートが得られた。
【0035】
図3に、実施例1の導電性光選択透過シートについての光透過率の波長依存性を示した。図に示すように、波長550nmを中心とする可視光領域では、概ね80%以上の透過率が確保されていたのに対し、紫外光領域では透過率20%以下、赤外光領域では透過率25%以下であり、十分な光選択透過機能を持つことが確認された。
【0036】
【発明の効果】
以上説明したように、本発明によれば、優れた導電性と光選択透過機能を有し、耐擦傷性、耐薬品性及び耐候性が良好なプラスチックシートを提供することができる。
【図面の簡単な説明】
【図1】本発明の1実施形態に係る導電性光選択透過シートの断面図である。
【図2】導電性光選択透過シートを成膜する成膜装置の概略図である。
【図3】実施例1の導電性光選択透過シートについての光透過率の波長依存性を示すグラフである。
【符号の説明】
1……基体シート
2……金属薄膜
3,4……セラミック薄膜
5……積層膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive light selective transmission sheet, and more particularly to a highly functional plastic sheet excellent in conductivity and light selective transmission.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, as a conductive light selective transmission sheet having electrical conductivity and light selective transmission, for example, there is a film in which an ITO (indium tin oxide) thin film is formed on a transparent sheet, a transparent electrode of a flat panel display, Widely used in surface heating elements such as defrosters and transparent heaters, surface switches such as touch panels, infrared reflective films, and transparent flexible circuits.
[0003]
Recently, there has been a great demand for technological development as a countermeasure against electromagnetic waves generated from cathode ray tubes of mobile phones and televisions. On the other hand, the above-mentioned ITO thin film or a thin film obtained by laminating a metal thin film and a metal oxide thin film has been studied. However, a film having both a high level of visible light transmittance and conductivity has been obtained. There is no actual situation.
[0004]
The present invention has been made in view of such circumstances, and an object thereof is to provide a plastic sheet having excellent conductivity and a good light selective transmission function.
[0005]
[Means for Solving the Problems]
The conductive metal film transmits light when the film thickness is reduced. However, since the reflection on the film surface is large, the metal thin film alone cannot provide sufficient visible light transmittance. In order to suppress the reflection of the metal thin film on the film surface, the present inventors improve the visible light transmittance while securing conductivity by sandwiching the metal thin film with a ceramic thin film having a relatively high refractive index. As a result of diligent study paying attention to the possibility, the present inventors have found that by using a thin film made of metal nitride as the ceramic thin film, both the visible light transmittance and the conductivity can be achieved at a high level, and the present invention has been completed.
[0006]
That is, the conductive light selective transmission sheet of the present invention is a laminate composed of a conductive metal thin film made of copper and a ceramic thin film made of aluminum nitride laminated on and under the transparent base sheet made of plastic. Ri Na provided film includes at visible light transmittance at a wavelength 550nm is 83% or more, and the surface resistance value is less than 2.5 Ohms.
Also, the method for producing a conductive light selective transmission sheet according to the present invention includes a conductive metal thin film made of copper and a ceramic thin film made of aluminum nitride laminated on and under the transparent base sheet made of plastic. A method for producing a conductive light selective transmission sheet provided with a laminated film comprising a film having a cathode filament, a stabilizing electrode, and an anode as a plasma generation mechanism separately from a target to which a sputtering voltage is applied Using an apparatus, the ceramic thin film, the metal thin film, and the ceramic thin film are sequentially formed on the base sheet by a low energy sputtering method in which sputtering is performed by applying a sputtering voltage of −50 to −300 V to the target. It is to be laminated.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Below, the matter relevant to implementation of this invention is demonstrated.
[0008]
As the base sheet, various polymer films and sheets having good translucency can be used. The polymer constituting the sheet is not particularly limited. For example, polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polycarbonate (PC), polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), Examples include triacetyl cellulose (TAC), polyvinyl chloride (PVC), polyimide (PI), polyamide (PA), and the like.
[0009]
The light transmittance of the base sheet is preferably 85% or more in terms of visible light transmittance at a wavelength of 550 nm. Although the thickness of a base sheet is not specifically limited, Usually, the thing of 5-250 micrometers is used.
[0010]
The metal thin film has excellent conductivity with a surface resistance value (referred to the area resistance value per 1 cm 2 square of the film surface; the same shall apply hereinafter) of 16Ω or less in order to impart high conductivity to the conductive light selective transmission sheet. It is preferable to have. The sheet resistance value of the metal thin film is more preferably 10Ω or less, and further preferably 1Ω or less.
[0011]
The metal thin film is composed of a very thin film generally called an ultrathin film so as not to impair the light transmittance. Specifically, the metal thin film is preferably a metal ultrathin film having a thickness of 1 to 50 nm. If it exceeds 50 nm, it is difficult to ensure high light transmittance, and if it is less than 1 nm, it is difficult to obtain excellent conductivity.
[0012]
The metal constituting the metal thin film may be a single element metal or an alloy of two or more kinds of metals. Specifically, gold (Au), silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), tantalum (Ta), zirconium (Zr), molybdenum (Mo), nickel (Ni), Examples thereof include chromium (Cr), zinc (Zn), tin (Sn), and indium (In). Among these, Cu is particularly preferable from the viewpoint of low cost and low specific resistance.
[0013]
The ceramic thin film is made of a transparent metal nitride having a relatively high refractive index in order to obtain good visible light transmittance by suppressing reflection on the film surface of the metal thin film. Specifically, the ceramic thin film preferably has a refractive index of 1.4 to 2.5. If the refractive index is less than 1.4, it is difficult to effectively suppress the reflection on the film surface of the metal thin film, and if it exceeds 2.5, it is difficult to sufficiently secure the visible light transmittance. The lower limit of the refractive index is more preferably 1.7, and the upper limit is more preferably 2.3. The ceramic thin film preferably has a visible light transmittance (wavelength 550 nm) of 75% or more in a state where it is formed alone on a substrate sheet, more preferably 80% or more. If the light transmittance is less than 75%, the light transmittance as the conductive light selective transmission sheet is lowered by the ceramic thin film.
[0014]
Examples of such metal nitrides include aluminum nitride, silicon nitride, gallium nitride, indium nitride, tin nitride, and zinc nitride. Among them, from the viewpoint that the refractive index is relatively large and the visible light transmittance is high. Aluminum nitride is particularly preferred.
[0015]
The ceramic thin film preferably has a thickness of 10 to 500 nm. If it is less than 10 nm, it is difficult to sufficiently obtain an antireflection effect, and if it exceeds 500 nm, it is difficult to ensure a sufficient transmittance due to the light interference effect. The ceramic thin film is usually formed thicker than the metal thin film.
[0016]
As shown in FIG. 1, these thin films are formed in a state of being laminated on a plastic substrate sheet (1), and lamination is performed by ceramic thin films (3, 4) on both upper and lower sides of the metal thin film (2). It is sandwiched between sandwiches. That is, in the conductive light selective transmission sheet according to one embodiment shown in FIG. 1, the ceramic thin film (3) is formed on the upper surface of the base sheet (1), the metal thin film (2) is further formed thereon, and further thereon. A laminated film (5) having a three-layer structure in which ceramic thin films (4) are sequentially laminated is formed.
[0017]
In addition, a metal thin film and a ceramic thin film may be further formed on the ceramic thin film (4) to form a laminated film having a five-layer structure, and this is repeated to alternately laminate the metal thin film and the ceramic thin film. Alternatively, a laminated film having a multilayer structure may be formed. Further, an undercoat layer may be provided on the base sheet (1), and the laminated film may be formed thereon. Moreover, you may provide another topcoat layer on the said laminated film.
[0018]
Examples of the method for forming these metal thin films and ceramic thin films include physical vapor deposition (PVD) methods such as vacuum vapor deposition and sputtering, and chemical vapor deposition (CVD) methods, but more preferably. The low energy sputtering method, which is a kind of PVD method, is used. The low energy sputtering method is a film forming method in which sputtering is usually performed at a voltage lower than −300 V, specifically, a sputtering voltage of −50 to −300 V. According to this low energy sputtering method, a film can be formed on a base sheet made of plastic by a low temperature process. In addition, a metal ultrathin film with few defects and good crystallinity can be obtained as compared with the normal PVD method, and the conductivity and smoothness of the film surface can be improved. Furthermore, a metal nitride ceramic thin film having a smooth surface and a relatively large refractive index can be formed, and the ceramic thin film can be laminated on the surface of the metal thin film without causing irregularities.
[0019]
FIG. 2 shows an example of a film forming apparatus capable of performing film formation by such a low energy sputtering method. In this apparatus, a sheet holding plate (12) and a target (14) are arranged opposite to each other in a cylindrical vacuum chamber (10), and plasma (16) is formed between them. The anode (18), cathode filament (20) and stabilizing electrode (22) of the plasma generation mechanism are arranged above and below, and a magnetic field generating coil (24) for confining the plasma (16) is provided. ing. Since this apparatus can form a film in a relatively high vacuum and can control the sputtering voltage applied to the target (14) independently of the plasma generation mechanism, it can be as low as 0V to -1,500V. Sputtering with a sputtering voltage from a high voltage to a high voltage is possible.
[0020]
When a ceramic thin film is formed using this film forming apparatus, the metal nitride metal constituting the ceramic thin film is used for the target (14), the base sheet is set on the sheet holding plate (12), and vacuum is applied. The tank (10) is evacuated by a vacuum pump (26), a sputtering gas and a nitrogen gas as a reactive gas are added to the vacuum tank (10) in a predetermined amount, and at a predetermined sputtering voltage of −50 to −300V. Sputtering may be performed for a predetermined time. When forming the metal thin film, the metal constituting the metal thin film is used for the target (14), the vacuum chamber (10) is evacuated by the vacuum pump (26), and the sputtering gas is discharged into the vacuum chamber (10 And a predetermined amount, and sputtering may be performed at a predetermined sputtering voltage of −50 to −300 V for a predetermined time.
[0021]
The conductive light selective transmission sheet of the present invention thus obtained has excellent electrical conductivity, and also has a good light selective transmission function that has high visible light transmittance and can block ultraviolet rays and infrared rays. Have In particular, when aluminum nitride is selected as the ceramic thin film and copper is selected as the metal thin film and these thin films are formed by the low energy sputtering method, the sheet resistance value is several as shown in the examples described later. It is possible to obtain a plastic conductive light selective transmission sheet having a resistance of Ω or less and a visible light transmittance of 80% or more at low cost.
[0022]
Further, since the ceramic thin film is provided on the surface, the scratch resistance, chemical resistance and weather resistance of the plastic sheet are improved. Furthermore, oxidation of the metal thin film can be prevented by the ceramic thin film formed on the metal thin film.
[0023]
The conductive light selective transmission sheet of the present invention obtained in this way is a transparent electrode of a flat panel display, a surface heating element such as a defroster or a transparent heater, a surface switch such as a touch panel, an infrared reflection film, a transparent flexible circuit, etc. It can be suitably used not only for applications but also for applications such as shielding of electromagnetic waves generated from plasma displays, CRTs for televisions, and transparent electrodes for next-generation liquid crystal displays.
[0024]
【Example】
Test example 1
A 50 mm × 50 mm × 50 μm PET film (visible light transmittance at a wavelength of 550 nm = 95%) is used as a base sheet, and a Cu film having a film thickness of 50 nm is formed on the sheet by a low energy sputtering method using the film forming apparatus shown in FIG. A thin film was formed. Specifically, with the Cu target (14), the PET film is degreased, washed and dried, then set on the sheet holding plate (12), and the vacuum chamber (10) is evacuated to 10 −8 Torr or less, The flow rate regulator (28) is used to adjust the flow rate of Ar gas as a sputtering gas, the inside of the vacuum chamber (10) is set to 1.5 × 10 −3 Torr, and the sputtering voltage is −300 V for 5 minutes. A Cu thin film having a thickness of 50 nm was formed by sputtering.
[0025]
About the obtained sheet | seat, the surface resistance value and the visible light transmittance | permeability of wavelength 550nm were measured. The results are shown in Table 1.
[0026]
Test Examples 2-6
A Cu thin film was formed on a PET film in the same manner as in Test Example 1 with the sputtering voltage and sputtering time shown in Table 1. About the obtained sheet | seat of Test Examples 2-6, it carried out similarly to Test Example 1, and measured the surface resistance value and the visible light transmittance | permeability. The results are shown in Table 1.
[0027]
[Table 1]
Figure 0004510967
Test Examples 7-8
Using the same PET film as in Test Example 1, an AlN thin film having a film thickness of 100 nm was formed on the sheet by a low energy sputtering method using the film forming apparatus shown in FIG. Specifically, the vacuum chamber (10) is evacuated to 10 −8 Torr or less using Al as a target (14), and added while adjusting the flow rate of Ar gas, which is a sputtering gas, by a flow rate controller (28). Then, the inside of the vacuum chamber (10) is set to 1.5 × 10 −3 Torr, and further, N 2 gas which is a reactive gas is mixed by 8 × 10 −4 Torr, and the sputtering voltage is −300V and −150V. Then, an AlN thin film having a thickness of 100 nm was formed by sputtering for 20 minutes and 30 minutes, respectively.
[0028]
About the obtained sheet | seat, the refractive index and the visible light transmittance | permeability with a wavelength of 550 nm were measured. The results are shown in Table 2.
[0029]
[Table 2]
Figure 0004510967
As shown in Tables 1 and 2, since the thin film formed by the low energy sputtering method has few defects and is considered to have good crystallinity, a Cu thin film excellent in conductivity with a small sheet resistance value is obtained. It was also found that an AlN thin film having high surface smoothness and excellent optical characteristics can be obtained. In particular, it has been found that when the sputtering voltage is lowered to -150 V, these effects are further exhibited.
[0030]
Example 1
Using the low energy sputtering method in the same manner as in the test example described above, an AlN thin film, a Cu thin film, and an AlN thin film were sequentially laminated on the PET film with the film thicknesses shown in Table 3, and the conductivity of Example 1 was obtained. A selective light transmission sheet was prepared. The sputtering voltage was −150V.
[0031]
With respect to the obtained conductive light selective transmission sheet, the sheet resistance value and the visible light transmittance at a wavelength of 550 nm were measured. The results are shown in Table 3.
[0032]
Examples 2-4
In the same manner as in Example 1, a laminated film of AlN / Cu / AlN was formed with the film thickness shown in Table 3 to produce conductive light selective transmission sheets of Examples 2 to 4. The sputtering voltage was -150V for all. With respect to the obtained conductive light selective transmission sheet, the sheet resistance value and the visible light transmittance at a wavelength of 550 nm were measured. The results are shown in Table 3.
[0033]
[Table 3]
Figure 0004510967
Comparative Examples 1 and 2
Instead of using a metal nitride thin film as the ceramic thin film, a titanium oxide thin film, which is a metal oxide, is used, and the others are the same as in Example 1, and the lamination of TiO 2 / Cu / TiO 2 is performed by the low energy sputtering method. A conductive light selective transmission sheet of Comparative Examples 1 and 2 was prepared by forming a film. With respect to the obtained conductive light selective transmission sheet, the sheet resistance value and the visible light transmittance at a wavelength of 550 nm were measured. The results are shown in Table 3.
[0034]
As shown in Table 3, in the conductive light selective transmission sheets of Examples 1 to 4, both the conductivity and the visible light transmittance are compatible with each other compared to the conductive light selective transmission sheets of Comparative Examples 1 and 2. It had been. In particular, in Example 1, a plastic sheet having a sheet resistance value of 1Ω or less and a visible light transmittance of 80% or more and having extremely excellent electrical characteristics and optical characteristics was obtained.
[0035]
FIG. 3 shows the wavelength dependence of the light transmittance of the conductive light selective transmission sheet of Example 1. As shown in the figure, in the visible light region centered at a wavelength of 550 nm, a transmittance of approximately 80% or more was secured, whereas in the ultraviolet light region, the transmittance was 20% or less, and in the infrared light region, the transmittance. It was confirmed that it was 25% or less and had a sufficient light selective transmission function.
[0036]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a plastic sheet having excellent electrical conductivity and light selective transmission function, and having good scratch resistance, chemical resistance and weather resistance.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a conductive light selective transmission sheet according to an embodiment of the present invention.
FIG. 2 is a schematic view of a film forming apparatus for forming a conductive light selective transmission sheet.
3 is a graph showing the wavelength dependence of light transmittance of the conductive light selective transmission sheet of Example 1. FIG.
[Explanation of symbols]
1 ... Base sheet 2 ... Metal thin films 3, 4 ... Ceramic thin film 5 ... Laminated film

Claims (6)

プラスチックからなる透明な基体シート上に、銅からなる導電性の金属薄膜とその上下に積層された窒化アルミニウムからなるセラミック薄膜とで構成される積層膜を設けてなり、波長550nmでの可視光透過率が83%以上であり、面抵抗値が2.5Ω以下であることを特徴とする導電性光選択透過シート。On a transparent base sheet made of plastic, conductive metal thin film made of copper and Ri name provided consisting laminated film using a ceramic thin film made of the aluminum nitride laminated vertically, visible light at a wavelength 550nm A conductive light selective transmission sheet having a transmittance of 83% or more and a sheet resistance value of 2.5Ω or less . 前記金属薄膜の膜厚が1〜50nmであり、前記セラミック薄膜の膜厚が10〜500nmであり、前記セラミック薄膜の屈折率が1.4〜2.5である請求項1記載の導電性光選択透過シート。The thickness of the metal thin film is a 1 to 50 nm, the thickness of the ceramic thin Ri 10~500nm der, the conductivity of the refractive index of the ceramic thin film according to claim 1, wherein Ru der 1.4 to 2.5 Selective light transmission sheet. 前記金属薄膜と前記セラミック薄膜が、スパッタ電圧を印加するターゲットとは別に、プラズマ発生機構としてのカソードフィラメント及び安定化電極とアノードとを有する成膜装置を用いて、前記ターゲットに−50〜−300Vのスパッタ電圧を印加してスパッタリングを行う低エネルギースパッタ法により形成された請求項1又は2に記載の導電性光選択透過シート。The metal thin film and the ceramic thin film are separated from a target to which a sputtering voltage is applied, using a film forming apparatus having a cathode filament as a plasma generation mechanism, a stabilizing electrode, and an anode, and -50 to -300 V on the target. The conductive light selective transmission sheet according to claim 1 , wherein the conductive light selective transmission sheet is formed by a low-energy sputtering method in which sputtering is performed by applying a sputtering voltage of 1 . プラスチックからなる透明な基体シート上に、銅からなる導電性の金属薄膜とその上下に積層された窒化アルミニウムからなるセラミック薄膜とで構成される積層膜を設けてなる導電性光選択透過シートの製造方法であって、Manufacture of a conductive light selective transmission sheet in which a laminated film composed of a conductive metal thin film made of copper and a ceramic thin film made of aluminum nitride laminated on the upper and lower sides thereof is provided on a transparent base sheet made of plastic A method,
スパッタ電圧を印加するターゲットとは別に、プラズマ発生機構としてのカソードフィラメント及び安定化電極とアノードとを有する成膜装置を用いて、前記ターゲットに−50〜−300Vのスパッタ電圧を印加してスパッタリングを行う低エネルギースパッタ法により、前記基体シート上に、前記セラミック薄膜、前記金属薄膜、及び前記セラミック薄膜を順次に積層することを特徴とする導電性光選択透過シートの製造方法。Apart from the target to which the sputtering voltage is applied, sputtering is performed by applying a sputtering voltage of −50 to −300 V to the target using a film forming apparatus having a cathode filament, a stabilizing electrode and an anode as a plasma generation mechanism. A method for producing a conductive light selective transmission sheet, wherein the ceramic thin film, the metal thin film, and the ceramic thin film are sequentially laminated on the base sheet by a low energy sputtering method.
前記成膜装置は、真空槽内に、前記基体シートを保持する保持板とターゲットとを相対向させて配するとともに、前記保持板と前記ターゲットとの間にプラズマを形成させるプラズマ発生機構としての前記カソードフィラメント及び安定化電極とアノードとを、前記保持板と前記ターゲットの対向方向に対して交差するように相対向させて配してなり、前記保持板と前記ターゲットの間に磁場でプラズマを閉じ込めながら、前記ターゲットに−50〜−300Vのスパッタ電圧を印加してスパッタリングを行う請求項4記載の導電性光選択透過シートの製造方法。The film forming apparatus is arranged as a plasma generation mechanism in which a holding plate for holding the base sheet and a target are arranged opposite to each other in a vacuum chamber, and plasma is formed between the holding plate and the target. The cathode filament, the stabilizing electrode, and the anode are arranged so as to face each other so as to intersect with the opposing direction of the holding plate and the target, and plasma is generated between the holding plate and the target by a magnetic field. The method for producing a conductive light selective transmission sheet according to claim 4, wherein sputtering is performed by applying a sputtering voltage of −50 to −300 V to the target while confining. 前記導電性光選択透過シートは、波長550nmでの可視光透過率が83%以上であり、面抵抗値が2.5Ω以下であることを特徴とする請求項4又は5に記載の導電性光選択透過シートの製造方法。6. The conductive light according to claim 4, wherein the conductive light selective transmission sheet has a visible light transmittance of 83% or more at a wavelength of 550 nm and a sheet resistance value of 2.5Ω or less. A method for producing a selectively permeable sheet.
JP34454899A 1999-12-03 1999-12-03 Conductive light selective transmission sheet Expired - Lifetime JP4510967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34454899A JP4510967B2 (en) 1999-12-03 1999-12-03 Conductive light selective transmission sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34454899A JP4510967B2 (en) 1999-12-03 1999-12-03 Conductive light selective transmission sheet

Publications (2)

Publication Number Publication Date
JP2001164382A JP2001164382A (en) 2001-06-19
JP4510967B2 true JP4510967B2 (en) 2010-07-28

Family

ID=18370136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34454899A Expired - Lifetime JP4510967B2 (en) 1999-12-03 1999-12-03 Conductive light selective transmission sheet

Country Status (1)

Country Link
JP (1) JP4510967B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4539844B2 (en) * 2004-04-15 2010-09-08 セイコーエプソン株式会社 Dielectric capacitor, method of manufacturing the same, and semiconductor device
JP2007233225A (en) * 2006-03-03 2007-09-13 Matsushita Electric Ind Co Ltd Stroboscopic device
JP5197418B2 (en) * 2008-08-26 2013-05-15 三菱電機株式会社 Antireflection film, method for manufacturing the same, and display device
CN102691046B (en) * 2011-03-25 2015-10-14 鸿富锦精密工业(深圳)有限公司 Anti-microbial coating part and preparation method thereof
WO2014010433A1 (en) * 2012-07-11 2014-01-16 コニカミノルタ株式会社 Transparent electrode for touch panel, touch panel, and display device
JP5938290B2 (en) * 2012-07-31 2016-06-22 小川 倉一 Transparent conductive film and method for producing the same
WO2014103573A1 (en) * 2012-12-26 2014-07-03 コニカミノルタ株式会社 Touch panel transparent electrode, touch panel, display device, and production method for touch panel transparent electrode
WO2015011928A1 (en) * 2013-07-26 2015-01-29 コニカミノルタ株式会社 Method for producing transparent conductive body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03249171A (en) * 1990-02-27 1991-11-07 Ulvac Japan Ltd Method and device for producing transparent conductive film
JPH06278244A (en) * 1993-01-29 1994-10-04 Mitsui Toatsu Chem Inc Lamination
JPH07326223A (en) * 1994-05-31 1995-12-12 Idemitsu Kosan Co Ltd Conductive lamination
JPH10112597A (en) * 1996-10-04 1998-04-28 Mitsui Petrochem Ind Ltd Electromagnetic wave shielding body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03249171A (en) * 1990-02-27 1991-11-07 Ulvac Japan Ltd Method and device for producing transparent conductive film
JPH06278244A (en) * 1993-01-29 1994-10-04 Mitsui Toatsu Chem Inc Lamination
JPH07326223A (en) * 1994-05-31 1995-12-12 Idemitsu Kosan Co Ltd Conductive lamination
JPH10112597A (en) * 1996-10-04 1998-04-28 Mitsui Petrochem Ind Ltd Electromagnetic wave shielding body

Also Published As

Publication number Publication date
JP2001164382A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
CN103168285B (en) Comprise touch panel of conductive pattern and preparation method thereof
JP5122670B2 (en) Method for producing transparent conductive film
JP5101719B2 (en) Transparent conductive film, method for producing the same, and touch panel provided with the same
KR101656581B1 (en) Conductive structure body and method for manufacturing the same
JP6680883B2 (en) Electrically switchable glazing with surface electrodes having anisotropic conductivity
KR20200078719A (en) Conductive laminate, transparent conductive laminate with patterned wiring, and optical device
JP2007323045A (en) Plasma display panel filter and method of manufacturing the same
JP2013129183A (en) Laminate
TW201022463A (en) Method for forming anti-reflection film, anti-reflection film, and film formation apparatus
KR20110083622A (en) Electrically conductive laminate, and protective plate for plasma display
JP2011134464A (en) Transparent conductive laminate and method of manufacturing the same, as well as touch panel
JP4510967B2 (en) Conductive light selective transmission sheet
JP2509215B2 (en) Transparent conductive film with antireflection function
TW200536800A (en) Transparent substrate comprising metal components and use of such a substrate
JP6319302B2 (en) Transparent conductor and method for producing the same
JP4068993B2 (en) Transparent conductive laminated film
JPH0957892A (en) Transparent conductive laminate
JP2004050643A (en) Thin film laminated body
JP3483355B2 (en) Transparent conductive laminate
JPH1049306A (en) Transparent conductive film for touch panel
JP3318142B2 (en) Transparent conductive film
WO2011142392A1 (en) Transparent conductive substrate
JP2001179868A (en) Method for manufacturing transparent laminate
JPH08281857A (en) Transparent conductive laminate
KR101629665B1 (en) Metal mesh type touch screen panel and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4510967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term