JP4510325B2 - Rainwater infiltration facility with mud tank - Google Patents

Rainwater infiltration facility with mud tank Download PDF

Info

Publication number
JP4510325B2
JP4510325B2 JP2001148927A JP2001148927A JP4510325B2 JP 4510325 B2 JP4510325 B2 JP 4510325B2 JP 2001148927 A JP2001148927 A JP 2001148927A JP 2001148927 A JP2001148927 A JP 2001148927A JP 4510325 B2 JP4510325 B2 JP 4510325B2
Authority
JP
Japan
Prior art keywords
rainwater
mud
crushed stone
facility
infiltration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001148927A
Other languages
Japanese (ja)
Other versions
JP2002339438A (en
Inventor
健二 古田
Original Assignee
マテラス青梅工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マテラス青梅工業株式会社 filed Critical マテラス青梅工業株式会社
Priority to JP2001148927A priority Critical patent/JP4510325B2/en
Publication of JP2002339438A publication Critical patent/JP2002339438A/en
Application granted granted Critical
Publication of JP4510325B2 publication Critical patent/JP4510325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sewage (AREA)
  • Filtration Of Liquid (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、施工性に優れ、長期に渡って雨水浸透能力を確保することができる雨水施設に関する。
【0002】
【従来の技術】
近年、建物やアスファルトで覆われた都市域が、急速に拡大した結果、これまで保水・遊水機能を果たしてきた地表が減少することによって、豪雨等による河川流出時間が短縮し、洪水流出量のピークも増大して都市水害の危険性が増大してきた。また、雨水等の地下への浸透量の減少は、都市の浅層地の水位を低下させ、河川の平常時流量の減少や蒸発散量の減少を招くなど、自然界における水循環サイクルを乱している。このような背景において、降雨水を効果的に地下に浸透させることが求められている。
【0003】
雨水の浸透施設としては、種々の浸透桝や浸透トレンチ、浸透側溝等の製品が提案され、孔やスリットを設けたコンクリート製品やプラスチック製品、或いはポーラスコンクリートからなる製品が既に用いられている。そして、上記の製品を地中に埋設すると共に、その周辺を例えば4号砕石(20〜30mm)などで充填し、集水した雨水をその底部や側面などから浸透させて浸透施設としている。しかしながら、上記浸透施設において、雨水と共に流入してくる土砂が堆積した場合、浸透能力が低下して、浸透施設としての機能を果たさなくなる欠点がある。
【0004】
このため、浸透施設内に雨水が流れ込む手前でゴミや泥分を取り除くための集水桝が設けられることがある。例えば、実公昭63−20547公報には、集水用の雨水桝の内部に落ち葉やゴミ、あるいは土砂を捕捉するためのカゴ類が示されている。また、雨水桝と浸透施設を連通する管口には金網などからなるフィルターが設けられている。
【0005】
【発明が解決しようとする課題】
集水桝すなわち泥溜め用の桝にカゴ類を設けても、カゴの目を細かくするとカゴが短期間で目詰まりし、桝内へ雨水が流入するのが妨げられるため、カゴ類の目を荒くする必要がある。このため、落ち葉やビニール袋等の大きなゴミは捕捉することが可能であるが、流入する土砂の多くが、泥溜め用の桝に流入することはさけられない。また、桝の底部で雨水浸透させ、泥溜め桝内に雨水が滞留しない構造とすることも可能であるが、時間の経過と共に底部に堆積した土砂が雨水の浸透を妨げるようになる。従って、次第に雨水が滞留しやすくなり、降雨により軟弱化した土砂が、流入する雨水で攪拌され、泥溜め桝と接続された浸透桝に流れ込んでしまう。浸透施設としての機能を維持するには、泥溜め桝に堆積した土砂を煩雑に除去すれば良いが、保守管理が大変である等の問題点がある。
集水桝すなわち泥溜め用の桝にカゴ類を設けても、カゴの目を細かくするとカゴが短期間で目詰まりし、桝内へ雨水が流入するのが妨げられるため、カゴ類の目を荒くする必要がある。このため、落ち葉やビニール袋等の大きなゴミは捕捉することが可能であるが、流入する土砂の多くが、泥溜め用の桝に流入することはさけられない。また、泥溜め桝内に流入した土砂は、時間の経過と共に沈降し堆積する。泥溜め桝内には、雨水が滞留する構造のため、再び流入する雨水で攪拌され、泥溜め桝と接続された浸透桝に流れ込んでしまう。
【0006】
また、桝の底部で雨水浸透させ、泥溜め桝内に雨水が滞留しない構造とすることも可能であるが、時間の経過と共に底部に堆積した土砂が雨水の浸透を妨げるようになる。従って、次第に雨水が滞留しやすくなり、降雨により軟弱化した土砂が、流入する雨水で攪拌され、泥溜め桝と接続された浸透桝に流れ込んでしまう。浸透施設としての機能を維持するには、泥溜め桝に堆積した土砂を煩雑に除去すれば良いが、保守管理が大変である等の問題点がある。
【0007】
【課題を解決するための手段】
本発明は上記に鑑み提案されたもので、請求項1に記載の浸透施設は、砕石層によって雨水浸透施設を構築し、同一の砕石層内に複数の泥溜め槽を配設すると共に、泥溜め槽はポーラスコンクリートからなり、複数の泥溜め槽が管によって連結され、相互に雨水を連通させることを特徴とする雨水浸透施設にある。
【0008】
流出抑制を目的としている浸透施設は、通常の雨量に対しては過大な浸透能力を有しており、施設が雨水で満たされることが希である。従って、透水能力が大きい泥溜め槽を浸透施設内に設けることで、通常の降雨では泥溜め槽内に雨水が滞ることがなくなり、泥溜め槽内で雨水中の泥分の固液分離を確実に行うことが可能となる。
また、複数のポーラスコンクリートからなる泥溜め槽を浸透施設内に設置することによって、土砂に起因して泥溜めが閉塞し、浸透施設への雨水の流入が妨げられるような事故に対する安全性を高めることが可能となる。
さらに、洪水の虞のある降雨強度に対してもすなわち、ポーラスコンクリートからなる複数の泥溜め槽を浸透施設内に配設することで、流入した土砂が拡散しにくくなる。
【0009】
浸透施設の砕石層の中に、孔やスリットを設けたコンクリート製品やプラスチック製品の泥溜め桝を配設した場合には、孔やスリットの大きさが概ね20mm以上であることから、泥分が砕石層に流出してしまう。孔やスリットを土砂が通過しない大きさにすれば良いが実用的ではない。また、孔やスリットをフィルター材で覆うといった対策も考えられるが、主として強度の制約から浸透桝の孔やスリットの数及び面積は限られており、フィルター材の設置により、桝の透水性が低下し、泥溜め桝内に雨水が滞留しやすくなり、課題が解決されない。
【0010】
本発明に係わる前記浸透施設によれば、ポーラスコンクリートからなる泥溜め槽は粒径が概ね0.3mm以上の土砂を槽内に留めることから、流入する土砂の大部分が槽内に留まることとなる。そして、堆積した土砂の上面は常にポーラスコンクリートと接しており、通常の降雨強度では雨水が滞留しにくいことから、堆積した土砂の容積が泥溜め槽の設計滞砂容積を越えない限り、流入する雨水で攪拌され、泥溜め槽と接続された別の槽に流れ込む虞がない。
一方、洪水の虞が生じるような降雨強度に対しては、砕石層内に雨水が滞留するため、泥溜め槽にも雨水が滞留する。この場合においても、複数の泥溜め槽が管によって連結され、相互に連通されていることから、通常は土砂が堆積していない槽内に雨水が流れ込むため、堆積した土砂の攪拌は生じない。従って、土砂の流出による浸透施設の雨水浸透能力の低下を防止することが可能となる。
【0011】
浸透処理する雨量であるが、東京を例にすれば、年間に1400mm程度の降雨があり、降雨日数は100日前後である。1日に降る雨は平均で15mm前後、50mmを超える雨量は年平均で4日前後、100mmを超える雨量は年平均で1日程度である。しかし、一般的な浸透施設は、数年に1回あるかないかの降雨強度50mm/h対応で施設の設計を行っている。これは、洪水を防ぐための設計であり、通常は15mm/日程度の雨量を想定して泥溜め施設の検討を行えば十分と考えられる。
【0012】
また、請求項2に記載の浸透施設は、砕石層によって雨水浸透施設を構築し、同一の砕石層内に泥溜め槽を配設すると共に、泥溜め槽はポーラスコンクリートからなり、泥溜め槽は隔壁によって複数に区分され、隔壁がポーラスコンクリートであって、隔壁をオーバーフローした雨水が区分された隣接する泥溜め部に流入することを特徴とする雨水浸透施設にある。
【0013】
請求項1に示した浸透施設と同様に、洪水の虞が生じるような降雨強度があった場合でも、泥溜め槽が複数に区分され、相互に連通されていることから、通常の雨水が流れ込む泥溜め部からオーバーフローした雨水が、隣接の通常は土砂が堆積していない泥溜め部に流れ込む。従って、堆積した土砂の攪拌による流出を防止し、浸透施設の雨水浸透能力の低下を防止することが可能となる。
【0014】
また、本発明の手段は、前記泥溜め槽に浸透トレンチを連通させた浸透施設であって、浸透トレンチ管口にポーラスコンクリート製のふた若しくは不透水性のふたを嵌合させたことを特徴とする請求項1又は2記載の浸透施設にある。
【0015】
洪水の虞が生じるような降雨強度が発生し、泥溜め槽にも雨水が滞留した場合においても、泥溜め槽と連通するトレンチ管口は、ポーラスコンクリート製のふた若しくは不透水性のふたを嵌合させてあるため、土砂に対しては実質的に閉塞していることから、土砂が逆流する虞がない。浸透トレンチの砕石層はポーラスコンクリートと接しているので、管口が不透水性のふたで塞がれていても、雨水の移動が妨げられない。
【0016】
【発明の実施の形態】
以下、本発明に係わる雨水浸透施設について、より詳細に説明する。
【0017】
図1に示したように、本発明に係わる雨水浸透施設1は、砕石層2と、複数の泥溜め槽3と、管4とからなるものである。
砕石層2としては、従来公知である4号砕石、5号砕石、6号砕石や2005砕石等を適用することができ、バージンの骨材に限定されることなく、リサイクル骨材でも良い。
【0018】
また、泥溜め槽3は、ポーラスコンクリート製の側壁3aと底塊3bからなり、底塊は普通コンクリート製の枠内にポーラスコンクリート製の底板を落とし込んだものが好ましいが、直接ポーラスコンクリートの板を側壁内に嵌め込むものでも良い。図の側塊は円筒形で示しているが、角筒形でも良く、特に形状を限定するものではない。
【0019】
ポーラスコンクリートは、コンクリート硬化体の空隙率が概ね5〜30%となるように締め固めて硬化させたコンクリートであり、一般的には、セメント等の結合材に、粗骨材を配合し、水/セメント比が20〜40%の範囲において適切なコンシステンシーを得るように水を添加して練り混ぜたものである。使用する粗骨材は、5号砕石、6号砕石、7号砕石及び2005砕石を使用することができる。
このときの硬化体の透水係数は、概ね1×10〜1×10―3cm/sの範囲であり、曲げ強度は概ね1.5〜6N/mmの範囲となる。
【0020】
また、管4は複数の泥溜め槽を連結し、相互に連通するためのものである。斯かる管としては一般的なコンクリート製、ポーラスコンクリート製、プラスチック製のいずれでも良く、所定の強度が満たされれば特に材質を限定するものではない。
【0021】
図2に示した本発明に係わる雨水浸透施設1’は、砕石層2と、泥溜め槽3’とからなるものである。また、本図においては、浸透トレンチを連通させた浸透施設であり、浸透トレンチ管4’を泥溜め桝3’に連通し、浸透トレンチ管の口にふた5を嵌合させている。
【0022】
泥溜め桝3’は、ポーラスコンクリート製の隔壁3’cに仕切られた複数の泥溜め部3’aと底塊3’bからなり、底塊は普通コンクリート製の枠内にポーラスコンクリート製の底板を落とし込んだものが好ましいが、直接ポーラスコンクリートの板を泥溜め部内に嵌め込むものでも良い。
【0023】
トレンチ管は管が有孔あるいは透水性の空隙を有するもので、砕石を介して集水した雨水を地中に浸透させる施設を浸透トレンチという。該トレンチ管口のふたは、ポーラスコンクリート製のふた若しくは不透水性のふたであるが、不透水性のふたの材質はプラスチック類、ゴム類、普通のコンクリート等のいずれでも良く、不透水性であれば特に材質を限定するものではない。
【0024】
斯かる構成による雨水浸透施設によれば、ポーラスコンクリートからなる泥溜め槽に流入する土砂の大部分が留まることとなる。そして、堆積した土砂の上面は常にポーラスコンクリートと接しており、通常の降雨強度では雨水が滞留しにくいことから、堆積した土砂の容積が槽の設計滞砂容積を越えない限り、流入する雨水で攪拌され、泥溜め槽と接続された別の槽に流れ込む虞がない。
一方、洪水の虞が生じるような降雨強度に対しても、通常は土砂が堆積していない槽内に雨水が流れ込むため、堆積した土砂の攪拌は生じない。従って、土砂の流出に起因して施設の雨水浸透能力が低下することを防止することが可能となる。
【0025】
また、浸透トレンチを連通させる場合においても、土砂が逆流する虞がない。よってメンテナンスの頻度を少なくすることが可能で、長期に渡って雨水浸透能力を維持することができ、より多くの雨水浸透量を確保することができる。
【0026】
【実施例】
図1に示す泥溜め槽を有する雨水浸透施設を実施した。まず、関東ローム層を幅4m×4m、高さ1.5mの大きさとなるように、四面体状に掘削した後、現位置浸透試験を行い、現地盤の透水係数は2×10−4cm/s程度と推定された。
次いで、底から40cmの高さまで4号砕石で埋め戻し、内径が50cm、高さが60cmの円筒形のポーラスコンクリートよりなる側塊を4個、砕石上面に方形となるように適宜配設した。側塊は天端より30cm下がった点を中心に削孔して、内径100mmの塩ビ管で側塊を4個、管で連通した。また、側塊にはポーラスコンクリートからなる底塊を嵌め込み泥溜め槽とした。
再度、側塊の外周と掘削層の間を側塊の天端まで4号砕石で埋め戻して浸透施設とした。
【0027】
ポーラスコンクリートの材料および配合を示す。
セメント:普通ポルトランドセメント、密度=3.16 g/cm
粗骨材:6号砕石、密度=2.64kg/L
目標空隙率:25%、W/C:28%
単位量(kg/m)=水:84、セメント:300、粗骨材:1507
【0028】
上記施設とは別に、泥分(最大粒径5mm)を5kg含んだ濁水1mを、上記ポーラスコンクリートからなる泥溜め槽の上から1時間かけて注入した。側塊および底塊から浸みだした濁水を水槽で受けて、泥溜め槽から砕石層に流入する泥分の量と粒度の調査を行った。
この結果は、泥分の約5%がポーラスコンクリートからなる泥溜め槽から流出し、最大粒径は概ね0.3mmと推定された。
【0029】
社団法人 雨水貯留浸透技術協会編 雨水浸透施設技術指針(案)調査・計画編に基づき上記浸透施設の単位設計浸透量を求めてみる。ここで、設計水頭 H=0.9mとする。
単位設計浸透量 Q=0.81×3600/100×2×10−4×26.68=0.156m/hr となる。
また、砕石の空隙を40%とすると施設の貯留量Q’は、概算で施設容積の40%。
すなわち 施設の貯留量 Q’=16×0.4=6.4mである。
従って、上記浸透施設の貯留浸透量Qtは Qt=Q+Q’=6.556m/hrである。
本施設により、約130mの面積の雨水処理が可能となる。(降雨強度i=50mm/hr対応)
【0030】
社団法人 雨水貯留浸透技術協会編 雨水浸透施設技術指針(案)調査・計画編から雨水中の濁質濃度 74.8mg/L (住宅・都市整備公団資料)とすると
東京地区においては年間 1400mm/年×130m×7.48mg/L=13.6kg/年の堆砂量を見込む必要がある。
【0031】
泥分(最大粒径5mm)を15kg含んだ濁水2mを(15mm/日降雨相当分)前記の泥溜め槽31上から24時間かけて注入した。本試験中に、桝内に濁水が滞ることなく、また、泥溜め槽31から濁水が別の泥溜め槽に流れ込むこともなく、砕石中で貯留浸透された。
さらに、約1日経過後に、6.6mの濁水(濁質濃度を約100mg/Lに調整)を上記の泥溜め槽に約1時間かけて注入した。途中で槽の水位が上昇し、泥溜め槽31から濁水が別の槽32に流入するようになった。
【0032】
試験の翌々日、浸透施設濁水が浸透処理され、桝内に水位が確認されなくなった後、各槽に堆積した泥分を目視により観察した。その結果、槽32には土砂の堆積が認められたが槽33、34にはほとんど土砂の堆積がなかった。
【0033】
【比較例】
実施例1と同様に、関東ローム層を幅4m×4m、高さ1.8mの大きさとなるように、四面体状に掘削した。また、現地盤の透水係数も同等と推定された。
次いで、底から40cmの高さまで4号砕石で埋め戻し、内径が50cm、高さが120cmの円筒形の透水有孔枡を1個配設した。再度、桝の外周と掘削層の間を実施例1と同様の砕石高さ(1m)となるように埋め戻して浸透施設とした。またこの砕石上面に内径が50cm、高さが60cmの底抜け桝を設置し、天端より30cm下がった点を中心に削孔して、透水有孔枡と内径100mmの塩ビ管で連結した。砕石上面を透水性のシートで覆い、発生土で埋め戻し、これを浸透施設とした。
【0034】
実施例1と同様に、泥分(最大粒径5mm)を15kg含んだ濁水2mを(15mm/日降雨相当分)前記の底抜け桝の上面から24時間かけて注入した。本試験中に、底抜け桝内では、浸透処理することができずに、透水有孔枡に流れ込んだ後に砕石中で貯留浸透された。この時点では、実施例の約半分の量の土砂が底抜け桝に観察された。透水有孔枡にはほとんど、土砂の堆積はみられなかった。
さらに、約1日経過後に、6.6mの濁水(濁質濃度を約100mg/Lに調整)を上記の底抜け桝に約1時間かけて注入した。底抜け桝内では、浸透処理することができずに、透水有孔枡に流れ込んだ後に、有孔桝の水位も上昇してきた。
【0035】
試験の翌々日、浸透施設濁水が浸透処理され、桝内に水位が確認されなくなった後、各桝に堆積した泥分を目視により観察した。その結果、底抜け桝に堆積していた土砂のほとんどが浸透有孔桝へ流出し、浸透有孔桝内の土砂も実施例1と比較すると約1/2程度であり残りは砕石中に流入したと考えられる。
【0036】
約1年相当分の土砂を泥溜めに流入させた結果
実施例 土砂の約5%が、砕石層に流入した。
比較例 土砂の約半分が、砕石層に流入した。
本試験においては、浸透能力の低下は確認されていないが、流入した土砂量の違いから、長期的には、比較例において浸透能力が著しく低下することが予想される。
実施例の雨水浸透施設は、年1回程度の土砂の排出を行うことにより、長期的に浸透能力が維持される。
【0037】
以上、本発明を実施例に基づいて説明したが、本発明は実施例に限定されるものではなく、特許請求の範囲に記載した構成を変更しない限りどのようにでも実施することができる。
【0038】
【発明の効果】
以上のように、本発明に係る泥溜め槽を有する雨水浸透施設によれば、浸透施設の砕石層内に土砂が流入するのを防止することができ、雨水浸透能力の低下を防止することが可能となる。、従って、メンテナンスの頻度をあげることなく長期に渡って、雨水を浸透処理することができる。
【図面の簡単な説明】
【図1】本発明の雨水浸透施設の実施例の構成を示した斜視図である。
【図2】本発明の雨水浸透施設の一実施例の構成を示した斜視図である。
【符号の説明】
1 雨水浸透施設
2 砕石層
3 泥溜め層
3a 側壁
3b 底塊
4 管
1’ 雨水浸透施設
2’トレンチ部分の砕石層
3’泥溜め層
3’a 泥溜め部
3’b 底塊
3’c 隔壁
4’ 浸透トレンチ管
5 ふた
31 複数の泥溜め層の一つ
32 複数の泥溜め層の一つ
33 複数の泥溜め層の一つ
34 複数の泥溜め層の一つ
[0001]
[Technical field to which the invention belongs]
The present invention relates to a rainwater facility that is excellent in workability and that can ensure rainwater penetration capability over a long period of time.
[0002]
[Prior art]
In recent years, urban areas covered with buildings and asphalt have expanded rapidly, resulting in a decrease in the surface of the water that has been functioning for water retention and recreation. The risk of urban flooding has also increased. In addition, a decrease in the amount of rainwater or the like penetrating into the ground disturbs the water cycle in nature, such as lowering the water level in urban shallow land, leading to a decrease in river normal flow and evapotranspiration. Yes. In such a background, it is required to effectively infiltrate rainwater underground.
[0003]
As the infiltration facility for rainwater, products such as various infiltration troughs, infiltration trenches, and infiltration side grooves have been proposed, and products made of concrete products, plastic products, or porous concrete having holes and slits have already been used. And while embedding said product in the ground, the circumference | surroundings are filled with crushed stone No. 4 (20-30 mm) etc., for example, and the rainwater which collected is infiltrated from the bottom part or the side surface, and it is set as the infiltration facility. However, in the above infiltration facility, when sediment that flows in along with rainwater accumulates, there is a disadvantage that the infiltration capacity is lowered and the function as the infiltration facility is not achieved.
[0004]
For this reason, a water collecting tank is sometimes provided to remove dust and mud before rainwater flows into the infiltration facility. For example, Japanese Utility Model Publication No. 63-20547 discloses a cage for catching fallen leaves, garbage, or earth and sand inside a rainwater catchment for collecting water. In addition, a filter made of a wire mesh or the like is provided at the pipe port connecting the rainwater tank and the infiltration facility.
[0005]
[Problems to be solved by the invention]
Even if a basket is provided in a water collecting basin, that is, a mud storage basin, if the basket is made fine, the cage will be clogged in a short period of time, preventing rainwater from flowing into the basin. It needs to be rough. For this reason, large garbage such as fallen leaves and plastic bags can be captured, but most of the inflowing earth and sand cannot be prevented from flowing into the mud pool. It is also possible to make the rainwater permeate at the bottom of the dredging so that the rainwater does not stay in the mud pool. However, as time passes, the sediment deposited on the bottom prevents the rainwater from penetrating. Accordingly, the rainwater is likely to stay gradually, and the earth and sand softened by the rain are agitated by the inflowing rainwater and flow into the seepage trough connected to the mud reservoir. In order to maintain the function as an infiltration facility, it is sufficient to remove the sediment deposited on the mud pool dredging, but there are problems such as difficult maintenance.
Even if a basket is provided in a water collecting basin, that is, a mud storage basin, if the basket is made fine, the cage will be clogged in a short period of time, preventing rainwater from flowing into the basin. It needs to be rough. For this reason, large garbage such as fallen leaves and plastic bags can be captured, but most of the inflowing earth and sand cannot be prevented from flowing into the mud pool. Moreover, the earth and sand which flowed into the mud pool dredged and settles with time. Since the rainwater stays in the mud pool, it is stirred by the rainwater that flows in again, and flows into the seepage tank connected to the mud pool.
[0006]
It is also possible to make the rainwater permeate at the bottom of the dredging so that the rainwater does not stay in the mud pool. However, as time passes, the sediment deposited on the bottom prevents the rainwater from penetrating. Accordingly, the rainwater is likely to stay gradually, and the earth and sand softened by the rain are agitated by the inflowing rainwater and flow into the seepage trough connected to the mud reservoir. In order to maintain the function as an infiltration facility, it is sufficient to remove the sediment deposited on the mud pool dredging, but there are problems such as difficult maintenance.
[0007]
[Means for Solving the Problems]
The present invention has been proposed in view of the above, and the infiltration facility according to claim 1 constructs a rainwater infiltration facility with a crushed stone layer, and disposes a plurality of mud reservoirs in the same crushed stone layer. The storage tank is made of porous concrete, and a plurality of mud storage tanks are connected by pipes to allow rainwater to communicate with each other.
[0008]
Infiltration facilities aimed at controlling runoff have excessive infiltration capacity for normal rainfall, and it is rare that the facilities are filled with rainwater. Therefore, by installing a mud storage tank with high water permeability in the infiltration facility, rainwater will not stay in the mud tank during normal rainfall, and solid-liquid separation of mud in rainwater is ensured in the mud tank. Can be performed.
In addition, by installing mud pool tanks made of multiple porous concrete in the infiltration facility, the mud pool is blocked due to earth and sand and the safety against accidents that prevent the inflow of rainwater into the infiltration facility is improved. It becomes possible.
Furthermore, even with respect to rainfall intensity that may cause flooding, by arranging a plurality of mud storage tanks made of porous concrete in the infiltration facility, it is difficult for the inflowing earth and sand to diffuse.
[0009]
In the case where a concrete product or plastic product mud reservoir is provided in the crushed stone layer of the seepage facility, the size of the hole or slit is approximately 20 mm or more. It flows out to the crushed stone layer. The hole or slit may be sized so that earth and sand do not pass through, but it is not practical. In addition, measures such as covering the holes and slits with filter material are also conceivable, but the number and area of the permeated soot holes and slits are limited mainly due to strength restrictions, and the permeability of the soot is reduced by the installation of the filter material. However, rainwater tends to stay in the mud pool and the problem cannot be solved.
[0010]
According to the infiltration facility according to the present invention, the mud reservoir tank made of porous concrete holds earth and sand having a particle size of approximately 0.3 mm or more in the tank, so that most of the inflowing earth and sand remains in the tank. Become. And the upper surface of the accumulated sediment is always in contact with the porous concrete, and rainwater is difficult to stay at normal rainfall intensity, so it flows in unless the accumulated sediment volume exceeds the design sediment volume of the mud tank. There is no risk of stirring into the rainwater and flowing into another tank connected to the mud tank.
On the other hand, for rainfall intensity that may cause flooding, rainwater stays in the crushed stone layer, so rainwater also stays in the mud tank. Also in this case, since a plurality of mud storage tanks are connected by a pipe and communicated with each other, rainwater usually flows into a tank in which no sediment has accumulated, so that the accumulated sediment does not agitate. Accordingly, it is possible to prevent the rainwater penetration capacity of the seepage facility from being reduced due to the outflow of earth and sand.
[0011]
Although it is the amount of rain to be infiltrated, if Tokyo is taken as an example, there is about 1400 mm of rainfall per year, and the number of rain days is around 100 days. The average daily rainfall is around 15 mm, the average rainfall over 50 mm is around 4 days per year, and the average rainfall over 100 mm is about one day per year. However, a general infiltration facility is designed with a rainfall intensity of 50 mm / h, which is once a few years. This is a design to prevent flooding, and it is considered sufficient to study mud storage facilities usually assuming a rainfall of about 15 mm / day.
[0012]
Further, the infiltration facility according to claim 2 constructs a rainwater infiltration facility with a crushed stone layer, and a mud reservoir is disposed in the same crushed stone layer, the mud reservoir is made of porous concrete, and the mud reservoir is The rainwater infiltration facility is divided into a plurality of partitions by the partition walls, the partition walls are porous concrete, and rainwater overflowing the partition walls flows into the adjacent mud pools.
[0013]
Similar to the infiltration facility described in claim 1, even when there is rainfall intensity that may cause a flood, the mud storage tank is divided into a plurality of areas and communicated with each other, so that normal rainwater flows in. Rainwater overflowing from the mud reservoir flows into the adjacent mud reservoir where normally no sediment is deposited. Accordingly, it is possible to prevent the accumulated sediment from flowing out due to stirring, and to prevent the rainwater penetration ability of the seepage facility from being lowered.
[0014]
Further, the means of the present invention is a permeation facility in which a permeation trench is communicated with the mud reservoir, wherein a porous concrete lid or an impermeable lid is fitted to the permeation trench port. The infiltration facility according to claim 1 or 2.
[0015]
Even if rainfall intensity that may cause flooding occurs and rainwater stays in the mud tank, the trench port connected to the mud tank is fitted with a porous concrete lid or an impervious lid. Since they are combined, the earth and sand are substantially blocked, so there is no possibility that the earth and sand will flow backward. Since the crushed stone layer of the infiltration trench is in contact with the porous concrete, the movement of rainwater is not hindered even if the pipe opening is closed with an impermeable lid.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the rainwater infiltration facility according to the present invention will be described in more detail.
[0017]
As shown in FIG. 1, a rainwater infiltration facility 1 according to the present invention includes a crushed stone layer 2, a plurality of mud reservoirs 3, and a pipe 4.
As the crushed stone layer 2, conventionally known crushed stones such as No. 4 crushed stone, No. 5 crushed stone, No. 6 crushed stone, 2005 crushed stone and the like can be applied, and not limited to virgin aggregate, recycled aggregate may be used.
[0018]
The mud storage tank 3 is composed of a porous concrete side wall 3a and a bottom block 3b. The bottom block is preferably formed by dropping a bottom plate made of porous concrete into a frame made of ordinary concrete. It may be fitted into the side wall. Although the side lump in the figure is shown in a cylindrical shape, it may be a rectangular tube shape, and the shape is not particularly limited.
[0019]
Porous concrete is concrete that has been hardened and hardened so that the porosity of the hardened concrete body is approximately 5 to 30%. Generally, coarse aggregate is mixed with a binder such as cement and water. / Mixed and mixed with water so as to obtain an appropriate consistency when the cement ratio is 20 to 40%. As the coarse aggregate to be used, No. 5 crushed stone, No. 6 crushed stone, No. 7 crushed stone and 2005 crushed stone can be used.
At this time, the water permeability coefficient of the cured body is approximately in the range of 1 × 10 0 to 1 × 10 −3 cm / s, and the bending strength is approximately in the range of 1.5 to 6 N / mm 2 .
[0020]
The pipe 4 connects a plurality of mud reservoirs and communicates with each other. Such a pipe may be any of general concrete, porous concrete, and plastic, and the material is not particularly limited as long as a predetermined strength is satisfied.
[0021]
The rainwater infiltration facility 1 ′ according to the present invention shown in FIG. 2 includes a crushed stone layer 2 and a mud reservoir 3 ′. Moreover, in this figure, it is an infiltration facility with which an infiltration trench is communicated, an infiltration trench tube 4 'is communicated with a mud reservoir 3', and a lid 5 is fitted to the mouth of the infiltration trench tube.
[0022]
The mud reservoir 3 'is composed of a plurality of mud reservoir portions 3'a and a bottom lump 3'b partitioned by a porous concrete partition wall 3'c, and the bottom lump is made of porous concrete in a frame made of ordinary concrete. It is preferable that the bottom plate is dropped, but a porous concrete plate may be directly fitted into the mud reservoir.
[0023]
A trench pipe has a perforated or water-permeable gap, and a facility that allows rainwater collected through crushed stone to penetrate into the ground is called an infiltration trench. The lid of the trench pipe is a porous concrete lid or a water-impervious lid, but the material of the water-impervious lid may be any of plastics, rubber, ordinary concrete, etc. The material is not particularly limited as long as it is present.
[0024]
According to the rainwater infiltration facility having such a configuration, most of the earth and sand flowing into the mud storage tank made of porous concrete remains. The top surface of the sediment is always in contact with the porous concrete, and it is difficult for rainwater to stay at normal rainfall intensity. Therefore, as long as the sediment volume does not exceed the tank's designed sediment volume, There is no risk of stirring and flowing into another tank connected to the mud tank.
On the other hand, even when the rainfall intensity is such that there is a risk of flooding, the rainwater usually flows into a tank in which no sediment has accumulated, so the accumulated sediment does not agitate. Therefore, it is possible to prevent the rainwater penetration ability of the facility from being reduced due to the outflow of earth and sand.
[0025]
In addition, when the infiltration trench is communicated, there is no possibility that the earth and sand will flow backward. Therefore, the frequency of maintenance can be reduced, the rainwater penetration capability can be maintained over a long period of time, and a larger amount of rainwater penetration can be ensured.
[0026]
【Example】
A rainwater infiltration facility having a mud reservoir shown in FIG. 1 was implemented. First, after excavating the Kanto loam layer into a tetrahedron shape with a width of 4m x 4m and a height of 1.5m, an in-situ penetration test was conducted, and the permeability coefficient of the local board was 2 x 10 -4 cm. / S.
Next, it was backfilled with No. 4 crushed stone to a height of 40 cm from the bottom, and four side lumps made of cylindrical porous concrete having an inner diameter of 50 cm and a height of 60 cm were appropriately disposed on the upper surface of the crushed stone. The side lumps were drilled around a point 30 cm below the top, and four side lumps were connected by a pipe having an inner diameter of 100 mm. Further, a bottom lump made of porous concrete was fitted into the side lump to form a mud reservoir.
Again, between the outer periphery of the side lump and the excavation layer was backfilled with No. 4 crushed stone to the top of the side lump to make an infiltration facility.
[0027]
The material and composition of porous concrete are shown.
Cement: normal Portland cement, density = 3.16 g / cm 3
Coarse aggregate: No. 6 crushed stone, density = 2.64 kg / L
Target porosity: 25%, W / C: 28%
Unit amount (kg / m 3 ) = water: 84, cement: 300, coarse aggregate: 1507
[0028]
Separately from the above facility, 1 m 3 of muddy water containing 5 kg of mud (maximum particle size 5 mm) was injected over 1 hour from above the mud reservoir made of porous concrete. The turbid water that soaked out from the side and bottom masses was received in the water tank, and the amount and particle size of the mud flowing into the crushed stone layer from the mud reservoir were investigated.
As a result, it was estimated that about 5% of the mud flowed out of the mud reservoir made of porous concrete, and the maximum particle size was approximately 0.3 mm.
[0029]
Based on the Rainwater Infiltration Facility Technical Guidelines (Draft) Survey and Planning, find the unit design infiltration amount for the above infiltration facilities. Here, the design head H is set to 0.9 m.
Unit design penetration amount Q = 0.81 × 3600/100 × 2 × 10 −4 × 26.68 = 0.156 m 3 / hr.
Also, assuming that the gap of crushed stone is 40%, the amount of storage Q 'of the facility is roughly 40% of the facility volume.
That is, the amount of storage in the facility is Q ′ = 16 × 0.4 = 6.4 m 3 .
Therefore, the stored infiltration amount Qt of the infiltration facility is Qt = Q + Q ′ = 6.556 m 3 / hr.
The present facility, it is possible to stormwater area of approximately 130m 2. (Rain strength i = 50mm / hr)
[0030]
Rainwater Infiltration Facility Technical Association (Rainwater Infiltration Facility Technical Guidelines (Draft) Survey and Plan) From rainwater turbidity concentration of 74.8mg / L (Housing and Urban Development Corporation document) 1400mm / year in Tokyo area It is necessary to expect the amount of sedimentation of × 130 m 2 × 7.48 mg / L = 13.6 kg / year.
[0031]
2 m 3 of muddy water containing 15 kg of mud (maximum particle size 5 mm) (15 mm / day equivalent to rainfall) was injected from above the mud reservoir 31 over 24 hours. During this test, turbid water was retained in the crushed stone without turbid water remaining in the tub and without flowing turbid water from the mud tank 31 into another mud tank.
Further, after about 1 day, 6.6 m 3 of turbid water (turbidity concentration was adjusted to about 100 mg / L) was poured into the mud tank over about 1 hour. The water level of the tank rose on the way, and muddy water began to flow from the mud reservoir 31 into another tank 32.
[0032]
The day after the test, the turbid water in the infiltration facility was infiltrated, and after the water level was not confirmed in the tub, the mud deposited in each tank was visually observed. As a result, accumulation of earth and sand was observed in the tank 32, but there was almost no accumulation of earth and sand in the tanks 33 and 34.
[0033]
[Comparative example]
As in Example 1, the Kanto loam layer was excavated into a tetrahedron shape so as to have a size of 4 m × 4 m and a height of 1.8 m. In addition, the hydraulic conductivity of the local board was estimated to be equivalent.
Next, it was backfilled with No. 4 crushed stone to a height of 40 cm from the bottom, and one cylindrical permeable perforated rod having an inner diameter of 50 cm and a height of 120 cm was disposed. Again, the space between the outer periphery of the fence and the excavation layer was back-filled so as to have the same crushed stone height (1 m) as in Example 1 to obtain an infiltration facility. Further, a bottom punch having an inner diameter of 50 cm and a height of 60 cm was installed on the upper surface of the crushed stone, drilled around a point 30 cm lower than the top, and connected to a perforated hole with a PVC pipe having an inner diameter of 100 mm. The upper surface of the crushed stone was covered with a water-permeable sheet and backfilled with generated soil, which was used as an infiltration facility.
[0034]
In the same manner as in Example 1, 2 m 3 of muddy water (15 mm / day equivalent to rainfall) containing 15 kg of mud (maximum particle size 5 mm) was injected over 24 hours from the top surface of the bottom pit. During this test, in the bottom pit, it could not be infiltrated, and after flowing into the permeable perforated pit, it was stored and infiltrated in the crushed stone. At this point, about half of the amount of earth and sand of the example was observed in the bottom pit. There was almost no sediment accumulation in the perforated pits.
Further, after about 1 day, 6.6 m 3 of turbid water (turbidity concentration was adjusted to about 100 mg / L) was poured into the above bottom culm over about 1 hour. In the bottom pit, it was not possible to perform the permeation treatment, and the water level of the perforated trough also rose after flowing into the permeable perforated trough.
[0035]
The day after the test, the turbid water in the infiltration facility was infiltrated, and after the water level was not confirmed in the tub, the mud deposited in each tub was visually observed. As a result, most of the earth and sand accumulated in the bottom-through pit flowed out into the perforated pit, and the earth and sand in the osmotic and perforated pit was about ½ of that in Example 1 and the rest flowed into the crushed stone. it is conceivable that.
[0036]
As a result of flowing about 1 year's worth of earth and sand into the mud reservoir Example 5 About 5% of the earth and sand flowed into the crushed stone layer.
Comparative Example About half of the earth and sand flowed into the crushed stone layer.
In this test, no decrease in infiltration capacity has been confirmed, but due to the difference in the amount of sediment that has flowed in, it is expected that the infiltration capacity will be significantly decreased in the comparative example over the long term.
In the rainwater infiltration facility of the embodiment, the permeation capacity is maintained in the long term by discharging earth and sand about once a year.
[0037]
As mentioned above, although this invention was demonstrated based on the Example, this invention is not limited to an Example, It can implement in any way, unless the structure described in the claim is changed.
[0038]
【The invention's effect】
As described above, according to the rainwater infiltration facility having the mud reservoir according to the present invention, it is possible to prevent sediment from flowing into the crushed stone layer of the infiltration facility, and to prevent a decrease in rainwater infiltration capability. It becomes possible. Therefore, rainwater can be infiltrated for a long time without increasing the frequency of maintenance.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a configuration of an embodiment of a rainwater infiltration facility according to the present invention.
FIG. 2 is a perspective view showing a configuration of an embodiment of a rainwater infiltration facility according to the present invention.
[Explanation of symbols]
1 Rainwater infiltration facility 2 Crushed stone layer 3 Mud reservoir layer 3a Side wall 3b Bottom lump 4 Tube 1 'Rainwater infiltration facility 2' Crushed stone layer 3 'Mud reservoir layer 3'a Mud reservoir 3'b Bottom mass 3'c Bulkhead 4 'seepage trench tube 5 lid 31 one of a plurality of mud reservoir layers 32 one of a plurality of mud reservoir layers one of a plurality of mud reservoir layers 34 one of a plurality of mud reservoir layers

Claims (3)

砕石層によって雨水浸透施設を構築し、同一の砕石層内に複数の泥溜め槽を配設すると共に、泥溜め槽はポーラスコンクリートからなり、複数の泥溜め槽が管によって連結され、相互に雨水を連通させることを特徴とする雨水浸透施設。A storm water infiltration facility is constructed with a crushed stone layer, and a plurality of mud reservoirs are arranged in the same crushed stone layer, and the mud reservoir is made of porous concrete. A rainwater infiltration facility characterized by the communication of water. 砕石層によって雨水浸透施設を構築し、同一の砕石層内に泥溜め槽を配設すると共に、泥溜め槽はポーラスコンクリートからなり、泥溜め槽は隔壁によって複数に区分され、隔壁がポーラスコンクリートであって、隔壁をオーバーフローした雨水が区分された隣接する泥溜め部に流入することを特徴とする雨水浸透施設。A rainwater infiltration facility is constructed with a crushed stone layer, and a mud reservoir is installed in the same crushed stone layer. The mud reservoir is composed of porous concrete, and the mud reservoir is divided into a plurality of partitions. The rainwater infiltration facility is characterized in that rainwater overflowing the partition wall flows into the adjacent mud reservoir. 前記泥溜め槽に浸透トレンチを連通させた浸透施設であって、浸透トレンチ管口にポーラスコンクリート製のふた若しくは不透水性のふたを嵌合させたことを特徴とする請求項1又は2記載の浸透施設。3. A permeation facility in which a permeation trench is communicated with the mud reservoir, wherein a porous concrete lid or a water-impermeable lid is fitted to the permeation trench port. Infiltration facility.
JP2001148927A 2001-05-18 2001-05-18 Rainwater infiltration facility with mud tank Expired - Fee Related JP4510325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001148927A JP4510325B2 (en) 2001-05-18 2001-05-18 Rainwater infiltration facility with mud tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001148927A JP4510325B2 (en) 2001-05-18 2001-05-18 Rainwater infiltration facility with mud tank

Publications (2)

Publication Number Publication Date
JP2002339438A JP2002339438A (en) 2002-11-27
JP4510325B2 true JP4510325B2 (en) 2010-07-21

Family

ID=18994164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001148927A Expired - Fee Related JP4510325B2 (en) 2001-05-18 2001-05-18 Rainwater infiltration facility with mud tank

Country Status (1)

Country Link
JP (1) JP4510325B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5967681B1 (en) * 2015-08-07 2016-08-10 ケイコン株式会社 Oil / water separation road drainage treatment tank
JP7345165B2 (en) * 2019-07-30 2023-09-15 株式会社アスカ設計 Non-overflow type infiltration system and its construction method
BE1028583B1 (en) * 2020-09-04 2022-04-04 Ecobeton Water Tech Nv water tank
CN115928838B (en) * 2022-12-07 2023-06-06 千木生态环境建设有限公司 Municipal garden rainwater collecting and recycling device and application method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172581U (en) * 1982-05-13 1983-11-18 野原産業株式会社 Seepage pit for street drains
JPS6453290U (en) * 1987-09-30 1989-04-03
JPH0226687U (en) * 1988-08-05 1990-02-21
JPH0978671A (en) * 1995-09-12 1997-03-25 Sekisui Chem Co Ltd Rain water storage facility
JPH10237932A (en) * 1997-02-28 1998-09-08 Ozawa Concrete Kogyo Kk Reservoir infiltration tank
JPH10237933A (en) * 1997-03-03 1998-09-08 Ozawa Concrete Kogyo Kk Box arrangement water storage infiltration tank

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433326A (en) * 1987-07-30 1989-02-03 Shinwa Concrete Kogyo Kk Drain apparatus for ground water irrigation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172581U (en) * 1982-05-13 1983-11-18 野原産業株式会社 Seepage pit for street drains
JPS6453290U (en) * 1987-09-30 1989-04-03
JPH0226687U (en) * 1988-08-05 1990-02-21
JPH0978671A (en) * 1995-09-12 1997-03-25 Sekisui Chem Co Ltd Rain water storage facility
JPH10237932A (en) * 1997-02-28 1998-09-08 Ozawa Concrete Kogyo Kk Reservoir infiltration tank
JPH10237933A (en) * 1997-03-03 1998-09-08 Ozawa Concrete Kogyo Kk Box arrangement water storage infiltration tank

Also Published As

Publication number Publication date
JP2002339438A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
KR20150065475A (en) Side gutter for mountain ridge and construction method
JP2008156974A (en) Rainwater treating structure and rainwater treating method
JP5346731B2 (en) Rainwater penetration facilities
CN109208426A (en) A kind of municipal road construction structure and its construction method
JP2006118265A (en) Permeable pipe for use in rainwater draining system, catch basin with permeable pipe, and draining system
JP2009127359A (en) Drainage structure for side ditch
JP4772662B2 (en) Osmosis system and construction method thereof
JP4511077B2 (en) Rainwater drainage treatment system
JP4510325B2 (en) Rainwater infiltration facility with mud tank
KR101650285B1 (en) Side gutter for mountain ridge
JP4608366B2 (en) Underdrain drainage structure and rainwater infiltration treatment method
JP2006082005A (en) Muddy water treatment system and muddy water treatment method therefor
KR100772481B1 (en) Apparatus for treating waste water and the method using it
KR100686292B1 (en) Infiltration facility for reserving rainwater within soil
KR101389479B1 (en) Plants Module And Module Type Infiltration-Retention System Using The Same
CN108086461B (en) Percolation water-saving circulation system
JP3886127B2 (en) How to install rainwater penetration pot
CN206360052U (en) Heat-extraction system is received in a kind of sponge type rain penetration
JP2617129B2 (en) Construction method of underground infiltration equipment
JP4362202B2 (en) Road penetration facility and its construction method
CN217628032U (en) Undercurrent type rainwater garden structure
JPH10168985A (en) Structure for promoting infiltration of surface water
JPH018616Y2 (en)
CN210658632U (en) Infiltration ditch structure
AU704302B2 (en) Underground drainage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4510325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees