JP4509055B2 - Water vapor detection membrane - Google Patents

Water vapor detection membrane Download PDF

Info

Publication number
JP4509055B2
JP4509055B2 JP2006092451A JP2006092451A JP4509055B2 JP 4509055 B2 JP4509055 B2 JP 4509055B2 JP 2006092451 A JP2006092451 A JP 2006092451A JP 2006092451 A JP2006092451 A JP 2006092451A JP 4509055 B2 JP4509055 B2 JP 4509055B2
Authority
JP
Japan
Prior art keywords
water vapor
hydrogen
mixed gas
film
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006092451A
Other languages
Japanese (ja)
Other versions
JP2007260628A (en
Inventor
和広 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2006092451A priority Critical patent/JP4509055B2/en
Publication of JP2007260628A publication Critical patent/JP2007260628A/en
Application granted granted Critical
Publication of JP4509055B2 publication Critical patent/JP4509055B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、混合ガス中の水蒸気を検知するための水蒸気検知膜に関する。   The present invention relates to a water vapor detection film for detecting water vapor in a mixed gas.

水素は、石油、石炭、天然ガスといった化石燃料とは異なり、燃焼によっても地球温暖化の原因となる二酸化炭素を発生しないため、環境に優しいエネルギー源として注目されており、将来的には火力発電の燃料として、あるいは燃料電池の原料として用いられることが期待されている。水素を製造する方法としては、太陽電池や光触媒を利用した水の分解、炭化水素の水蒸気改質法、炭化水素の部分酸化反応、炭化水素の炭酸ガス改質法などが知られている。炭化水素から水素を生成する際には、単位重量あたりの水素含量が最も多いメタンを利用することが効果的である。   Unlike fossil fuels such as oil, coal, and natural gas, hydrogen is attracting attention as an environmentally friendly energy source because it does not generate carbon dioxide that causes global warming even when it is burned. It is expected to be used as a fuel for fuel or as a raw material for fuel cells. Known methods for producing hydrogen include decomposition of water using a solar cell or a photocatalyst, a steam reforming method of hydrocarbons, a partial oxidation reaction of hydrocarbons, a carbon dioxide gas reforming method of hydrocarbons, and the like. When producing hydrogen from hydrocarbons, it is effective to use methane having the largest hydrogen content per unit weight.

水蒸気改質は、炭化水素を触媒存在下、高温水蒸気と反応させることにより、水素と一酸化炭素を得る方法であり、工業化された水素製造方法としては、現在、最も一般的な方法である。水蒸気改質により得られた水素と一酸化炭素、水蒸気の混合ガスからは、水素分離膜を用いることにより、水素のみを分離することができ、これにより、燃料として利用可能な純度を持つ水素を得ることができる。水素分離膜による水素の分離は、混合ガス中に含まれる気体分子の径の違いを利用したものであり、微細孔を有するセラミックス膜を用いることにより、水素を含む混合ガスから、気体分子の径が最も小さい水素のみを分離することができる。   Steam reforming is a method of obtaining hydrogen and carbon monoxide by reacting hydrocarbons with high-temperature steam in the presence of a catalyst, and is currently the most common method for industrialized hydrogen production. By using a hydrogen separation membrane, only hydrogen can be separated from the mixed gas of hydrogen, carbon monoxide and steam obtained by steam reforming. Obtainable. The separation of hydrogen by a hydrogen separation membrane utilizes the difference in the diameter of gas molecules contained in the mixed gas. By using a ceramic membrane having micropores, the diameter of the gas molecules is reduced from the mixed gas containing hydrogen. Only the smallest hydrogen can be separated.

混合ガスから水素のみを分離する際に用いられる水素分離膜としては、多孔質のシロキサン系高分子膜が知られている。しかしながら、多孔質のシロキサン系高分子膜は、高温水蒸気と反応することにより微細構造に変化が起こり、水素透過性能が低下することが知られている。このため、多量の水蒸気を含む混合ガスを生じる水蒸気改質法においては、混合ガス中の水蒸気による、多孔質のシロキサン系高分子膜の水素透過性能の低下が問題となっている。また、その他の方法を用いた水素製造方法においても、偶発的に反応系に水蒸気が混入する場合もあり、このような場合には、多孔質のシロキサン系高分子膜の同様の問題が生じている。多孔質のシロキサン系高分子膜のこのような特性を改善するため、水素透過膜の原料として、微量の元素を添加したシロキサン系高分子膜を用いることなどにより、高温水蒸気との反応性を低下させた多孔質のシロキサン系高分子膜が開示されている(特許文献1参照)。
特開2005−270887号公報
As a hydrogen separation membrane used when only hydrogen is separated from a mixed gas, a porous siloxane polymer membrane is known. However, it is known that a porous siloxane-based polymer film undergoes a change in microstructure when reacted with high-temperature water vapor, resulting in a decrease in hydrogen permeation performance. For this reason, in the steam reforming method for producing a mixed gas containing a large amount of water vapor, there is a problem that the hydrogen permeation performance of the porous siloxane-based polymer membrane is reduced by the water vapor in the mixed gas. In addition, in the hydrogen production method using other methods, water vapor may be accidentally mixed into the reaction system. In such a case, the same problem of the porous siloxane polymer film occurs. Yes. In order to improve such characteristics of porous siloxane-based polymer membranes, the reactivity with high-temperature steam is reduced by using siloxane-based polymer membranes with a small amount of elements added as raw materials for hydrogen permeable membranes. A porous siloxane polymer film is disclosed (see Patent Document 1).
JP 2005-270887 A

しかしながら、高温水蒸気により誘発される水素分離膜の劣化は不可逆的な反応であり、高温水蒸気と水素分離膜が接触することにより水素分離膜の劣化が引き起こされた場合には、もはや使用不可能となり、水素分離膜の交換を余儀なくされていた。このため、水素分離膜と高温水蒸気とを接触させないため、水蒸気除去手段などを用いて混合ガスから高温水蒸気を除去し、水蒸気を含まない混合ガスのみを水素分離膜と接触させるなどの試みがなされていた。一方で、水蒸気除去手段などを用いても、偶発的に水素分離手段中に高温水蒸気が混入してしまうことがあり、このような場合にも水素分離膜の劣化を防止する必要があった。   However, the degradation of the hydrogen separation membrane induced by high-temperature steam is an irreversible reaction, and when the hydrogen separation membrane is degraded by contact between the high-temperature steam and the hydrogen separation membrane, it can no longer be used. The hydrogen separation membrane had to be replaced. For this reason, in order not to contact the hydrogen separation membrane with the high-temperature steam, an attempt is made to remove the high-temperature steam from the mixed gas by using a water vapor removing means, etc. It was. On the other hand, even when the water vapor removing means or the like is used, high temperature water vapor may be accidentally mixed in the hydrogen separating means, and it is necessary to prevent deterioration of the hydrogen separation membrane even in such a case.

本発明は、水蒸気除去手段を有する水素製造装置において、水素分離膜を備える水素分離ユニット中に、水蒸気が偶発的に混入しても、水蒸気と水素分離膜とが接触せず、水素分離ユニットを安全に実施できるような水素製造装置を提供する。   The present invention provides a hydrogen production apparatus having a water vapor removing means, wherein even if water vapor is accidentally mixed in a hydrogen separation unit having a hydrogen separation membrane, the water vapor and the hydrogen separation membrane do not come into contact with each other. A hydrogen production apparatus that can be safely implemented is provided.

本発明者らは、水蒸気除去手段を備える水素製造装置において、水蒸気除去手段の下流に水蒸気検知膜を配置したときに、水蒸気除去手段の異常等によって、混合ガス中に偶発的に水蒸気が混入した場合でも、水蒸気と水素分離膜との接触を防止することができることを見出し、本発明を完成するに至った。   In the hydrogen production apparatus provided with the water vapor removing means, the present inventors accidentally mixed water vapor into the mixed gas due to an abnormality of the water vapor removing means when the water vapor detecting film is disposed downstream of the water vapor removing means. Even in this case, it has been found that contact between water vapor and the hydrogen separation membrane can be prevented, and the present invention has been completed.

(1) 水蒸気を含む混合ガスから当該水蒸気を除去する水蒸気除去手段の下流に配置される水蒸気検知膜であって、前記水蒸気検知膜は、前記水蒸気除去手段を通過した後の前記混合ガス中の水蒸気濃度の上昇に応じて、前記水蒸気検知膜の気体透過性が小さくなる膜である水蒸気検知膜。   (1) A water vapor detection film disposed downstream of a water vapor removal unit that removes the water vapor from a mixed gas containing water vapor, wherein the water vapor detection film is in the mixed gas after passing through the water vapor removal unit. The water vapor detection film | membrane which is a film | membrane with which the gas permeability of the said water vapor detection film | membrane becomes small according to a raise of water vapor | steam density | concentration.

(1)の発明によれば、混合ガス中に水蒸気が含まれていない場合には、水蒸気検知膜の気体透過性が小さくなることはないから、混合ガスは水蒸気検知膜を透過することができる。一方、水蒸気除去手段の異常等により、混合ガス中に偶発的に水蒸気が混入した場合には、混合ガス中の水蒸気により、水蒸気検知膜の気体透過性が小さくなるから、混合ガスは水蒸気検知膜を透過することができなくなる。したがって、気体透過性の変化をもって水蒸気の検知を行うことができる。   According to the invention of (1), when water vapor is not contained in the mixed gas, the gas permeability of the water vapor detection membrane does not decrease, so the mixed gas can permeate the water vapor detection membrane. . On the other hand, if water vapor is accidentally mixed into the gas mixture due to an abnormality in the water vapor removing means, the water vapor detection membrane has a reduced gas permeability due to the water vapor in the gas mixture. Cannot pass through. Therefore, it is possible to detect water vapor with a change in gas permeability.

(2) 前記水蒸気検知膜は多孔質膜からなり、前記水蒸気除去手段を通過した後の前記混合ガス中の水蒸気濃度の上昇に応じて、前記多孔質膜の平均孔径が縮小する(1)記載の水蒸気検知膜。   (2) The water vapor detection film is made of a porous film, and the average pore diameter of the porous film is reduced according to an increase in the water vapor concentration in the mixed gas after passing through the water vapor removing means. Water vapor detection membrane.

(2)の発明によれば、混合ガス中に水蒸気が含まれていない場合には、多孔質膜である水蒸気検知膜の平均孔径が縮小することはないので、混合ガスは水蒸気検知膜を透過することができる。一方、水蒸気除去手段の異常等により、混合ガス中に偶発的に水蒸気が混入した場合には、混合ガス中の水蒸気により、多孔質膜である水蒸気検知膜の平均孔径が縮小するから、混合ガスは水蒸気検知膜を透過することができなくなる。   According to the invention of (2), when water vapor is not contained in the mixed gas, the average pore diameter of the water vapor detection membrane that is a porous membrane does not decrease, so the mixed gas permeates the water vapor detection membrane. can do. On the other hand, if water vapor is accidentally mixed into the gas mixture due to an abnormality in the water vapor removal means, the water vapor in the gas mixture reduces the average pore size of the water vapor detection film, which is a porous film. Cannot pass through the water vapor detection membrane.

(3) 前記水蒸気検知膜は、シロキサン系の高分子膜である(1)又は(2)記載の水蒸気検知膜。   (3) The water vapor detection film according to (1) or (2), wherein the water vapor detection film is a siloxane polymer film.

(3)の発明によれば、水蒸気検知膜として安価なシロキサン系高分子膜を用いるので、水蒸気検知膜にかかるコストを低廉に抑えることができる。   According to the invention of (3), since an inexpensive siloxane polymer film is used as the water vapor detection film, the cost of the water vapor detection film can be kept low.

(4) 水蒸気を含む混合ガスから当該水蒸気を除去する水蒸気除去手段と、この下流に配置される(1)から(3)いずれか記載の水蒸気検知膜と、前記水蒸気検知膜を透過後の気体の圧力及び/又は流量を検出する検出手段と、前記検出手段の検出値に応じて、前記水蒸気検知膜を透過後の気体の流量を制御する流量制御手段と、を備える水蒸気除去システム。   (4) Water vapor removing means for removing the water vapor from the mixed gas containing water vapor, the water vapor detection film according to any one of (1) to (3) disposed downstream thereof, and the gas after permeating the water vapor detection film A water vapor removal system comprising: detection means for detecting the pressure and / or flow rate of the gas; and flow rate control means for controlling the flow rate of the gas after passing through the water vapor detection film in accordance with a detection value of the detection means.

(4)の発明によれば、水蒸気除去手段が正常に機能して、混合ガスから水蒸気を完全に除去している場合には、水蒸気が水蒸気検知膜に接触することがないので、水蒸気検知膜の気体透過性が小さくなることはなく、混合ガスは水蒸気検知膜を透過することができる。一方、水蒸気除去手段に何らかの異常が生じて、混合ガスから水蒸気を完全に除去できなくなった場合には、水蒸気が水蒸気検知膜と接触して、水蒸気検知膜の気体透過性が小さくなるため、混合ガスが水蒸気検知膜を透過することができなくなり、水蒸気検知膜透過後の気体の圧力及び/又は流量に変化が生じる。このため、検出手段の検出値に変化が生じ、これに応じて流量制御手段により、水蒸気検知膜透過後の気体の流量が制御される。したがって、水蒸気除去手段が正常に機能しているか否かに応じて、水蒸気除去システムから排出される気体の流量を制御することができる。   According to the invention of (4), when the water vapor removing means functions normally and water vapor is completely removed from the mixed gas, the water vapor does not come into contact with the water vapor detection film. The gas permeability does not decrease, and the mixed gas can permeate the water vapor detection membrane. On the other hand, if the water vapor removal means has some abnormality and the water vapor cannot be completely removed from the mixed gas, the water vapor contacts the water vapor detection film and the gas permeability of the water vapor detection film is reduced. The gas cannot pass through the water vapor detection film, and the pressure and / or flow rate of the gas after passing through the water vapor detection film changes. For this reason, a change occurs in the detection value of the detection means, and the flow rate of the gas after passing through the water vapor detection film is controlled by the flow rate control means according to this change. Therefore, the flow rate of the gas discharged from the water vapor removal system can be controlled depending on whether or not the water vapor removal means is functioning normally.

(5) 炭化水素を改質して水素を含む混合ガスを得た後、この混合ガスから水蒸気を除去し、その後、水素分離膜を用いて前記混合ガスから水素を分離する水素製造方法の前記水蒸気の除去に用いる、(4)記載の水蒸気除去システム。   (5) After obtaining a mixed gas containing hydrogen by reforming hydrocarbons, water vapor is removed from the mixed gas, and then hydrogen is separated from the mixed gas using a hydrogen separation membrane. The water vapor removing system according to (4), which is used for removing water vapor.

(5)の発明によれば、炭化水素の改質に伴い混合ガス中に混入する水蒸気を、水蒸気除去手段によって除去することができる。水蒸気除去手段が正常に機能しない場合には、水蒸気検知膜及び流量制御手段によって、水素分離膜を含む装置中に水蒸気が混入することを防止することができるから、水蒸気が水素分離膜に接触することによる水素分離膜の劣化を防ぐことができる。   According to the invention of (5), the water vapor mixed in the mixed gas as the hydrocarbon is reformed can be removed by the water vapor removing means. If the water vapor removing means does not function normally, the water vapor detection membrane and the flow rate control means can prevent the water vapor from being mixed into the apparatus including the hydrogen separation membrane, so that the water vapor contacts the hydrogen separation membrane. It is possible to prevent deterioration of the hydrogen separation membrane.

本発明に係る水蒸気検知膜によれば、水蒸気除去手段が正常に機能していないときでも、混合ガスに水蒸気が混入することを防止することができる。したがって、例えば、炭化水素の改質により水素の製造・分離を行う水素製造装置のように、水蒸気により劣化する水素分離膜を備える装置に、本発明に係る水蒸気除去システムを用いることにより、水素分離膜と水蒸気との接触を防止することができ、したがって、水素分離膜の劣化を防止することができる。   According to the water vapor detection film of the present invention, it is possible to prevent water vapor from being mixed into the mixed gas even when the water vapor removing means is not functioning normally. Therefore, by using the water vapor removal system according to the present invention in an apparatus having a hydrogen separation membrane that deteriorates due to water vapor, such as a hydrogen production apparatus that produces and separates hydrogen by reforming hydrocarbons, hydrogen separation is achieved. Contact between the membrane and water vapor can be prevented, and therefore deterioration of the hydrogen separation membrane can be prevented.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<全体構成>
図1は本実施形態における水素製造装置1の概略を示した図である。本実施形態における水素製造装置1においては、水素製造装置1の最上流に位置し、天然ガス等の原料から化学反応により水素を生成させる水素発生手段10と、水素発生手段10の下流に位置し、水素発生手段10において生じた混合ガスから水蒸気を除去する水蒸気除去システム20と、水蒸気除去システム20の下流に位置し、水蒸気除去システム20により水蒸気を除去した混合ガスから水素のみを分離する水素分離ユニット30と、からなる。
<Overall configuration>
FIG. 1 is a diagram showing an outline of a hydrogen production apparatus 1 in the present embodiment. In the hydrogen production apparatus 1 according to the present embodiment, the hydrogen production apparatus 1 is located in the uppermost stream of the hydrogen production apparatus 1 and is located downstream of the hydrogen generation means 10 and the hydrogen generation means 10 that generates hydrogen from a raw material such as natural gas by a chemical reaction. The water vapor removing system 20 that removes water vapor from the mixed gas generated in the hydrogen generating means 10 and the hydrogen separation that is located downstream of the water vapor removing system 20 and separates only hydrogen from the mixed gas from which water vapor has been removed by the water vapor removing system 20 Unit 30.

[水素発生手段]
水素発生手段10としては、例えば天然ガスの水蒸気改質反応を利用した水蒸気改質反応ユニットが挙げられる。水蒸気改質反応ユニットは、水蒸気と天然ガスとを反応させる反応室と、純水を加熱して高温水蒸気を発生させる水蒸気発生装置と、水蒸気発生装置を反応室の最上流部分へとつなぐ、水蒸気供給路と、水蒸気改質反応ユニットの外部に存在する天然ガスタンクを反応室の最上流部分へとつなぐ天然ガス供給路と、反応室の最下流部分と水蒸気除去手段22とをつなぐ混合ガス排出路とからなる。
[Hydrogen generation means]
Examples of the hydrogen generating means 10 include a steam reforming reaction unit using a steam reforming reaction of natural gas. The steam reforming reaction unit comprises a reaction chamber for reacting steam and natural gas, a steam generator for heating pure water to generate high-temperature steam, and a steam that connects the steam generator to the most upstream part of the reaction chamber. A supply path, a natural gas supply path connecting a natural gas tank existing outside the steam reforming reaction unit to the most upstream part of the reaction chamber, and a mixed gas discharge path connecting the most downstream part of the reaction chamber and the steam removing means 22 It consists of.

本実施形態においては、水素発生手段10として、水蒸気改質反応ユニットを挙げたが、これに限定されない。即ち、本発明の水素発生手段10としては、天然ガスの炭酸ガス改質反応や天然ガスの部分酸化反応を利用したものでもよい。また、水素発生手段10は、天然ガスを利用したものでなくてもよく、例えば、太陽電池や光触媒を利用した水の電気分解であってもよい。   In the present embodiment, a steam reforming reaction unit has been described as the hydrogen generation means 10, but is not limited thereto. In other words, the hydrogen generating means 10 of the present invention may utilize a natural gas carbon dioxide reforming reaction or a natural gas partial oxidation reaction. Further, the hydrogen generating means 10 may not be one using natural gas, and may be water electrolysis using a solar cell or a photocatalyst, for example.

さらに、本実施形態においては、水蒸気改質反応ユニットに用いる炭化水素として、天然ガスを使用しているが、これに限定されない。即ち、水蒸気改質反応ユニットに用いられるガスは工業的に製造された、メタン、エタン、プロパンなどであってもよく、これらのガスの混合物であってもよい。このうち、単位重量あたりの水素含有量が最も多いという面では、メタンが好ましいが、利便性の点からは、天然ガスをそのまま使用することが好ましい。   Furthermore, in this embodiment, natural gas is used as the hydrocarbon used in the steam reforming reaction unit, but the present invention is not limited to this. That is, the gas used in the steam reforming reaction unit may be industrially produced methane, ethane, propane or the like, or a mixture of these gases. Of these, methane is preferred in terms of the highest hydrogen content per unit weight, but from the viewpoint of convenience, natural gas is preferably used as it is.

[水蒸気除去システム]
水蒸気除去システム20は、気体の物理化学的な特性を利用して混合ガスから水蒸気のみを除去する水蒸気除去手段22と、水蒸気除去手段22の下流に配置され、混合ガス中の水蒸気濃度の上昇に応じて気体透過性が小さくなる水蒸気検知膜24と、水蒸気検知膜24の下流に設けられ、水蒸気検知膜24を透過後の混合ガスの圧力及び/又は流量を検出する検出手段と、検出手段の検出値に応じて水蒸気検知膜24を透過後の気体の流量を制御する流量制御手段と、からなる。
[Water vapor removal system]
The water vapor removal system 20 is disposed downstream of the water vapor removal means 22 and the water vapor removal means 22 for removing only the water vapor from the mixed gas using the physicochemical characteristics of the gas, and increases the water vapor concentration in the mixed gas. The water vapor detection film 24 having a gas permeability that decreases in response, a detection unit that is provided downstream of the water vapor detection film 24 and detects the pressure and / or flow rate of the mixed gas after passing through the water vapor detection film 24, and And flow rate control means for controlling the flow rate of the gas after passing through the water vapor detection film 24 in accordance with the detected value.

(水蒸気除去手段)
水蒸気除去手段22としては、例えば、吸湿性の化学物質が水蒸気を吸着する性質を利用した水蒸気吸着ユニットが挙げられる。水蒸気吸着ユニットは、ゼオライトやシリカゲルを充填した吸着槽と、水蒸気改質反応ユニットの混合ガス排出路であり、吸着槽の最上流部分に通じる混合ガス供給路と、吸収層の最下流部分と水蒸気分離ユニットとをつなぐ乾燥混合ガス排出路と、からなる。
(Water vapor removing means)
Examples of the water vapor removing unit 22 include a water vapor adsorption unit that utilizes the property that a hygroscopic chemical substance adsorbs water vapor. The water vapor adsorption unit is an adsorption tank filled with zeolite or silica gel, and a mixed gas discharge path of the steam reforming reaction unit. The mixed gas supply path leading to the most upstream part of the adsorption tank, the most downstream part of the absorption layer, and water vapor And a dry mixed gas discharge passage connecting the separation unit.

本実施形態においては、水蒸気除去手段22として水蒸気吸着ユニットを使用しているが、これに限定されない。即ち、水蒸気除去手段22は、冷却による飽和水蒸気圧の低下を利用した方法や、トリエチレングリコールなどの吸水性液体に混合ガスを通じる方法であってもよく、混合ガスから水蒸気のみを選択的に除去できる方法であればどのようなものであってもよい。   In the present embodiment, a water vapor adsorption unit is used as the water vapor removing unit 22, but the present invention is not limited to this. That is, the water vapor removing means 22 may be a method using a decrease in saturated water vapor pressure due to cooling or a method of passing a mixed gas through a water-absorbing liquid such as triethylene glycol, and selectively using only water vapor from the mixed gas. Any method that can be removed may be used.

(水蒸気検知膜)
水蒸気検知膜24としては、混合ガス中の水蒸気濃度の上昇に応じて、気体透過性が小さくなる膜を用いる。このような膜としては、例えば、混合ガス中の水蒸気濃度の上昇に応じて、多孔質膜の孔の平均孔径が減少する多孔質膜を用いることができる。水蒸気検知膜24としては、高温水蒸気の存在下において、気体透過性が急激に低下しやすい多孔質膜を用いることが望ましい。具体的には、金属添加がなされていないシロキサン系高分子膜などを利用することができる。水蒸気検知膜24としては、水素透過係数が10−6(m(STD)/m/s/kPa)〜10−4(m(STD)/m/s/kPa)オーダーのものを用いる。
(Water vapor detection membrane)
As the water vapor detection film 24, a film whose gas permeability decreases as the water vapor concentration in the mixed gas increases is used. As such a membrane, for example, a porous membrane in which the average pore diameter of the pores of the porous membrane decreases as the water vapor concentration in the mixed gas increases. As the water vapor detection film 24, it is desirable to use a porous film whose gas permeability is likely to be rapidly lowered in the presence of high temperature water vapor. Specifically, a siloxane polymer film or the like to which no metal is added can be used. The water vapor detection film 24 has a hydrogen permeability coefficient of the order of 10 −6 (m 3 (STD) / m 2 / s / kPa) to 10 −4 (m 3 (STD) / m 2 / s / kPa). Use.

(水蒸気検知膜の製造方法)
水蒸気検知膜24はゾルゲル法で作製する。表1に水蒸気検知膜24の製膜に使用するコロイドゾルの出発組成とコロイドゾルの平均粒径(動的光散乱法によって測定)を示す。表1にしたがって、出発物質を混合し、10分から1時間攪拌し、硝酸10gを加えた後,水を加えて全量を500mlとする。これを加熱しながら攪拌し、水を加えつつ、溶液濃度を一定に保ちながら約20時間から40時間煮沸攪拌する。
(Method for producing water vapor detection film)
The water vapor detection film 24 is produced by a sol-gel method. Table 1 shows the starting composition of the colloidal sol used for forming the water vapor detection film 24 and the average particle size (measured by the dynamic light scattering method) of the colloidal sol. According to Table 1, the starting materials are mixed, stirred for 10 minutes to 1 hour, 10 g of nitric acid is added, and water is added to make the total volume 500 ml. The mixture is stirred while being heated, and the mixture is boiled and stirred for about 20 to 40 hours while keeping the solution concentration constant while adding water.

Figure 0004509055
Figure 0004509055

得られたコロイドゾル溶液は、α−アルミナ微粒子をコーティングしたアルミナ板にコーティングし、400℃から800℃で焼成を行う。コーティング及び焼成は、粒径の大きなコロイドゾルから粒径の小さなコロイドゾルへと、数回に分けて行う。   The obtained colloidal sol solution is coated on an alumina plate coated with α-alumina fine particles and baked at 400 to 800 ° C. Coating and baking are performed in several steps from a colloidal sol having a large particle size to a colloidal sol having a small particle size.

本発明に係る水蒸気検知膜24の素材はシロキサン系高分子膜に限定されず、例えば、アルミナ膜など、高温水蒸気の存在下で気体透過性が低下するものであればどのようなものであってもよい。   The material of the water vapor detection film 24 according to the present invention is not limited to the siloxane polymer film, and any material can be used as long as the gas permeability is reduced in the presence of high temperature water vapor such as an alumina film. Also good.

(検出手段)
検出手段は、気体の圧力及び/又は流量を検知できるものであればどのようなものであってもよい。このような検出手段としては、市販されている圧力センサーや流量センサーを用いることができ、例えば、「KP−50」(KEYENCE社製)、「PA−800」(エムシーシステムズ社性)、「マスフローメーター」(HORIBASTEC社製)などを用いることができる。
(Detection means)
The detection means may be anything as long as it can detect the pressure and / or flow rate of the gas. As such a detection means, a commercially available pressure sensor or flow rate sensor can be used. For example, “KP-50” (manufactured by KEYENCE Corporation), “PA-800” (manufactured by MC Systems), “mass flow”. A meter "(manufactured by HORIBASEC) can be used.

(流量制御手段)
流量制御手段は、検出手段から得られる検出値に応じて、水蒸気検知膜24透過後の気体の流量を制御できるものであればどのようなものであってもよい。このような流量制御手段としては、例えば、検出手段からの検出値が入力される検出値入力部と、入力された検出値に応じて水蒸気検知膜24の下流に位置するバルブ26を開放するか、閉鎖するか、そのままにするかの信号を送信する信号変換部と、信号変換部からの信号を受けてバルブ26の開放、閉鎖を行う作動部と、水蒸気検知膜24の下流に位置するバルブ26と、からなる流量制御手段が挙げられる。
(Flow control means)
The flow rate control means may be anything as long as it can control the flow rate of the gas after passing through the water vapor detection film 24 in accordance with the detection value obtained from the detection means. As such a flow rate control unit, for example, a detection value input unit to which a detection value from the detection unit is input and a valve 26 positioned downstream of the water vapor detection film 24 according to the input detection value are opened. A signal conversion unit that transmits a signal indicating whether the valve is closed or left, an operation unit that opens and closes the valve 26 in response to a signal from the signal conversion unit, and a valve located downstream of the water vapor detection film 24 26, and a flow rate control means.

[水素分離ユニット]
水素分離ユニット30は、水素分離膜を備える円筒形の水素分離室と、水蒸気吸着ユニットの乾燥混合ガス排出路であり、水素分離室の最上流に通じる乾燥混合ガス供給路と、円筒形の水素分離膜と、水素分離室の最下流で、水素分離膜より外側の空間と通じる水素排出路と、水素分離室の最下流で、水素分離膜の内腔と通じる水素分離混合ガス排出路と、からなる。
[Hydrogen separation unit]
The hydrogen separation unit 30 is a cylindrical hydrogen separation chamber provided with a hydrogen separation membrane, a dry mixed gas discharge path of a water vapor adsorption unit, a dry mixed gas supply path leading to the uppermost stream of the hydrogen separation chamber, and a cylindrical hydrogen A separation membrane, a hydrogen discharge passage that communicates with a space outside the hydrogen separation membrane at the most downstream side of the hydrogen separation chamber, and a hydrogen separation mixed gas discharge passage that communicates with the lumen of the hydrogen separation membrane at the most downstream side of the hydrogen separation chamber; Consists of.

(水素分離膜)
水素分離膜としては、例えば、金属添加がなされたシロキサン系高分子膜などを利用する。水素分離膜としては、水素透過係数が10−6(m(STD)/m/s/kPa)〜10−4(m(STD)/m/s/kPa)オーダーのものを用いる。水素分離膜の形状が円筒形であるので、他の形状の水素分離膜よりも、設置面積あたりの水素透過量を多くすることができる。
(Hydrogen separation membrane)
As the hydrogen separation membrane, for example, a siloxane polymer membrane to which metal is added is used. As the hydrogen separation membrane, one having a hydrogen permeability coefficient of the order of 10 −6 (m 3 (STD) / m 2 / s / kPa) to 10 −4 (m 3 (STD) / m 2 / s / kPa) is used. . Since the shape of the hydrogen separation membrane is cylindrical, it is possible to increase the hydrogen permeation amount per installation area as compared with other shapes of hydrogen separation membranes.

(水素分離膜の製造方法)
水素分離膜はゾルゲル法で作製する。表2に水素分離膜の製膜に使用するコロイドゾルの出発組成とコロイドゾルの平均粒径(動的光散乱法によって測定)を示す。表1にしたがって、出発物質を混合し、必要に応じて金属添加(Zr、Ti、Mn、Pt、Ru、K、Feなど)を行う。10分から1時間攪拌し、塩酸11gを加え、水を加えて全量を500mlとする。これを加熱しながら攪拌し、水を加えつつ、溶液濃度を一定に保ちながら約20時間から40時間煮沸攪拌する。
(Method for producing hydrogen separation membrane)
The hydrogen separation membrane is produced by a sol-gel method. Table 2 shows the starting composition of the colloidal sol used for forming the hydrogen separation membrane and the average particle size (measured by the dynamic light scattering method) of the colloidal sol. According to Table 1, starting materials are mixed, and metal addition (Zr, Ti, Mn, Pt, Ru, K, Fe, etc.) is performed as necessary. Stir for 10 minutes to 1 hour, add 11 g of hydrochloric acid and add water to bring the total volume to 500 ml. The mixture is stirred while heating, and the mixture is boiled and stirred for about 20 to 40 hours while keeping the solution concentration constant while adding water.

Figure 0004509055
Figure 0004509055

得られたコロイドゾル溶液は、α−アルミナ微粒子をコーティングしたアルミナ管にコーティングし、400℃から800℃で焼成を行う。焼成に先立ち、必要に応じて400℃から800℃の水蒸気中での焼成を行う(水蒸気中でのプレ焼成)。コーティング及び焼成は、粒径の大きなコロイドゾルから粒径の小さなコロイドゾルへと、数回に分けて行う。製膜後、必要に応じて、飽和湿度に近い湿度を有する40℃から80℃の空気中に膜を10時間から40時間放置後、400℃から800℃で焼成を行う(高湿度前処理)。   The obtained colloidal sol solution is coated on an alumina tube coated with α-alumina fine particles, and is fired at 400 to 800 ° C. Prior to firing, firing in water vapor at 400 ° C. to 800 ° C. is performed as necessary (pre-firing in water vapor). Coating and baking are performed in several steps from a colloidal sol having a large particle size to a colloidal sol having a small particle size. After film formation, if necessary, the film is left in air at 40 ° C. to 80 ° C. having a humidity close to saturation humidity for 10 hours to 40 hours and then fired at 400 ° C. to 800 ° C. (high humidity pretreatment). .

本実施形態に係る水素分離膜としては、円筒形の形状のものを用いているが、これに限定されない。即ち、水素分離膜は平面状のものであってもよく、シロキサン系高分子樹脂をカラムに充填した円柱形のものであってもよい。また、本発明に係る水素分離膜の素材はシロキサン系高分子膜に限定されず、アルミナ膜、SiC膜,Pd系膜など、水素のみを選択的に分離できるものであればどのようなものであってもよい。   As the hydrogen separation membrane according to the present embodiment, a cylindrical shape is used, but is not limited thereto. In other words, the hydrogen separation membrane may be planar, or may be a cylinder having a column filled with a siloxane polymer resin. In addition, the material of the hydrogen separation membrane according to the present invention is not limited to the siloxane polymer membrane, and any material that can selectively separate only hydrogen, such as an alumina membrane, a SiC membrane, or a Pd membrane, can be used. There may be.

<水素製造装置の作用>
(水素発生手段の作用)
水蒸気改質反応ユニットにおいては、まず水蒸気発生装置において純水を加熱することにより高温水蒸気を発生させ、必要に応じてガスポンプを用いて圧縮し、水蒸気供給路を通じて水蒸気を、反応室に送り込む。同時に天然ガスを、天然ガスタンクから天然ガス供給路を通じて反応室に送り込み、高温水蒸気と天然ガスとを反応させる。反応に伴い、天然ガスに含まれるほぼすべての炭化水素は一酸化炭素又は二酸化炭素と水素に分解される。反応により生じた混合ガスは排出路を通じて水蒸気除去手段22へと送られる。
<Operation of hydrogen production equipment>
(Operation of hydrogen generation means)
In the steam reforming reaction unit, first, pure water is heated in a steam generator to generate high-temperature steam, and compressed as necessary using a gas pump, and steam is fed into the reaction chamber through a steam supply path. At the same time, natural gas is sent from the natural gas tank to the reaction chamber through the natural gas supply path, and the high temperature steam and the natural gas are reacted. Along with the reaction, almost all hydrocarbons contained in natural gas are decomposed into carbon monoxide or carbon dioxide and hydrogen. The mixed gas generated by the reaction is sent to the water vapor removing means 22 through the discharge path.

なお、この反応は、すべての炭化水素を反応させるため、過剰量の水蒸気の存在下で行われる。   This reaction is performed in the presence of an excess amount of water vapor in order to react all hydrocarbons.

(水蒸気除去システムの作用)
水素発生手段10において生じた混合ガスは、まず水蒸気除去手段22へと到達し、混合ガス供給路から、吸着槽へと到達する。吸着槽においては、混合ガス中に含まれる水蒸気を高温のまま、ゼオライトやシリカゲルが吸着し、水蒸気を含まない乾燥した乾燥混合ガスが乾燥混合ガス排出路から排出される。ゼオライトやシリカゲルが水により飽和された場合には、加熱や減圧を行うことにより、水蒸気を除去し、再度の吸着に利用することができる。
(Operation of water vapor removal system)
The mixed gas generated in the hydrogen generating means 10 first reaches the water vapor removing means 22 and then reaches the adsorption tank from the mixed gas supply path. In the adsorption tank, zeolite and silica gel are adsorbed while the water vapor contained in the mixed gas remains at a high temperature, and the dried dry mixed gas containing no water vapor is discharged from the dry mixed gas discharge passage. When the zeolite or silica gel is saturated with water, the water vapor can be removed by heating or reducing the pressure and used for re-adsorption.

水蒸気吸着ユニットによれば、混合ガスが高温のまま、水蒸気を除去することもできるので、混合ガスを冷却するために必要なコストを削減することができる。また、水素製造装置1により製造される水素を火力発電用の燃料として利用する場合、高温の水素ガスに含まれる熱エネルギーをそのままエネルギー源として利用することができるため、発電効率の面でも好ましい。   According to the water vapor adsorption unit, it is possible to remove water vapor while the mixed gas remains at a high temperature, so that the cost required for cooling the mixed gas can be reduced. In addition, when hydrogen produced by the hydrogen production apparatus 1 is used as a fuel for thermal power generation, thermal energy contained in high-temperature hydrogen gas can be used as an energy source as it is, which is preferable in terms of power generation efficiency.

水蒸気除去手段22が正常に動作している場合には、乾燥混合ガス中に水蒸気が含まれていないから、乾燥混合ガスと水蒸気検知膜24とが接触しても、水蒸気検知膜24の気体透過性が低下することはなく、したがって、水蒸気検知膜24透過後の混合ガスの圧力及び流量に変化が生じない。よって、検出手段の検出する検出値にも変化が生じないから、検出値入力部から検出値を受信した信号変換部はバルブ26の開放状態をそのままにするとの信号を送信し、動作部はバルブ26の開放及び閉鎖を行わず、混合ガスはそのまま水素分離ユニットに送られる。   When the water vapor removing unit 22 is operating normally, the dry mixed gas does not contain water vapor. Therefore, even if the dry mixed gas and the water vapor detecting film 24 come into contact with each other, the gas permeation of the water vapor detecting film 24 is achieved. Therefore, the pressure and flow rate of the mixed gas after passing through the water vapor detection film 24 do not change. Therefore, since the detection value detected by the detection means does not change, the signal conversion unit that has received the detection value from the detection value input unit transmits a signal indicating that the open state of the valve 26 remains unchanged, and the operation unit is the valve. 26 is not opened and closed, and the mixed gas is sent to the hydrogen separation unit as it is.

一方、水蒸気除去手段22が正常に動作していない場合には、乾燥混合ガス中に水蒸気が混入するため、水蒸気と水蒸気検知膜24とが接触することにより、水蒸気検知膜24の気体透過性が低下する。このため、水蒸気を含む乾燥混合ガスが水蒸気検知膜24を透過する透過量が減少する。加えて、水蒸気検知膜24透過後の混合ガスの圧力及び流量が減少し、検出手段が検出する検出値に変化が生じるから、検出値入力部から検出値を受信した信号変換部はバルブ26を閉鎖するとの信号を送信し、動作部はバルブ26を閉鎖する。このため、水蒸気の混入した乾燥混合ガスは水素分離ユニット30には到達しない。   On the other hand, when the water vapor removing means 22 is not operating normally, water vapor is mixed in the dry mixed gas, so that the water vapor detection membrane 24 has gas permeability due to contact between the water vapor and the water vapor detection membrane 24. descend. For this reason, the permeation | transmission amount which the dry mixed gas containing water vapor permeate | transmits the water vapor | steam detection film | membrane 24 reduces. In addition, since the pressure and flow rate of the mixed gas after passing through the water vapor detection film 24 decrease and the detection value detected by the detection means changes, the signal conversion unit that receives the detection value from the detection value input unit uses the valve 26. A signal to close is transmitted, and the operation unit closes the valve 26. For this reason, the dry mixed gas mixed with water vapor does not reach the hydrogen separation unit 30.

(水素分離ユニットの作用)
水蒸気吸着ユニットを通過した乾燥混合ガスは、乾燥混合ガス供給路を通じて水素分離室に至る。水素分離室に到達した乾燥混合ガスは、水素分離膜の内腔に到達し、水素分離膜の内腔を大気圧以上100気圧以下の圧力のもとで通過する。水素分離膜の外側は、水素分離膜の内腔よりも気圧が低くなっており、水素分離膜の表面には水素のみが通過できる孔径の孔が設けられているため、水素のみが水素分離膜を透過できる。水素分離膜を透過した水素は、排出路から排出、回収される。水素分離膜を透過しなかった混合ガスは、水素分離混合ガス排出路から排出される。
(Operation of hydrogen separation unit)
The dry mixed gas that has passed through the water vapor adsorption unit reaches the hydrogen separation chamber through the dry mixed gas supply path. The dry mixed gas that has reached the hydrogen separation chamber reaches the lumen of the hydrogen separation membrane, and passes through the lumen of the hydrogen separation membrane under a pressure of not less than atmospheric pressure and not more than 100 atmospheres. The outside of the hydrogen separation membrane has a lower air pressure than the lumen of the hydrogen separation membrane, and the surface of the hydrogen separation membrane is provided with holes with a diameter that allows only hydrogen to pass through. Can be transmitted. The hydrogen that has permeated through the hydrogen separation membrane is discharged and recovered from the discharge path. The mixed gas that has not permeated the hydrogen separation membrane is discharged from the hydrogen separation mixed gas discharge passage.

<効果>
本発明に係る水素製造装置1によれば、天然ガスなどから水素を発生させ、これを分離、回収することができる。乾燥混合ガスからの水素の分離に際しては、水素分離膜が用いられるが、水素分離膜の上流に水蒸気除去システム20を設けることにより、偶発的に乾燥混合ガスに水蒸気が混入した場合でも、水素分離膜の劣化を防止することができる。
<Effect>
According to the hydrogen production apparatus 1 according to the present invention, hydrogen can be generated from natural gas or the like, and separated and recovered. When separating hydrogen from the dry mixed gas, a hydrogen separation membrane is used. Even if water vapor is accidentally mixed into the dry mixed gas by providing a water vapor removal system 20 upstream of the hydrogen separation membrane, hydrogen separation is performed. Deterioration of the film can be prevented.

なお、本発明において水蒸気除去システム20は、水素製造装置1に用いられるものとして記載されているが、これに限定されない。すなわち、本発明に係る水蒸気除去システム20は、水素製造装置1以外の装置にも用いることができる。   In the present invention, the water vapor removal system 20 is described as being used in the hydrogen production apparatus 1, but is not limited thereto. That is, the water vapor removal system 20 according to the present invention can be used for apparatuses other than the hydrogen production apparatus 1.

本発明に係る水素製造装置の概略を示した図面である。It is drawing which showed the outline of the hydrogen production apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 水素製造装置
10 水素発生手段
20 水蒸気除去システム
22 水蒸気除去手段
24 水蒸気検知膜
26 バルブ
30 水素分離ユニット
DESCRIPTION OF SYMBOLS 1 Hydrogen production apparatus 10 Hydrogen generating means 20 Steam removal system 22 Steam removal means 24 Steam detection membrane 26 Valve 30 Hydrogen separation unit

Claims (5)

水蒸気を含む混合ガスから当該水蒸気を除去する水蒸気除去手段の下流に配置される水蒸気検知膜であって、
前記水蒸気検知膜は、前記水蒸気除去手段を通過した後の前記混合ガス中の水蒸気濃度の上昇に応じて、前記水蒸気検知膜の気体透過性が小さくなる膜である水蒸気検知膜。
A water vapor detection film disposed downstream of a water vapor removing means for removing the water vapor from a mixed gas containing water vapor,
The water vapor detection film is a water vapor detection film that is a film in which the gas permeability of the water vapor detection film decreases as the water vapor concentration in the mixed gas increases after passing through the water vapor removal means.
前記水蒸気検知膜は多孔質膜からなり、前記水蒸気除去手段を通過した後の前記混合ガス中の水蒸気濃度の上昇に応じて、前記多孔質膜の平均孔径が縮小する請求項1記載の水蒸気検知膜。   The water vapor detection film according to claim 1, wherein the water vapor detection film is made of a porous film, and the average pore diameter of the porous film is reduced in accordance with an increase in the water vapor concentration in the mixed gas after passing through the water vapor removal means. film. 前記水蒸気検知膜は、シロキサン系の高分子膜である請求項1又は2記載の水蒸気検知膜。   The water vapor detection film according to claim 1, wherein the water vapor detection film is a siloxane polymer film. 水蒸気を含む混合ガスから当該水蒸気を除去する水蒸気除去手段と、この下流に配置される請求項1から3いずれか記載の水蒸気検知膜と、
前記水蒸気検知膜を透過後の気体の圧力及び/又は流量を検出する検出手段と、
前記検出手段の検出値に応じて、前記水蒸気検知膜を透過後の気体の流量を制御する流量制御手段と、を備える水蒸気除去システム。
Water vapor removing means for removing the water vapor from the mixed gas containing water vapor, and the water vapor detection film according to any one of claims 1 to 3 disposed downstream thereof,
Detection means for detecting the pressure and / or flow rate of the gas after passing through the water vapor sensing membrane;
A water vapor removal system comprising: a flow rate control unit that controls a flow rate of the gas after passing through the water vapor detection film according to a detection value of the detection unit.
炭化水素を改質して水素を含む混合ガスを得た後、この混合ガスから水蒸気を除去し、その後、水素分離膜を用いて前記混合ガスから水素を分離する水素製造方法の前記水蒸気の除去に用いる、請求項4記載の水蒸気除去システム。   After removing the water vapor from the mixed gas after reforming the hydrocarbon to obtain a mixed gas containing hydrogen, and then separating the hydrogen from the mixed gas using a hydrogen separation membrane, the removal of the water vapor The water vapor removal system according to claim 4, which is used in the above.
JP2006092451A 2006-03-29 2006-03-29 Water vapor detection membrane Expired - Fee Related JP4509055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092451A JP4509055B2 (en) 2006-03-29 2006-03-29 Water vapor detection membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092451A JP4509055B2 (en) 2006-03-29 2006-03-29 Water vapor detection membrane

Publications (2)

Publication Number Publication Date
JP2007260628A JP2007260628A (en) 2007-10-11
JP4509055B2 true JP4509055B2 (en) 2010-07-21

Family

ID=38634144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092451A Expired - Fee Related JP4509055B2 (en) 2006-03-29 2006-03-29 Water vapor detection membrane

Country Status (1)

Country Link
JP (1) JP4509055B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5421065B2 (en) * 2009-10-27 2014-02-19 東京瓦斯株式会社 Hydrogen production and usage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253919A (en) * 2001-02-27 2002-09-10 Kyocera Corp Gas separation filter
JP2003164739A (en) * 2001-11-29 2003-06-10 Kyocera Corp Gas separation membrane filter and method for manufacturing the same
JP2005270887A (en) * 2004-03-25 2005-10-06 Japan Fine Ceramics Center Silicic stream-proof film, hydrogen gas separation material using the same, and production method thereof
JP2007260630A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Hydrogen separation unit
JP2007260631A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Preliminary membrane

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071003A (en) * 1983-09-28 1985-04-22 Sekisui Chem Co Ltd Hydrogen gas permeable membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253919A (en) * 2001-02-27 2002-09-10 Kyocera Corp Gas separation filter
JP2003164739A (en) * 2001-11-29 2003-06-10 Kyocera Corp Gas separation membrane filter and method for manufacturing the same
JP2005270887A (en) * 2004-03-25 2005-10-06 Japan Fine Ceramics Center Silicic stream-proof film, hydrogen gas separation material using the same, and production method thereof
JP2007260630A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Hydrogen separation unit
JP2007260631A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Preliminary membrane

Also Published As

Publication number Publication date
JP2007260628A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
Tsuru et al. Methane steam reforming by microporous catalytic membrane reactors
US7572318B2 (en) High-temperature membrane for CO2 and/or H2S separation
CA2897623C (en) Gas separation apparatus, membrane reactor, and hydrogen production apparatus
AU766490B2 (en) Hydrogen-selective silica based membrane
CN107265403B (en) Hydrogen production device and hydrogen purification equipment
US9138718B2 (en) Compact catalytic membrane reactor for chemical process intensification
JP5105937B2 (en) Method for reducing carbon monoxide concentration
JP4703464B2 (en) Hydrogen separation unit, hydrogen production apparatus and spare membrane
JP4819537B2 (en) Permselective membrane reactor and hydrogen production method using the same
JP5161763B2 (en) Hydrogen production method using selectively permeable membrane reactor
JP2024069505A (en) Liquid fuel synthesis system and liquid fuel synthesis method
JP2007260631A (en) Preliminary membrane
JP4509055B2 (en) Water vapor detection membrane
JP5139971B2 (en) Hydrogen production method using selectively permeable membrane reactor
JP2004050129A (en) Separation membrane element and separation apparatus
Uemoto et al. Proposition of CO2 removable technology using membrane for hydrogen station
JP4319126B2 (en) Rapid hydrogen generation method and reactor module therefor
JP2003071287A (en) Catalyst membrane, method for producing the same, and method for selectively removing carbon monoxide by using the same
JP5037878B2 (en) Permselective membrane reactor and method for producing hydrogen gas
WO2024048637A1 (en) Liquid fuel production system and liquid fuel production method
WO2024048636A1 (en) Liquid fuel production system and liquid fuel production method
Akamatsu et al. Hydrogen Produced from Simulated Biogas Using a Membrane Reactor with a Dimethoxydimethylsilane-Derived Silica Membrane Operated under Pressure and without Sweep Gas
JP2002126519A (en) Reforming composite material and hydrogen generation structure provided therewith
CN117157379A (en) Liquid fuel synthesis system and liquid fuel synthesis method
Kusakabe et al. Methane steam reforming in a zirconia membrane reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4509055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees