JP4508591B2 - Compressor spindle support structure - Google Patents

Compressor spindle support structure Download PDF

Info

Publication number
JP4508591B2
JP4508591B2 JP2003331855A JP2003331855A JP4508591B2 JP 4508591 B2 JP4508591 B2 JP 4508591B2 JP 2003331855 A JP2003331855 A JP 2003331855A JP 2003331855 A JP2003331855 A JP 2003331855A JP 4508591 B2 JP4508591 B2 JP 4508591B2
Authority
JP
Japan
Prior art keywords
outer ring
compressor
main shaft
needle roller
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003331855A
Other languages
Japanese (ja)
Other versions
JP2005098368A (en
Inventor
真司 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2003331855A priority Critical patent/JP4508591B2/en
Priority to PCT/JP2004/013424 priority patent/WO2005028887A1/en
Priority to US10/571,613 priority patent/US20070172168A1/en
Priority to CNB2004800266279A priority patent/CN100425850C/en
Priority to EP04773087.4A priority patent/EP1666745B1/en
Publication of JP2005098368A publication Critical patent/JP2005098368A/en
Priority to US12/453,371 priority patent/US8661686B2/en
Application granted granted Critical
Publication of JP4508591B2 publication Critical patent/JP4508591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

この発明は、コンプレッサ主軸の支持構造とコンプレッサ主軸用針状ころ軸受に関するものである。   The present invention relates to a support structure for a compressor main shaft and a needle roller bearing for the compressor main shaft.

エアコンディショナ用等のコンプレッサには、圧縮動作部材を主軸の回転駆動で動作させ、この主軸のラジアル荷重をコンプレッサ内に配置された針状ころ軸受で支持した支持構造を採用したものがある(例えば、特許文献1参照。)。針状ころ軸受は軸受投影面積が小さい割に高負荷容量と高剛性が得られる利点を有しており、コンプレッサ主軸の支持構造をコンパクトに設計できる。   Some compressors for air conditioners and the like employ a support structure in which a compression operation member is operated by rotating a main shaft and a radial load of the main shaft is supported by needle roller bearings arranged in the compressor ( For example, see Patent Document 1.) Needle roller bearings have the advantage that high load capacity and high rigidity can be obtained for a small bearing projection area, and the support structure for the compressor main shaft can be designed compactly.

前記コンプレッサ主軸の支持構造に採用される針状ころ軸受は、冷媒が混入すること等で潤滑状態が希薄となり、かつ、主軸が高速回転するので、針状ころが転走する外輪の内径面にスミアリング等の表面損傷や表面起点型の剥離が発生して、軸受寿命が短くなることがある。また、自動車のエアコンディショナ用コンプレッサでは、針状ころの転走に伴う軸受使用中の騒音を低くすることが要求される。   The needle roller bearing employed in the compressor main shaft support structure has a thin lubrication state due to the mixture of refrigerant and the main shaft rotates at a high speed, so that the needle roller rotates on the inner diameter surface of the outer ring on which the needle roller rolls. Surface damage such as smearing and surface-origin type peeling may occur and the bearing life may be shortened. Further, in an air conditioner compressor for an automobile, it is required to reduce the noise during use of the bearing accompanying the rolling of the needle rollers.

一方、外輪の内径面に沿って複数の針状ころを配列した針状ころ軸受には、絞り工程を含むプレス加工で形成されたシェル型外輪を用いるものがある。このシェル型外輪を用いるシェル型針状ころ軸受は、製造コストが安価となる経済的優位性からその用途が多岐に渡っており、自動車のエアコンディショナ用を含むコンプレッサ主軸の支持構造にも採用されている。   On the other hand, some needle roller bearings in which a plurality of needle rollers are arranged along the inner diameter surface of the outer ring use a shell-type outer ring formed by press working including a drawing process. Shell-type needle roller bearings that use this shell-type outer ring have a wide range of uses because of their economic advantage that their manufacturing costs are low, and they are also used in the support structure for compressor main shafts, including those used for automotive air conditioners. Has been.

従来のシェル型外輪のプレス加工の概略工程は、以下の通りである。まず、絞り工程で円形ブランクをカップ状に成形し、決め押し工程でカップ底コーナ部を所定のコーナ半径に決め押しする。こののち、底抜き工程でカップ底中央部を打ち抜いて外輪の一方の鍔を形成し、トリミング工程でカップ上端部を均一な高さにトリミングする。絞り工程または決め押し工程の後に、しごき工程を加える場合もある。通常、これらのプレス加工は、トランスファプレスや順送りプレスを用いて行われ、トランスファプレスを用いる場合は、円形ブランクの打ち抜き工程も一緒に組み込まれることが多い。なお、外輪の他方の鍔は、熱処理後の組立て工程で、カップ上端部を内方に折り曲げることにより形成される。   A schematic process for pressing a conventional shell-type outer ring is as follows. First, a circular blank is formed into a cup shape in the drawing step, and the cup bottom corner portion is determined and pushed to a predetermined corner radius in the decision pushing step. After that, the center portion of the cup bottom is punched out in the bottoming step to form one ridge of the outer ring, and the upper end portion of the cup is trimmed to a uniform height in the trimming step. An ironing process may be added after the drawing process or the final pressing process. Usually, these press processes are performed using a transfer press or a progressive press, and when a transfer press is used, a blank blank punching process is often incorporated together. The other collar of the outer ring is formed by bending the upper end of the cup inward in the assembly process after heat treatment.

前記シェル型外輪のブランク素材には、SCM415等の肌焼鋼の鋼板が用いられ、所定の製品強度を確保するために、プレス加工後に浸炭焼入れ、焼戻し等の熱処理を施される。肌焼鋼の鋼板はSPCC等の軟鋼板に較べて炭素含有量が多く、絞り性の目安となるr値が低いので、絞り工程での絞り回数を複数回に分けて、1回当たりの絞り比を小さく設定している。   For the blank material of the shell type outer ring, a steel plate made of case-hardened steel such as SCM415 is used, and heat treatment such as carburizing and quenching and tempering is performed after press working in order to ensure a predetermined product strength. Case-hardened steel has a high carbon content compared to mild steel such as SPCC and has a low r value, which is a standard for drawability, so the number of draws in the drawing process can be divided into multiple draws. The ratio is set small.

このように、シェル型外輪は多数のプレス加工工程を経て形成されるので、金型の精度誤差や、加工工程ごとの不均一なひずみの累積により、筒部の真円度や偏肉量等の寸法精度が削り加工で形成される外輪よりも劣り、軸受の寿命も短くなる。   In this way, the shell type outer ring is formed through a number of press working processes, so the roundness of the cylindrical part, the amount of uneven thickness, etc., due to the accuracy error of the mold and the accumulation of non-uniform strain for each working process The dimensional accuracy of the bearing is inferior to that of the outer ring formed by cutting, and the life of the bearing is shortened.

このようなシェル型針状ころ軸受の寿命を向上させることを目的として、シェル型外輪の熱処理を軸受組立て後に行い、かつ、この熱処理を浸炭窒化処理後に、さらに焼入れ、焼戻しするものとして、外輪の外径真円度を高めるとともに、各軸受部品の強度も高めるようにしたシェル型針状ころ軸受の製造方法がある(例えば、特許文献2参照。)。   For the purpose of improving the life of such a shell type needle roller bearing, heat treatment of the shell type outer ring is performed after the assembly of the bearing, and this heat treatment is further quenched and tempered after carbonitriding. There is a manufacturing method of a shell-type needle roller bearing in which the outer diameter roundness is increased and the strength of each bearing part is increased (see, for example, Patent Document 2).

特許第2997074号公報(第2頁、第10−12図)Japanese Patent No. 2997074 (2nd page, Fig. 10-12) 特許第3073937号公報(第1−2頁、第1−3図)Japanese Patent No. 3073937 (page 1-2, Fig. 1-3)

特許文献2に記載されたシェル型針状ころ軸受の製造方法は、軸受組立て後に熱処理を行うことにより、シェル型外輪の熱ひずみを低減してその外径真円度を高めることができるが、シェル型外輪のプレス加工工程は従来と同じであるので、内径真円度や筒部の偏肉量はあまり改善されない。ちなみに、従来のシェル型外輪の内径真円度は、内径が25mm程度のもので15〜40μmであり、特許文献2に記載された製造方法のものでも10μmを超える。また、筒部偏肉量は、特許文献2に記載された製造方法のものも含めて、内径が25mm程度のもので10〜20μmである。   The manufacturing method of the shell-type needle roller bearing described in Patent Literature 2 can reduce the thermal strain of the shell-type outer ring and increase its outer diameter roundness by performing heat treatment after the bearing is assembled. Since the pressing process of the shell type outer ring is the same as the conventional one, the roundness of the inner diameter and the thickness deviation of the cylindrical portion are not improved so much. Incidentally, the roundness of the inner diameter of a conventional shell type outer ring is 15 to 40 μm when the inner diameter is about 25 mm, and exceeds 10 μm even with the manufacturing method described in Patent Document 2. Further, the amount of uneven thickness of the cylindrical portion is 10 to 20 μm with an inner diameter of about 25 mm including the manufacturing method described in Patent Document 2.

このため、潤滑を含めた使用条件が非常に厳しいエアコンディショナ用等のコンプレッサ主軸の支持構造に用いられるシェル型針状ころ軸受では、特許文献2に記載された製造方法によるものであっても、十分に満足できる長寿命化は達成されていない。   For this reason, in the case of a shell needle roller bearing used for a support structure of a compressor main shaft for an air conditioner or the like in which use conditions including lubrication are very strict, even if the manufacturing method described in Patent Document 2 is used, A sufficiently long life has not been achieved.

また、プレス加工で形成されるシェル型外輪は、削り加工で形成される外輪よりも内径面の面粗度が粗くなる。通常、削り加工で形成される外輪の内径面の面粗度はRa0.05μm程度であるのに対して、シェル型外輪の内径面の面粗度はRa0.4μm程度である。このため、従来のシェル型針状ころ軸受は、内径面での針状ころの転走に伴う使用中の音響が大きく、特に、自動車のエアコンディショナのように騒音の発生を厳しく嫌う用途のコンプレッサ主軸の支持構造には適用できない問題がある。   In addition, the shell-type outer ring formed by press working has a surface roughness that is rougher than that of the outer ring formed by cutting. Normally, the surface roughness of the inner diameter surface of the outer ring formed by shaving is about Ra 0.05 μm, whereas the surface roughness of the inner diameter surface of the shell type outer ring is about Ra 0.4 μm. For this reason, the conventional shell-type needle roller bearings have high acoustics during use due to the rolling of the needle rollers on the inner diameter surface, and are particularly used for applications that severely dislike noise generation, such as automobile air conditioners. There is a problem that cannot be applied to the support structure of the compressor main shaft.

そこで、この発明の課題は、コンプレッサ主軸の支持構造に用いられるシェル型針状ころ軸受を長寿命化することと、使用中の音響レベルを低減することである。   Accordingly, an object of the present invention is to extend the life of a shell needle roller bearing used for a support structure for a compressor main shaft and to reduce the sound level during use.

上記の課題を解決するために、この発明のコンプレッサ主軸の支持構造は、コンプレッサの圧縮動作部材を主軸の回転駆動で動作させ、この主軸のラジアル荷重をコンプレッサ内に配置された針状ころ軸受で支持するコンプレッサ主軸の支持構造において、前記針状ころ軸受を、プレス加工で形成されるシェル型外輪の内径面に沿って複数の針状ころを配列したシェル型針状ころ軸受とし、前記外輪の内径面の周方向面粗度をRa0.05〜0.3μmの数値範囲に規制した構成を採用した。   In order to solve the above-described problems, the compressor main shaft support structure according to the present invention is a needle roller bearing in which a compression operation member of a compressor is operated by rotation driving of the main shaft, and the radial load of the main shaft is disposed in the compressor. In the supporting structure of the supporting compressor main shaft, the needle roller bearing is a shell needle roller bearing in which a plurality of needle rollers are arranged along an inner diameter surface of a shell type outer ring formed by pressing, and the outer ring A configuration in which the circumferential surface roughness of the inner diameter surface is restricted to a numerical value range of Ra 0.05 to 0.3 μm was adopted.

前記外輪内径面の周方向面粗度の下限をRa0.05μmとしたのは、これよりも周方向面粗度が細かくなって内径面が滑らかになり過ぎると、転走する針状ころの弾性接触領域に保持される潤滑油が少なくなり、スミアリング等の表面損傷が生じやすくなるからである。周方向面粗度の上限をRa0.3μmとしたのは、以下の理由による。   The lower limit of the circumferential surface roughness of the outer ring inner diameter surface is set to Ra 0.05 μm because the circumferential surface roughness becomes finer than this and the inner surface becomes too smooth, the elasticity of the needle roller that rolls. This is because less lubricating oil is retained in the contact area, and surface damage such as smearing is likely to occur. The reason why the upper limit of the circumferential surface roughness is set to Ra 0.3 μm is as follows.

本発明者は、シェル型外輪の内径面の面粗度を変えたシェル型針状ころ軸受について、回転試験機を用いた音響測定試験を行い、内径面の周方向面粗度を細かくすると軸受の音響レベルが効果的に低減されることを知見し、後の図5に示すように、これをRa0.3μm以下にすると、音響レベルを厳しく要求される用途の軸受にも十分適用できることを確認した。   The present inventor conducted an acoustic measurement test using a rotary tester on a shell-type needle roller bearing in which the surface roughness of the inner surface of the shell-type outer ring was changed, and the bearing was obtained by reducing the circumferential surface roughness of the inner surface. As shown in FIG. 5 later, it has been confirmed that if this is set to Ra 0.3 μm or less, the sound level can be sufficiently applied to bearings for strictly required applications. did.

この内径面の周方向面粗度が音響レベルの低減に特に効果があるのは、つぎのように考えられる。すなわち、針状ころのころ径に対してころの回転方向の凹凸(周方向面粗度)がある程度以上に粗くなると、針状ころの上下振動が大きくなって大きな音響が発生する。針状ころのころ径は比較的小さいので、周方向面粗度がRa0.3μmを超えると、大きな音響が発生するものと思われる。   It is considered as follows that the circumferential surface roughness of the inner diameter surface is particularly effective in reducing the sound level. That is, when the irregularities (circumferential surface roughness) in the rotation direction of the rollers with respect to the roller diameter of the needle rollers become rougher than a certain level, the vertical vibrations of the needle rollers increase and a large sound is generated. Since the roller diameter of the needle roller is relatively small, it is considered that a large sound is generated when the circumferential surface roughness exceeds Ra 0.3 μm.

また、この発明のコンプレッサ主軸の支持構造は、コンプレッサの圧縮動作部材を主軸の回転駆動で動作させ、この主軸のラジアル荷重をコンプレッサ内に配置された針状ころ軸受で支持するコンプレッサ主軸の支持構造において、前記針状ころ軸受を、プレス加工で形成されるシェル型外輪の内径面に沿って複数の針状ころを配列したシェル型針状ころ軸受とし、前記外輪の内径真円度を10μm以下の数値範囲に規制した構成も採用した。   The compressor main shaft support structure according to the present invention is a compressor main shaft support structure in which a compression operation member of a compressor is operated by rotation of the main shaft, and a radial load of the main shaft is supported by a needle roller bearing disposed in the compressor. The needle roller bearing is a shell needle roller bearing in which a plurality of needle rollers are arranged along the inner diameter surface of a shell type outer ring formed by pressing, and the inner ring roundness of the outer ring is 10 μm or less. The configuration restricted to the numerical range of was also adopted.

前記外輪の内径真円度の数値範囲を10μm以下としたのは以下の理由による。本発明者は、シェル型外輪の内径真円度を変えたシェル型針状ころ軸受について軸受寿命試験を行い、後の図6に示すように、内径真円度と軸受寿命は良い相関関係を有し、内径真円度を10μm以下にすると、厳しい使用条件下でも十分な長寿命化を達成できることを確認した。   The numerical range of the inner ring roundness of the outer ring is set to 10 μm or less for the following reason. The present inventor conducted a bearing life test on a shell needle roller bearing in which the inner diameter roundness of the shell type outer ring was changed. As shown in FIG. 6 later, the inner diameter roundness and the bearing life have a good correlation. It was confirmed that when the inner diameter roundness was 10 μm or less, a sufficiently long life could be achieved even under severe use conditions.

さらに、この発明のコンプレッサ主軸の支持構造は、コンプレッサの圧縮動作部材を主軸の回転駆動で動作させ、この主軸のラジアル荷重をコンプレッサ内に配置された針状ころ軸受で支持するコンプレッサ主軸の支持構造において、前記針状ころ軸受を、プレス加工で形成されるシェル型外輪の内径面に沿って複数の針状ころを配列したシェル型針状ころ軸受とし、前記外輪の筒部偏肉量を10μm未満の数値範囲に規制した構成も採用した。   Furthermore, the compressor main shaft support structure of the present invention is a compressor main shaft support structure in which a compression operation member of the compressor is operated by rotational driving of the main shaft, and the radial load of the main shaft is supported by needle roller bearings arranged in the compressor. The needle roller bearing is a shell needle roller bearing in which a plurality of needle rollers are arranged along the inner diameter surface of the shell type outer ring formed by pressing, and the cylindrical portion thickness deviation of the outer ring is 10 μm. A configuration restricted to a numerical range of less than was also adopted.

前記外輪の筒部偏肉量の数値範囲を10μm未満としたのは以下の理由による。本発明者は、シェル型外輪の筒部偏肉量を変えたシェル型針状ころ軸受について軸受寿命試験を行い、後の図7に示すように、外輪の筒部偏肉量と軸受寿命は良い相関関係を有し、軸方向偏肉量を10μm未満にすると、厳しい使用条件下でも十分な長寿命化を達成できることを確認した。   The reason why the numerical range of the cylindrical portion thickness deviation of the outer ring is less than 10 μm is as follows. The inventor conducted a bearing life test on the shell type needle roller bearing in which the amount of uneven thickness of the cylindrical portion of the shell type outer ring was changed, and as shown in FIG. It has been confirmed that when there is a good correlation and the axial thickness deviation is less than 10 μm, a sufficiently long life can be achieved even under severe use conditions.

前記シェル型外輪の内径真円度や筒部偏肉量の低減が軸受の長寿命化に効果があるのは、内径面での針状ころの転走が円滑になり、ころのスリップやがたつき等による内径面での局部的な摩耗や応力集中が抑制されるためと考えられる。   The reduction in the roundness of the inner diameter of the shell-type outer ring and the thickness deviation of the cylindrical portion is effective in extending the life of the bearing. This is considered to be because local wear and stress concentration on the inner surface due to rattling or the like is suppressed.

前記外輪の内径面の周方向面粗度、内径真円度および筒部偏肉量の少なくともいずれかを前記数値範囲に規制する手段としては、前記シェル型外輪を形成するプレス加工にしごき工程を設け、このしごき工程における前記外輪の外径面となる外径側しごき面での潤滑条件を、略流体潤滑状態とする手段を採用することができる。   As means for restricting at least one of the circumferential surface roughness, the inner diameter roundness, and the cylindrical part thickness deviation of the inner ring surface of the outer ring to the numerical range, a pressing process for forming the shell-type outer ring is performed. It is possible to employ a means for providing a lubrication condition in a substantially fluid lubrication condition on the outer diameter side ironing surface, which is the outer diameter surface of the outer ring in the ironing step.

本発明者は、プレス試験機を用いて、SCM415鋼板の絞りしごき試験を行い、カップ成形物の内外径面の面粗度、内径真円度および筒部偏肉量を調査した。この結果、ダイス側(カップ成形物の外径側しごき面)に潤滑性の優れた高粘度プレス加工油を塗布すると、シェル型外輪の内径面となるカップ成形物の内径面における面粗度が外径面よりも細かくなること、および内径真円度と筒部偏肉量が改善されることを見出した。   The inventor conducted a squeezing and ironing test of the SCM415 steel sheet using a press tester, and investigated the surface roughness, the inner diameter roundness, and the cylindrical part thickness deviation of the inner and outer diameter surfaces of the cup molded product. As a result, when high viscosity press working oil with excellent lubricity is applied to the die side (the outer diameter side ironing surface of the cup molded product), the surface roughness of the inner diameter surface of the cup molded product that becomes the inner diameter surface of the shell type outer ring is reduced. It has been found that the surface becomes finer than the outer diameter surface, and the inner diameter roundness and the cylindrical part thickness deviation are improved.

まず、前記面粗度の調査結果については、図10にその一例を示すが、ブランク素材の面粗度は表裏面ともRa0.49μm程度であるのに対して、カップ成形物内径面の面粗度はRa0.15μmと非常に細かくなっている。カップ成形物外径面の面粗度はRa0.44μmであり、ブランク素材の面粗度とあまり変わっていない。なお、図10に示すカップ成形物内外径面の面粗度は、いずれも軸方向に測定したものであるが、周方向に測定した面粗度もこれらとほぼ同等であった。この測定結果は、通常の絞りしごき加工で観察されるものと逆であり、通常の絞りしごき加工では、ダイスでしごかれるカップ成形物外径面の方が細かい面粗度となり、内径面の面粗度はブランク素材の面粗度とあまり変わらない。   First, an example of the surface roughness investigation results is shown in FIG. 10. The surface roughness of the blank material is about Ra 0.49 μm on both the front and back surfaces, whereas the surface roughness of the inner diameter surface of the cup molded product. The degree is very fine with Ra 0.15 μm. The surface roughness of the outer diameter surface of the cup molded product is Ra 0.44 μm, which is not much different from the surface roughness of the blank material. Note that the surface roughness of the inner and outer diameter surfaces of the cup molded product shown in FIG. 10 was measured in the axial direction, but the surface roughness measured in the circumferential direction was almost the same. This measurement result is opposite to that observed in normal drawing and ironing, and in normal drawing and ironing, the outer diameter surface of the cup product that is squeezed with a die has a finer surface roughness, The surface roughness is not much different from the surface roughness of the blank material.

これらの調査結果は、以下のように考えられる。すなわち、カップ成形物外径面の面粗度が素材の面粗度とあまり変わらなかったのは、カップ成形物の外径側しごき面では、加工される素材とダイスが殆ど接触しない略流体潤滑状態であったと考えられる。このようにダイス側の潤滑条件を略流体潤滑状態にすると、ダイスとの摩擦に起因する外径側しごき面での剪断力が殆どなくなって、ポンチとダイスの間のしごき部における応力が板厚方向で均一な圧縮応力状態となり、つぎの図11で検証されるように、素材が板厚方向で均一に減厚変形するようになる。   The results of these surveys are considered as follows. That is, the surface roughness of the outer diameter surface of the cup molded product was not much different from the surface roughness of the material. On the ironing surface on the outer diameter side of the cup molded product, the material to be processed and the die hardly contact each other. It is thought that it was in a state. In this way, when the lubrication condition on the die side is set to a substantially fluid lubrication state, there is almost no shearing force on the ironing surface on the outer diameter side caused by friction with the die, and the stress at the ironing part between the punch and the die is reduced by the plate thickness. As shown in FIG. 11, the material is uniformly reduced in thickness in the thickness direction.

図11は、前記カップ成形物の上端部の板厚断面写真を示す。上記推定を検証するように、ダイス側に潤滑性の優れたプレス加工油を塗布したカップ成形物の上端部は、板厚方向で均一に軸方向へ延伸している。このように、素材が板厚方向で均一に減厚変形して軸方向へ延伸すると、ポンチに接触するカップ成形物の内径面がポンチ表面に沿って軸方向へ相対移動し、この相対移動によるポンチ表面との摺動で内径面の面粗度が細かくなったものと考えられる。一方、通常の絞りしごき加工によるカップ成形物の上端部は、外径面側が著しく軸方向に延伸している。これは、ダイスとの摩擦に起因する剪断力でカップ成形物の外径面側が優先的に減厚変形し、内径面側があまり減厚変形しないからである。このように、内径面側があまり減厚変形しない通常の絞りしごき加工では、カップ成形物の内径面がポンチ表面と殆ど相対移動しないので、その面粗度は素材とあまり変わらない。   FIG. 11 shows a cross-sectional photograph of the thickness of the upper end of the cup molding. As the above estimation is verified, the upper end portion of the cup molded product in which the press working oil having excellent lubricity is applied to the die side is uniformly extended in the axial direction in the plate thickness direction. In this way, when the material is uniformly reduced in thickness in the plate thickness direction and stretched in the axial direction, the inner diameter surface of the cup molded product that comes in contact with the punch moves relative to the punch surface in the axial direction. It is considered that the surface roughness of the inner diameter surface became fine by sliding with the punch surface. On the other hand, the outer diameter surface side of the upper end portion of the cup molded product obtained by normal drawing ironing process is remarkably extended in the axial direction. This is because the outer diameter surface side of the cup molded product is preferentially reduced in thickness by the shearing force resulting from friction with the die, and the inner diameter surface side is not significantly reduced in thickness. In this way, in the normal drawing and ironing process in which the inner diameter surface side is not so thinly deformed, the inner diameter surface of the cup molded product hardly moves relative to the punch surface, so the surface roughness is not much different from that of the material.

前記外径側しごき面での潤滑条件を略流体潤滑状態とする加工方法では、図11に示したように、カップ成形物の上端面が板厚方向で均一になるので、ブランク径を小さくして歩留も向上させることができる。また、ブランク径を小さくすることにより、絞り加工に必要なプレス荷重も低減される。   In the processing method in which the lubrication condition on the outer diameter side ironing surface is in a substantially fluid lubrication state, as shown in FIG. 11, the upper end surface of the cup molding is uniform in the plate thickness direction. Yield can be improved. Further, by reducing the blank diameter, the press load necessary for drawing is also reduced.

つぎに、前記内径真円度と筒部偏肉量については、後の表1に示すように、内径真円度は10μm以下に、筒部偏肉量は10μm未満に低減されることを確認した。これらの調査結果は、以下のように考えられる。すなわち、上述したように、しごき加工におけるダイス側の潤滑条件が略流体潤滑状態とされて素材が板厚方向で均一に減厚変形すると、カップ成形物の筒部偏肉量が低減されるとともに、ポンチに接触するカップ成形物の内径面がポンチ表面に沿って軸方向へ相対移動してポンチ外径面の形状になじみ、ポンチから離型後もカップ成形物の内径真円度が良好に保持されるものと考えられる。一方、通常の絞りしごき加工では、カップ成形物の内径面側はあまり減厚変形せず、ポンチ表面とも殆ど相対移動しないので、カップ成形物の内径真円度や筒部偏肉量はあまり改善されない。   Next, with respect to the inner diameter roundness and the cylindrical part thickness deviation, as shown in Table 1 below, it is confirmed that the inner diameter roundness is reduced to 10 μm or less and the cylindrical part thickness deviation is reduced to less than 10 μm. did. The results of these surveys are considered as follows. That is, as described above, when the die-side lubrication condition in the ironing process is substantially fluid lubricated, and the material is uniformly reduced in thickness in the thickness direction, the thickness of the cylindrical portion of the cup molded product is reduced. The inner diameter surface of the cup product that contacts the punch moves relative to the punch surface in the axial direction and is adapted to the shape of the outer diameter surface of the punch. It is considered to be retained. On the other hand, in the normal drawing and ironing process, the inner diameter side of the cup molded product does not undergo much thickness deformation and hardly moves relative to the punch surface. Not.

この発明のコンプレッサ主軸用針状ころ軸受は、コンプレッサの圧縮動作部材を回転駆動する主軸のラジアル荷重をコンプレッサ内で支持するコンプレッサ主軸用針状ころ軸受において、複数の針状ころが内径面に沿って配列される外輪を、プレス加工で形成されるシェル型外輪とし、この外輪の内径面の周方向面粗度をRa0.05〜0.3μmの数値範囲に規制した構成を採用した。   A needle roller bearing for a compressor main shaft according to the present invention is a needle roller bearing for a compressor main shaft that supports a radial load of a main shaft that rotationally drives a compression operation member of the compressor within the compressor. The outer ring arranged in this manner was a shell-type outer ring formed by press working, and a configuration in which the circumferential surface roughness of the inner diameter surface of the outer ring was restricted to a numerical value range of Ra 0.05 to 0.3 μm was adopted.

また、この発明のコンプレッサ主軸用針状ころ軸受は、コンプレッサの圧縮動作部材を回転駆動する主軸のラジアル荷重をコンプレッサ内で支持するコンプレッサ主軸用針状ころ軸受において、複数の針状ころが内径面に沿って配列される外輪を、プレス加工で形成されるシェル型外輪とし、この外輪の内径真円度を10μm以下の数値範囲に規制した構成も採用した。   Further, the needle roller bearing for the compressor main shaft according to the present invention is the needle roller bearing for the main shaft of the compressor for supporting the radial load of the main shaft that rotationally drives the compression operation member of the compressor in the compressor. A configuration in which the outer ring arranged along the outer ring is a shell-type outer ring formed by pressing, and the inner ring roundness of the outer ring is regulated to a numerical range of 10 μm or less is also employed.

さらに、この発明のコンプレッサ主軸用針状ころ軸受は、コンプレッサの圧縮動作部材を回転駆動する主軸のラジアル荷重をコンプレッサ内で支持するコンプレッサ主軸用針状ころ軸受において、複数の針状ころが内径面に沿って配列される外輪を、プレス加工で形成されるシェル型外輪とし、この外輪の筒部偏肉量を10μm未満の数値範囲に規制した構成も採用した。   Further, the needle roller bearing for a compressor main shaft according to the present invention is a needle roller bearing for a compressor main shaft that supports a radial load of a main shaft that rotationally drives a compression operation member of the compressor within the compressor. A configuration in which the outer ring arranged along the outer ring is a shell-type outer ring formed by press working, and the thickness deviation of the cylindrical portion of the outer ring is regulated to a numerical range of less than 10 μm is also employed.

この発明のコンプレッサ主軸の支持構造は、コンプレッサ主軸のラジアル荷重を支持する針状ころ軸受を、プレス加工で形成されるシェル型外輪の内径面に沿って複数の針状ころを配列したシェル型針状ころ軸受とし、このシェル型外輪の内径面の周方向面粗度をRa0.05〜0.3μmの数値範囲に規制するようにしたので、コンプレッサ運転中の騒音を低減することができる。   The support structure of the compressor main shaft according to the present invention is a shell-type needle in which a plurality of needle rollers are arranged along an inner diameter surface of a shell-type outer ring formed by pressing a needle roller bearing that supports a radial load of the compressor main shaft. Since the surface roughness in the circumferential direction of the inner diameter surface of the shell type outer ring is restricted to a numerical value range of Ra 0.05 to 0.3 μm, noise during compressor operation can be reduced.

また、この発明のコンプレッサ主軸の支持構造は、コンプレッサ主軸のラジアル荷重を支持する針状ころ軸受を、プレス加工で形成されるシェル型外輪の内径面に沿って複数の針状ころを配列したシェル型針状ころ軸受とし、このシェル型外輪の内径真円度を10μm以下の数値範囲に規制するか、または、筒部偏肉量を10μm未満の数値範囲に規制するようにしたので、軸受部を長寿命化することができる。   The compressor main shaft support structure of the present invention is a shell in which a plurality of needle rollers are arranged along an inner diameter surface of a shell-type outer ring formed by pressing a needle roller bearing that supports a radial load of the compressor main shaft. Since the inner diameter roundness of the shell type outer ring is restricted to a numerical value range of 10 μm or less, or the thickness deviation of the cylindrical portion is restricted to a numerical value range of less than 10 μm. Can extend the service life.

前記外輪の内径面の周方向面粗度、内径真円度および筒部偏肉量の少なくともいずれかを前記数値範囲に規制する手段を、シェル型外輪を形成するプレス加工にしごき工程を設け、このしごき工程における外輪の外径面となる外径側しごき面での潤滑条件を略流体潤滑状態とすることにより、カップ成形物の上端面が板厚方向で均一に近くなるので、ブランク径を小さくして歩留を向上させるとともに、絞り加工に必要なプレス荷重も低減することができる。   A means for restricting at least one of the circumferential surface roughness, the inner diameter roundness and the cylindrical portion thickness deviation of the inner ring surface of the outer ring to the numerical range is provided in a pressing process for forming a shell type outer ring, By making the lubrication condition on the outer diameter side ironing surface, which is the outer diameter surface of the outer ring in this ironing process, substantially fluid lubrication, the upper end surface of the cup molded product becomes nearly uniform in the plate thickness direction. The yield can be improved by reducing the size, and the press load necessary for drawing can be reduced.

この発明のコンプレッサ主軸用針状ころ軸受は、複数の針状ころが内径面に沿って配列される外輪を、プレス加工で形成されるシェル型外輪として、この外輪の内径面の周方向面粗度をRa0.05〜0.3μmの数値範囲に規制するようにしたので、その使用中の音響レベルを低減することができる。   The needle roller bearing for a compressor main shaft according to the present invention has a circumferential surface roughness of an inner diameter surface of the outer ring as an outer ring in which a plurality of needle rollers are arranged along the inner diameter surface as a shell-type outer ring formed by pressing. Since the degree is restricted to a numerical value range of Ra 0.05 to 0.3 μm, the sound level during use can be reduced.

また、この発明のコンプレッサ主軸用針状ころ軸受は、複数の針状ころが内径面に沿って配列される外輪を、プレス加工で形成されるシェル型外輪として、この外輪の内径真円度を10μm以下の数値範囲に規制するか、または、筒部偏肉量を10μm未満の数値範囲に規制するようにしたので、その寿命を延長することができる。   Further, the needle roller bearing for a compressor main shaft of the present invention has an outer ring in which a plurality of needle rollers are arranged along the inner diameter surface as a shell type outer ring formed by pressing, and the inner ring has a roundness inside diameter. Since it is restricted to a numerical value range of 10 μm or less, or the cylindrical portion thickness deviation is restricted to a numerical value range of less than 10 μm, its life can be extended.

以下、図面に基づき、この発明の実施形態を説明する。図1は、本発明に係る第1の実施形態のコンプレッサ主軸の支持構造を採用した自動車のエアコンディショナ用コンプレッサを示す。このコンプレッサは、主軸1に固定された斜板2の回転により、斜板2上を摺動するシュー3を介して、圧縮動作部材であるピストン4を往復動作させる両斜板タイプのコンプレッサである。高速で回転駆動される主軸1は、冷媒が存在するハウジング5内で、ラジアル方向を2つのシェル型針状ころ軸受6で支持され、スラスト方向をスラスト針状ころ軸受7で支持されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a compressor for an air conditioner for an automobile that employs a support structure for a compressor main shaft according to a first embodiment of the present invention. This compressor is a double swash plate type compressor that reciprocates a piston 4 that is a compression operation member through a shoe 3 that slides on the swash plate 2 by the rotation of the swash plate 2 fixed to the main shaft 1. . The main shaft 1 that is rotationally driven at high speed is supported by two shell needle roller bearings 6 in the radial direction and a thrust needle roller bearing 7 in the thrust direction in a housing 5 in which refrigerant exists.

前記ハウジング5には周方向に等間隔で複数のシリンダボア8が形成され、各ボア8内に両頭形のピストン4が往復自在に収納されている。各ピストン4には斜板2の外周部を跨ぐように凹部4aが形成され、この凹部4aの軸方向対向面に形成された球面座9に、球状のシュー3が着座されている。このシュー3は半球状のものもあり、斜板2の回転運動を各ピストン4の往復運動に円滑に変換する働きをする。   A plurality of cylinder bores 8 are formed in the housing 5 at equal intervals in the circumferential direction, and double-headed pistons 4 are reciprocally accommodated in the bores 8. Each piston 4 is formed with a recess 4a so as to straddle the outer periphery of the swash plate 2, and a spherical shoe 3 is seated on a spherical seat 9 formed on the axially opposed surface of the recess 4a. Some of the shoes 3 are hemispherical and function to smoothly convert the rotational motion of the swash plate 2 into the reciprocating motion of each piston 4.

前記主軸1のラジアル方向を支持する各シェル型針状ころ軸受6は、図2に示すように、プレス加工で形成されたSCM415製シェル型外輪11の内径面12に沿って、複数の針状ころ13を配列したものであり、各針状ころ13は、同じくプレス加工で形成されたSPCC製保持器14によって保持されている。   As shown in FIG. 2, each of the shell needle roller bearings 6 that support the radial direction of the main shaft 1 has a plurality of needle-like shapes along the inner diameter surface 12 of the SCM415 shell-type outer ring 11 formed by pressing. The rollers 13 are arranged, and each needle roller 13 is held by a SPCC cage 14 that is also formed by pressing.

図3は、前記シェル型外輪11を製造する概略の工程を示す。まずプレス加工により、SCM415リン酸塩皮膜処理鋼鈑の円形ブランクが、1回の絞りしごき工程でカップ成形物とされ、決め押し工程でカップ底コーナ部が所定のコーナ半径に決め押し成形される。絞りしごき工程では、ダイス側に潤滑性の優れたプレス加工油が塗布され、外径側しごき面での潤滑条件が略流体潤滑状態とされる。つぎに、底抜き工程でカップ底中央部が打ち抜かれて外輪11の一方の鍔11aが形成され、トリミング工程でカップ上端部が均一な高さにトリミングされる。こののち、プレス加工された外輪11は、熱処理工程で浸炭焼入れ、焼戻し処理を施され、最後の組立て工程で、他方の鍔11bが内方への折り曲げ加工により形成される。   FIG. 3 shows a schematic process for manufacturing the shell-type outer ring 11. First, by pressing, a circular blank of SCM415 phosphate-coated steel sheet is formed into a cup molding in one drawing and ironing process, and the cup bottom corner portion is determined and pressed into a predetermined corner radius in the final pressing process. . In the squeezing and ironing process, press working oil having excellent lubricity is applied to the die side, and the lubrication condition on the ironing surface on the outer diameter side is substantially fluid lubricated. Next, the center portion of the cup bottom is punched in the bottoming step to form one flange 11a of the outer ring 11, and the upper end portion of the cup is trimmed to a uniform height in the trimming step. After that, the press-processed outer ring 11 is subjected to carburizing and quenching and tempering in a heat treatment process, and in the final assembly process, the other flange 11b is formed by bending inward.

上述した実施形態では、シェル型外輪11のプレス加工における絞り工程を1回のみとし、しごき工程をこの1回の絞り工程と同時に行う絞りしごき工程としたが、絞り工程を3回以下の複数回とし、しごき工程を最終回の絞り工程と同時に行う絞りしごき工程としてもよく、しごき工程を絞り工程または決め押し工程の後で別に行ってもよい。   In the above-described embodiment, the drawing process in the press working of the shell-type outer ring 11 is performed only once, and the ironing process is the drawing ironing process performed simultaneously with this one drawing process. The squeezing step may be performed simultaneously with the final squeezing step, or the squeezing step may be performed separately after the squeezing step or the final pressing step.

図3の製造工程で製造した実施例のシェル型外輪について、内径面の面粗度、内径真円度および筒部偏肉量を測定した。測定した外輪の寸法は、外径28mm、長さ16mm、肉厚0.95mmであり、内径面の面粗度の測定は、外輪を半円筒状に2分割して行った。   With respect to the shell type outer ring of the example manufactured in the manufacturing process of FIG. 3, the surface roughness of the inner surface, the inner diameter roundness, and the cylindrical part thickness deviation were measured. The measured dimensions of the outer ring were an outer diameter of 28 mm, a length of 16 mm, and a wall thickness of 0.95 mm. The surface roughness of the inner diameter surface was measured by dividing the outer ring into two semicylindrical shapes.

前記内径面の面粗度は周方向と軸方向に測定し、周方向面粗度は、外輪の両端から各2mmの位置と長さ方向中央位置の3箇所で、軸方向面粗度は、周方向に90°の位相の4箇所で測定した。なお、図10に示したように、ブランク素材の面粗度は表裏面ともRa0.49μm程度、外輪の外径面の面粗度はRa0.44μm程度である。   The surface roughness of the inner diameter surface is measured in the circumferential direction and the axial direction. The circumferential surface roughness is 3 mm from each end of the outer ring at a position of 2 mm each and a central position in the length direction. Measurements were made at four locations with a 90 ° phase in the circumferential direction. As shown in FIG. 10, the surface roughness of the blank material is about Ra 0.49 μm on both the front and back surfaces, and the surface roughness of the outer diameter surface of the outer ring is about Ra 0.44 μm.

図4(a)、(b)は、上記面粗度の測定結果の一例を示す。図4(a)は、外輪の長さ方向中央位置で測定した周方向面粗度であり、Ra0.18μmと非常に細かくなっている。図示は省略するが、両端から各2mmの位置で測定した周方向面粗度もRa0.05〜0.3μmの範囲にあり、ブランク素材や外径面の面粗度よりも細かくなっている。図4(b)は、1つの位相で測定した軸方向面粗度であり、Ra0.15μmとなっている。図示は省略するが、他の位相で測定した軸方向面粗度も、いずれもRa0.3μm以下と非常に細かくなっていた。   4A and 4B show examples of the measurement results of the surface roughness. FIG. 4A shows the circumferential surface roughness measured at the center position in the longitudinal direction of the outer ring, which is very fine as Ra 0.18 μm. Although illustration is omitted, the circumferential surface roughness measured at positions of 2 mm from both ends is also in the range of Ra 0.05 to 0.3 μm, which is finer than the surface roughness of the blank material and the outer diameter surface. FIG. 4B shows the axial surface roughness measured with one phase, which is Ra 0.15 μm. Although illustration is omitted, the surface roughness in the axial direction measured at other phases was also very fine with Ra of 0.3 μm or less.

上記実施例の外輪内径面の周方向面粗度をRa0.05〜0.3μmとしたシェル型針状ころ軸受と、同一軸受寸法で、外輪内径面の周方向面粗度がRa0.3μmを超える比較例のシェル型針状ころ軸受を用意し、これらを回転試験機に取り付けて、音響測定試験を行った。試験条件は、以下の通りである。
・回転速度:4800rpm
・ラジアル荷重:180N
・潤滑:粘度2cSt油塗布
・音響測定位置:軸受から45°方向で距離100mmの位置
The outer circumferential surface roughness of the outer ring inner diameter surface is the same as that of the shell type needle roller bearing in which the circumferential surface roughness of the outer ring inner diameter surface is Ra 0.05 to 0.3 μm, and the circumferential surface roughness of the outer ring inner diameter surface is Ra 0.3 μm. The comparative example shell-type needle roller bearings were prepared, and these were attached to a rotation testing machine, and an acoustic measurement test was performed. The test conditions are as follows.
・ Rotation speed: 4800 rpm
・ Radial load: 180N
・ Lubrication: Viscosity 2cSt oil application ・ Sound measurement position: Position at a distance of 100 mm in a 45 ° direction from the bearing

図5は、上記音響測定試験における音響レベルの測定結果を示す。この測定結果より、内径面の周方向面粗度をRa0.05〜0.3μmとした実施例のものは、いずれも音響レベルが60dB以下となり、比較例のものに較べて音響レベルが著しく低減されていることが分かる。   FIG. 5 shows the measurement result of the sound level in the sound measurement test. From these measurement results, the examples in which the circumferential surface roughness of the inner diameter surface is Ra 0.05 to 0.3 μm all have an acoustic level of 60 dB or less, and the acoustic level is significantly reduced compared to the comparative example. You can see that.

表1は、図3の製造工程で製造したシェル型外輪(実施例A〜F)と、従来の製造工程で製造したシェル型外輪(比較例A〜F)について、その内径真円度と筒部偏肉量を測定した結果を示す。測定した外輪の寸法は、外径28mm、長さ16mm、肉厚0.95mmである。内径真円度と筒部偏肉量の軸方向での測定位置は、前記内径面の周方向面粗度の測定位置と同じ3箇所とし、筒部偏肉量については、これらの各軸方向位置で周方向に90°の位相で4箇所、合計12箇所で測定した。実施例のものは、いずれも内径真円度が10μm以下、筒部偏肉量が10μm未満となっている。なお、比較例Aは、特許文献2に記載された製造方法で製造したものである。   Table 1 shows the inner diameter roundness and cylinder of the shell type outer ring (Examples A to F) manufactured in the manufacturing process of FIG. 3 and the shell type outer ring (Comparative Examples A to F) manufactured in the conventional manufacturing process. The result of having measured the partial thickness deviation is shown. The measured dimensions of the outer ring are an outer diameter of 28 mm, a length of 16 mm, and a wall thickness of 0.95 mm. The measurement positions in the axial direction of the inner diameter roundness and the cylindrical portion thickness deviation are the same three positions as the measurement positions of the circumferential surface roughness of the inner diameter surface. The measurement was performed at a total of 12 locations at 4 locations with 90 ° phase in the circumferential direction. In all of the examples, the roundness of the inner diameter is 10 μm or less, and the thickness deviation of the cylindrical portion is less than 10 μm. In addition, Comparative Example A is manufactured by the manufacturing method described in Patent Document 2.

表1に示した実施例および比較例のシェル型針状ころ軸受について、軸受寿命試験を行った。各実施例および比較例のサンプル数は8個とし、軸受寿命はL10寿命(サンプルの90%が破損しないで使える時間)で評価した。試験条件は、以下の通りである。
・アキシアル荷重:9.81kN
・回転速度:5000rpm
・潤滑油:スピンドル油VG2
Bearing life tests were conducted on the shell needle roller bearings of the examples and comparative examples shown in Table 1. The number of samples in each example and comparative example was eight, and the bearing life was evaluated by L10 life (time in which 90% of the sample can be used without being damaged). The test conditions are as follows.
・ Axial load: 9.81kN
・ Rotation speed: 5000rpm
・ Lubricating oil: Spindle oil VG2

図6は、上記軸受寿命試験における内径真円度とL10寿命の関係を示す。シェル型外輪の内径真円度が10μm以下である各実施例のものは、いずれもL10寿命が200時間を超え、軸受寿命が大幅に延長されていることが分かる。なお、内径真円度が10μmを超える比較例のものは、最も優れた比較例AでもL10寿命が200時間に満たない。   FIG. 6 shows the relationship between the inner diameter roundness and the L10 life in the bearing life test. It can be seen that in each of the examples in which the roundness of the inner diameter of the shell type outer ring is 10 μm or less, the L10 life exceeds 200 hours, and the bearing life is significantly extended. In the comparative example having an inner diameter roundness exceeding 10 μm, even the most excellent comparative example A has an L10 life of less than 200 hours.

図7は、上記軸受寿命試験における筒部偏肉量とL10寿命の関係を示す。筒部偏肉量についても、10μm未満である各実施例のものはいずれもL10寿命が200時間を超え、軸受寿命が大幅に延長されている。   FIG. 7 shows the relationship between the cylinder wall thickness deviation and the L10 life in the bearing life test. Regarding the cylindrical part thickness deviation, the L10 life of each of the examples of less than 10 μm exceeds 200 hours, and the bearing life is greatly extended.

図8は、第2の実施形態のコンプレッサ主軸の支持構造を採用したエアコンディショナ用コンプレッサを示す。このコンプレッサは片斜板タイプのコンプレッサであり、主軸21に連結された連結部材22の回転により、連結部材22の傾斜面22aにボール23とスラスト針状ころ軸受24で支持された斜板25を揺動運動させ、この斜板25の揺動運動をピストンロッド26を介して、片頭形のピストン27の往復運動に変換するものである。この主軸21はハウジング28内で、ラジアル方向を1つのシェル型針状ころ軸受29で支持され、スラスト方向を連結部材22を介してスラスト針状ころ軸受30で支持されている。シェル型針状ころ軸受29は、第1の実施形態のものと同様に、図3に示した製造工程で製造されたシェル型外輪を用いている。   FIG. 8 shows an air conditioner compressor employing the compressor spindle support structure of the second embodiment. This compressor is a swash plate type compressor, and a swash plate 25 supported by a ball 23 and a thrust needle roller bearing 24 on an inclined surface 22a of the connecting member 22 by rotation of the connecting member 22 connected to the main shaft 21. The swinging motion of the swash plate 25 is converted into the reciprocating motion of the single-headed piston 27 via the piston rod 26. The main shaft 21 is supported in the housing 28 by a single shell needle roller bearing 29 in the radial direction and supported by a thrust needle roller bearing 30 in the thrust direction via a connecting member 22. As in the case of the first embodiment, the shell type needle roller bearing 29 uses a shell type outer ring manufactured by the manufacturing process shown in FIG.

図9は、第3の実施形態のコンプレッサ主軸の支持構造を採用したエアコンディショナ用コンプレッサを示す。このコンプレッサは片斜板タイプの可変容量コンプレッサであり、主軸31に連結された連結部材32の傾斜角度が、主軸31に嵌めこまれたスリーブ33を軸方向へスライドさせることにより、変更可能とされている。連結部材32にスラスト針状ころ軸受34で支持された斜板35の揺動運動は、第2の実施形態のものと同様に、ピストンロッド36を介して、片頭形のピストン37の往復運動に変換される。この主軸31はハウジング38内で、ラジアル方向を2つのシェル型針状ころ軸受39で支持され、スラスト方向をスラスト針状ころ軸受40で支持されている。このシェル型針状ころ軸受39も、第1の実施形態のものと同様に、図3に示した製造工程で製造されたシェル型外輪を用いている。   FIG. 9 shows an air conditioner compressor employing the compressor spindle support structure of the third embodiment. This compressor is a swash plate type variable displacement compressor, and the inclination angle of the connecting member 32 connected to the main shaft 31 can be changed by sliding the sleeve 33 fitted in the main shaft 31 in the axial direction. ing. The swinging motion of the swash plate 35 supported on the connecting member 32 by the thrust needle roller bearing 34 is the reciprocating motion of the one-sided piston 37 via the piston rod 36 as in the second embodiment. Converted. In the housing 38, the main shaft 31 is supported by two shell needle roller bearings 39 in the radial direction and supported by the thrust needle roller bearing 40 in the thrust direction. This shell-type needle roller bearing 39 also uses a shell-type outer ring manufactured in the manufacturing process shown in FIG. 3 as in the first embodiment.

第1の実施形態のコンプレッサ主軸の支持構造を採用したエアコンディショナ用コンプレッサを示す縦断面図FIG. 1 is a longitudinal sectional view showing a compressor for an air conditioner adopting the compressor spindle support structure of the first embodiment. 図1のシェル型針状ころ軸受を示す縦断面図1 is a longitudinal sectional view showing the shell needle roller bearing of FIG. 図2のシェル型針状ころ軸受の概略の製造工程を示す工程図Process drawing which shows the outline manufacturing process of the shell type needle roller bearing of FIG. a、bは、それぞれ図3の製造工程で製造したシェル型外輪内径面の周方向と軸方向の面粗度を示すグラフa and b are graphs showing the surface roughness in the circumferential direction and the axial direction of the inner surface of the shell-type outer ring manufactured in the manufacturing process of FIG. シェル型針状ころ軸受の音響測定試験における外輪内径面の周方向面粗度と音響レベルの関係を示すグラフGraph showing the relationship between the circumferential surface roughness of the inner surface of the outer ring and the sound level in the sound measurement test of the shell needle roller bearing シェル型針状ころ軸受の軸受寿命試験におけるシェル型外輪の内径真円度とL10寿命の関係を示すグラフThe graph which shows the relationship between the internal diameter roundness of a shell type outer ring | wheel and L10 life in the bearing life test of a shell type needle roller bearing シェル型針状ころ軸受の軸受寿命試験におけるシェル型外輪の筒部偏肉量とL10寿命の関係を示すグラフThe graph which shows the relationship between the cylindrical part thickness deviation of a shell type outer ring | wheel, and L10 life in the bearing life test of a shell type needle roller bearing 第2の実施形態のコンプレッサ主軸の支持構造を採用したエアコンディショナ用コンプレッサを示す縦断面図The longitudinal cross-sectional view which shows the compressor for an air conditioner which employ | adopted the support structure of the compressor main shaft of 2nd Embodiment. 第3の実施形態のコンプレッサ主軸の支持構造を採用したエアコンディショナ用コンプレッサを示す縦断面図The longitudinal cross-sectional view which shows the compressor for air conditioners which employ | adopted the support structure of the compressor main shaft of 3rd Embodiment. 絞りしごき試験におけるカップ成形物内外径面の面粗度とブランク素材の面粗度を示すグラフGraph showing the surface roughness of the inner and outer diameter surfaces of the cup molding and the surface roughness of the blank material in the drawing ironing test 絞りしごき試験におけるカップ成形物上端部の板厚断面写真Thickness cross-sectional photograph of the upper end of the cup molding in the drawing ironing test

符号の説明Explanation of symbols

1 主軸
2 斜板
3 シュー
4 ピストン
4a 凹部
5 ハウジング
6 シェル型針状ころ軸受
7 スラスト針状ころ軸受
8 ボア
9 球面座
11 シェル型外輪
11a、11b 鍔
12 内径面
13 針状ころ
14 保持器
21 主軸
22 連結部材
22a 傾斜面
23 ボール
24 スラスト針状ころ軸受
25 斜板
26 ピストンロッド
27 ピストン
28 ハウジング
29 シェル型針状ころ軸受
30 スラスト針状ころ軸受
31 主軸
32 連結部材
33 スリーブ
34 スラスト針状ころ軸受
35 斜板
36 ピストンロッド
37 ピストン
38 ハウジング
39 シェル型針状ころ軸受
40 スラスト針状ころ軸受
DESCRIPTION OF SYMBOLS 1 Main shaft 2 Swash plate 3 Shoe 4 Piston 4a Recess 5 Housing 6 Shell type needle roller bearing 7 Thrust needle roller bearing 8 Bore 9 Spherical seat 11 Shell type outer ring 11a, 11b 鍔 12 Inner diameter surface 13 Needle roller 14 Cage 21 Main shaft 22 Connecting member 22a Inclined surface 23 Ball 24 Thrust needle roller bearing 25 Swash plate 26 Piston rod 27 Piston 28 Housing 29 Shell needle roller bearing 30 Thrust needle roller bearing 31 Main shaft 32 Connecting member 33 Sleeve 34 Thrust needle roller Bearing 35 Swash plate 36 Piston rod 37 Piston 38 Housing 39 Shell needle roller bearing 40 Thrust needle roller bearing

Claims (2)

コンプレッサの圧縮動作部材を主軸の回転駆動で動作させ、この主軸のラジアル荷重をコンプレッサ内に配置された針状ころ軸受で支持するコンプレッサ主軸の支持構造において、前記針状ころ軸受を、プレス加工で形成されるシェル型外輪の内径面に沿って複数の針状ころを配列したシェル型針状ころ軸受とし、前記シェル型外輪を形成するプレス加工にしごき工程を設け、このしごき工程における前記外輪の外径面となる外径側しごき面での潤滑条件を略流体潤滑状態とすることにより前記外輪の内径面の周方向面粗度をRa0.05〜0.3μmの数値範囲に、内径真円度を10μm以下の数値範囲に、筒部偏肉量を10μm未満の数値範囲に同時に規制したことを特徴とするコンプレッサ主軸の支持構造。 In a compressor main shaft support structure in which a compression operation member of a compressor is operated by rotational driving of the main shaft and a radial load of the main shaft is supported by a needle roller bearing disposed in the compressor, the needle roller bearing is formed by pressing. A shell-type needle roller bearing in which a plurality of needle rollers are arranged along the inner diameter surface of the formed shell-type outer ring, and a pressing process for forming the shell-type outer ring is provided, and the outer ring in the pressing process is provided. By setting the lubrication condition on the outer diameter side ironing surface, which is the outer diameter surface, to a substantially fluid lubrication state, the circumferential surface roughness of the inner diameter surface of the outer ring is within a numerical range of Ra 0.05 to 0.3 μm, and the inner diameter is a perfect circle. A support structure for a compressor main shaft, wherein the degree is controlled to a numerical value range of 10 μm or less and a cylindrical portion thickness deviation is simultaneously controlled to a numerical value range of less than 10 μm. コンプレッサの圧縮動作部材を回転駆動する主軸のラジアル荷重をコンプレッサ内で支持するコンプレッサ主軸用針状ころ軸受において、複数の針状ころが内径面に沿って配列される外輪を、プレス加工で形成されるシェル型外輪とし、前記シェル型外輪を形成するプレス加工にしごき工程を設け、このしごき工程における前記外輪の外径面となる外径側しごき面での潤滑条件を略流体潤滑状態とすることによりこの外輪の内径面の周方向面粗度をRa0.05〜0.3μmの数値範囲に、内径真円度を10μm以下の数値範囲に、筒部偏肉量を10μm未満の数値範囲に同時に規制したことを特徴とするコンプレッサ主軸用針状ころ軸受。 In a needle roller bearing for a compressor main shaft that supports a radial load of a main shaft that rotationally drives a compression operation member of the compressor in the compressor, an outer ring in which a plurality of needle rollers are arranged along an inner diameter surface is formed by pressing. And a pressing process for forming the shell-type outer ring is provided with a squeezing process, and the lubrication condition on the squeezing surface on the outer diameter side that is the outer diameter surface of the outer ring in this squeezing process is substantially fluid lubricated. the circumferential surface roughness of the inner surface of the outer ring in the numerical range of Ra0.05~0.3μm by the roundness of the inner diameter to the following numerical range 10 [mu] m, at the same time the cylindrical portion wall thickness deviation amount in the numerical range of less than 10 [mu] m Needle roller bearings for compressor main shafts characterized by regulation.
JP2003331855A 2003-09-16 2003-09-24 Compressor spindle support structure Expired - Fee Related JP4508591B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003331855A JP4508591B2 (en) 2003-09-24 2003-09-24 Compressor spindle support structure
PCT/JP2004/013424 WO2005028887A1 (en) 2003-09-16 2004-09-15 Shell-type needle roller bearing, supporting structure for compressor main shaft, and supporting structure for piston pump drive section
US10/571,613 US20070172168A1 (en) 2003-09-16 2004-09-15 Shell type needle roller bearing, support structure for compressor spindle, and support structure for piston pump driving portion
CNB2004800266279A CN100425850C (en) 2003-09-16 2004-09-15 Shell-type needle roller bearing, supporting structure for compressor main shaft, and supporting structure for piston pump drive section
EP04773087.4A EP1666745B1 (en) 2003-09-16 2004-09-15 Shell-type needle roller bearing, supporting structure for compressor main shaft, and supporting structure for piston pump drive section
US12/453,371 US8661686B2 (en) 2003-09-16 2009-05-08 Method of manufacturing a shell type needle roller bearing including drawing and ironing operations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003331855A JP4508591B2 (en) 2003-09-24 2003-09-24 Compressor spindle support structure

Publications (2)

Publication Number Publication Date
JP2005098368A JP2005098368A (en) 2005-04-14
JP4508591B2 true JP4508591B2 (en) 2010-07-21

Family

ID=34460389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003331855A Expired - Fee Related JP4508591B2 (en) 2003-09-16 2003-09-24 Compressor spindle support structure

Country Status (1)

Country Link
JP (1) JP4508591B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006016199D1 (en) 2005-07-04 2010-09-30 Ntn Toyo Bearing Co Ltd Needle bearing with a cage and method of making the cage
US7665899B2 (en) 2005-08-30 2010-02-23 Ntn Corporation Outer ring, drawn cup needle roller bearing, drawn cup needle roller bearing structured body, piston pin supporting structure of engine, crankshaft supporting structure of engine, and 2-cycle engine
JP2007147036A (en) * 2005-11-30 2007-06-14 Ntn Corp Shell-shaped roller bearing and shell-shaped roller bearing structure
JP2007147037A (en) * 2005-11-30 2007-06-14 Ntn Corp Piston pin supporting structure of engine, crank shaft supporting structure of engine, and two cycle engine
JP2007170562A (en) * 2005-12-22 2007-07-05 Ntn Corp Shell type roller bearing for laminated connecting rod and connecting rod assembly
CN110685884A (en) * 2018-07-04 2020-01-14 张龙兆 Variable curved surface roller pair swash plate pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000120730A (en) * 1998-10-19 2000-04-25 Ntn Corp One-way clutch
JP2000170755A (en) * 1998-12-07 2000-06-20 Ntn Corp Shell type needle-shaped roller bearing for universal joint
JP2002295485A (en) * 2001-03-28 2002-10-09 Ntn Corp Shell-shaped bearing and manufacturing method therefor
JP2003004051A (en) * 2001-06-25 2003-01-08 Ntn Corp Trail ring of shell shape needle roller bearing and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2992082B2 (en) * 1990-12-28 1999-12-20 エヌティエヌ株式会社 Bearing ring for shell type needle bearing
JP3196443B2 (en) * 1993-08-04 2001-08-06 日本精工株式会社 Roller bearing
JPH07108340A (en) * 1993-10-13 1995-04-25 Sumitomo Metal Ind Ltd Manufacture of coarse shape material for rolling bearing race
JPH11140543A (en) * 1997-11-14 1999-05-25 Nippon Seiko Kk Production of bearing ring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000120730A (en) * 1998-10-19 2000-04-25 Ntn Corp One-way clutch
JP2000170755A (en) * 1998-12-07 2000-06-20 Ntn Corp Shell type needle-shaped roller bearing for universal joint
JP2002295485A (en) * 2001-03-28 2002-10-09 Ntn Corp Shell-shaped bearing and manufacturing method therefor
JP2003004051A (en) * 2001-06-25 2003-01-08 Ntn Corp Trail ring of shell shape needle roller bearing and its manufacturing method

Also Published As

Publication number Publication date
JP2005098368A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
US8661686B2 (en) Method of manufacturing a shell type needle roller bearing including drawing and ironing operations
CN1258044C (en) Roller thrust bearing
JP2997074B2 (en) Bearings for compressors for air conditioners
JP4508591B2 (en) Compressor spindle support structure
US7665899B2 (en) Outer ring, drawn cup needle roller bearing, drawn cup needle roller bearing structured body, piston pin supporting structure of engine, crankshaft supporting structure of engine, and 2-cycle engine
CN1873225A (en) Roller thrust bearing
JP2003083333A (en) Needle roller thrust bearing
JP4435855B2 (en) Shell needle roller bearing
KR101503574B1 (en) Manufacturing Method of Spherical Roller Bearing Retainer
EP1418351A1 (en) Support structure carrying thrust load of compressor with two row thrust roller bearing
JP4429669B2 (en) Shell needle roller bearing
JP2005105856A (en) Piston pump driving part supporting structure
JPH11351245A (en) Thrust needle roller bearing for swash plate type compressor
JP4388239B2 (en) Swash plate compressor
JP2003222226A (en) Piston driving device
JP3936447B2 (en) Manufacturing method of swash plate type compressor shoe
JP4508587B2 (en) Shell needle roller bearing
JP2005315328A (en) Supporting structure for main shaft of compressor and needle roller bearing
JP2003239981A (en) Roller bearing
CN109707740A (en) The bearing insert and turbocharger of turbocharger
JPH03141877A (en) Compressor with swash plate
JP4463079B2 (en) Sliding bearing manufacturing method and sliding bearing
CN216199904U (en) Bimetal bearing with connection structure
JP2005226717A (en) Shell type needle roller bearing
JP2005090590A (en) Shell type needle roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees