JP4463079B2 - Sliding bearing manufacturing method and sliding bearing - Google Patents

Sliding bearing manufacturing method and sliding bearing Download PDF

Info

Publication number
JP4463079B2
JP4463079B2 JP2004323876A JP2004323876A JP4463079B2 JP 4463079 B2 JP4463079 B2 JP 4463079B2 JP 2004323876 A JP2004323876 A JP 2004323876A JP 2004323876 A JP2004323876 A JP 2004323876A JP 4463079 B2 JP4463079 B2 JP 4463079B2
Authority
JP
Japan
Prior art keywords
ironing
cup
manufacturing
sliding bearing
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004323876A
Other languages
Japanese (ja)
Other versions
JP2006132708A (en
Inventor
真司 大石
正敏 新名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2004323876A priority Critical patent/JP4463079B2/en
Publication of JP2006132708A publication Critical patent/JP2006132708A/en
Application granted granted Critical
Publication of JP4463079B2 publication Critical patent/JP4463079B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/08Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/60Shaping by removing material, e.g. machining
    • F16C2220/70Shaping by removing material, e.g. machining by grinding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/80Shaping by separating parts, e.g. by severing, cracking
    • F16C2220/82Shaping by separating parts, e.g. by severing, cracking by cutting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/02Mechanical treatment, e.g. finishing
    • F16C2223/04Mechanical treatment, e.g. finishing by sizing, by shaping to final size by small plastic deformation, e.g. by calibrating or coining

Description

この発明は、すべり軸受の製造方法およびすべり軸受に関する。   The present invention relates to a sliding bearing manufacturing method and a sliding bearing.

すべり軸受は転がり軸受よりもコンパクトなスペースで回転軸等を支持でき、経済的にも有利である。従来、これらのすべり軸受は、金属管を素材として削り出す方法、素材の金属帯材を環状に丸めて溶接する方法、金属板を素材としてプレス加工でカップ状に成形し、このカップ状成形物を輪切り切断する方法等で製造されており、金属素材には鋼やホワイトメタル等が用いられている。   A slide bearing can support a rotating shaft and the like in a more compact space than a rolling bearing, and is economically advantageous. Conventionally, these plain bearings are made by cutting a metal tube as a raw material, rounding and welding a metal strip of the raw material into a ring, forming a cup shape by pressing a metal plate as a raw material, and this cup-shaped product Is manufactured by a method of cutting a ring, and steel, white metal or the like is used as a metal material.

これらの製造方法で製造されるすべり軸受は、削り出しや溶接等によって円筒状に形成されたのち、研削加工や圧印加工によってその内径面に油溝が形成されることが多い。(例えば、特許文献1、2参照)。   In many cases, a plain bearing manufactured by these manufacturing methods is formed into a cylindrical shape by cutting or welding, and then an oil groove is formed on its inner surface by grinding or coining. (For example, refer to Patent Documents 1 and 2).

特開2002−263952号公報Japanese Patent Laid-Open No. 2002-263955 特開平11−37156号公報Japanese Patent Laid-Open No. 11-37156

上述した削り出しや溶接等によって円筒状に形成したのち、研削加工や圧印加工によってその内径面に油溝を形成する従来のすべり軸受の製造方法は、油溝の形成のために、研削加工や圧印加工の別工程を必要とし、製造工程が多くなって製造コストが高くなる問題がある。
また、上述したすべり軸受の製造方法のうち、金属管を素材として削り出す方法は、切削量が多くて素材の歩留が悪く、製造コストが高くなる。また、金属帯材を環状に丸めて溶接する方法は、素材の歩留は良いが、真円度等の寸法精度が悪くなる。これに対して、金属板を素材としてプレス加工で成形する方法は、素材の歩留が比較的よく、寸法精度も比較的優れている利点がある。
A conventional slide bearing manufacturing method in which an oil groove is formed on the inner diameter surface by grinding or coining after being formed into a cylindrical shape by the above-described machining or welding is performed by grinding or There is a problem that a separate process of the coining process is required, which increases the manufacturing process and increases the manufacturing cost.
Of the above-described sliding bearing manufacturing methods, the method of cutting a metal tube as a raw material has a large amount of cutting, a low material yield, and a high manufacturing cost. Moreover, the method of rounding and welding the metal strip is good in yield of the material, but the dimensional accuracy such as roundness is deteriorated. On the other hand, the method of forming by pressing using a metal plate as a raw material has the advantage that the yield of the raw material is relatively good and the dimensional accuracy is relatively excellent.

そこで、この発明の課題は、内径面に油溝を有するすべり軸受を安価に良い寸法精度で製造することである。   Therefore, an object of the present invention is to manufacture a slide bearing having an oil groove on its inner diameter surface at a low cost with good dimensional accuracy.

上記の課題を解決するために、この発明は、金属板を素材としたブランクを、円筒ポンチを用いた絞り工程を含むプレス加工でカップ状に成形し、この成形したカップ状成形物を輪切り切断して少なくとも1つの円筒体を形成して、この円筒体からすべり軸受を製造するすべり軸受の製造方法において、前記プレス加工にしごき工程を設け、このしごき工程で用いる円筒ポンチの外径面に複数の突条を設けて、これらの突条を前記カップ状成形物の内径面に溝として転写し、これらのカップ状成形物の内径面に転写された溝を、前記輪切り切断して形成される円筒体に残して、前記すべり軸受の内径面に油溝を形成する方法を採用した。   In order to solve the above-described problems, the present invention forms a blank made of a metal plate into a cup shape by a press process including a drawing process using a cylindrical punch, and cuts the formed cup-shaped product into a ring. In the sliding bearing manufacturing method of forming at least one cylindrical body and manufacturing a sliding bearing from the cylindrical body, a pressing process is provided in the press work, and a plurality of outer diameter surfaces of the cylindrical punch used in the pressing process are provided. These protrusions are formed as grooves on the inner diameter surface of the cup-shaped molded product, and the grooves transferred on the inner diameter surface of the cup-shaped molded product are formed by cutting the ring. A method of forming an oil groove on the inner diameter surface of the slide bearing while leaving the cylindrical body was adopted.

すなわち、金属板から比較的歩留良く、かつ精度よく円筒部を成形できる絞り工程を含むプレス加工法を採用し、このプレス加工に、円筒部をポンチとダイス間でしごき減厚してさらに精度良く内径や肉厚等を寸法決めできるしごき工程を設け、このしごき工程で用いる円筒ポンチの外径面に複数の突条を設けて、これらの突条をカップ状成形物の内径面に溝として転写し、これらのカップ状成形物の内径面に転写された溝を、輪切り切断される円筒体に残してすべり軸受の内径面に油溝を形成することにより、研削加工や圧印加工の別工程を設けることなく、内径面に油溝を有するすべり軸受を安価に良い寸法精度で製造できるようにした。なお、カップ状成形物から採取するすべり軸受用円筒体の個数は複数としても良い。   In other words, a press working method that includes a drawing process that can form a cylindrical part with high yield and accuracy from a metal plate is adopted, and the cylindrical part is squeezed and reduced between the punch and the die for further press precision. There is an ironing process that can determine the inner diameter and thickness, etc., and a plurality of protrusions are provided on the outer diameter surface of the cylindrical punch used in the ironing process, and these protrusions serve as grooves on the inner diameter surface of the cup-shaped molded product. By transferring and transferring the grooves transferred to the inner diameter surface of the cup-shaped product to the inner surface of the slide bearing while leaving the groove cut and cut, another process for grinding and coining is performed. In this way, a slide bearing having an oil groove on the inner diameter surface can be manufactured at low cost with good dimensional accuracy. In addition, the number of the cylindrical bodies for slide bearings collected from the cup-shaped molded product may be plural.

前記しごき工程における前記カップ状成形物の外径面となる外径側しごき面での潤滑条件を、略流体潤滑状態とすることにより、カップ状成形物の内径真円度、筒部偏肉量および内径面の面粗度を改善し、すべり軸受の寸法精度をより向上させるとともに、軸受面となる内径面の面粗度を細かいスムーズなものとすることができる。   By setting the lubrication condition on the outer diameter side ironing surface, which is the outer diameter surface of the cup-shaped molded product in the ironing step, to a substantially fluid lubrication state, the roundness of the inner diameter of the cup-shaped molded product, the amount of uneven thickness of the cylindrical portion Further, the surface roughness of the inner diameter surface can be improved, the dimensional accuracy of the slide bearing can be further improved, and the surface roughness of the inner diameter surface serving as the bearing surface can be made fine and smooth.

本発明者らは、プレス試験機を用いて、SCM415鋼板をブランク素材とする絞りしごき試験を行い、カップ状成形物の内径真円度と筒部偏肉量を調査した。この結果、ダイス側(カップ状成形物の外径側しごき面)に潤滑性の優れた高粘度プレス加工油を塗布すると、すべり軸受用円筒体となるカップ状成形物の内径真円度と筒部偏肉量が改善されるとともに、内径面の面粗度が外径面よりも細かくスムーズになることを見出した。   The present inventors conducted a squeezing and ironing test using an SCM415 steel sheet as a blank material using a press tester, and investigated the roundness of the inner diameter of the cup-shaped molded product and the amount of uneven thickness of the cylindrical portion. As a result, when high-viscosity press working oil with excellent lubricity is applied to the die side (the outer diameter side ironing surface of the cup-shaped molded product), the inner diameter roundness and cylinder of the cup-shaped molded product that becomes a cylindrical body for a slide bearing The present inventors have found that the uneven thickness is improved and the surface roughness of the inner diameter surface is finer and smoother than the outer diameter surface.

まず、前記面粗度の調査結果については、図6にその一例を示すが、素材ブランクの面粗度は表裏面ともRa0.49μm程度であるのに対して、カップ状成形物の内径面の面粗度はRa0.15μmと非常に細かくなっている。カップ状成形物の外径面の面粗度はRa0.44μmであり、素材ブランクの面粗度とあまり変わっていない。なお、図6に示すカップ状成形物の内外径面の面粗度は、いずれも軸方向に測定したものであるが、周方向に測定した面粗度もこれらとほぼ同等であった。この測定結果は、通常の絞りしごき加工で観察されるものと逆であり、通常の絞りしごき加工では、ダイスでしごかれるカップ状成形物の外径面の方が細かい面粗度となり、内径面の面粗度は素材ブランクの面粗度とあまり変わらない。   First, an example of the surface roughness investigation results is shown in FIG. 6, whereas the surface roughness of the blank material is about Ra 0.49 μm on both the front and back surfaces, whereas the inner surface of the cup-shaped molded product The surface roughness is very fine, Ra 0.15 μm. The surface roughness of the outer diameter surface of the cup-shaped molded product is Ra 0.44 μm, which is not much different from the surface roughness of the blank material. The surface roughness of the inner and outer diameter surfaces of the cup-shaped molded product shown in FIG. 6 was measured in the axial direction, but the surface roughness measured in the circumferential direction was almost equivalent to these. This measurement result is the reverse of what is observed with normal drawing and ironing, and with normal drawing and ironing, the outer diameter surface of the cup-shaped product that is squeezed with a die has a finer surface roughness and an inner diameter. The surface roughness of the surface is not much different from the surface roughness of the blank material.

これらの調査結果は、以下のように考えられる。すなわち、カップ状成形物の外径面の面粗度が素材の面粗度とあまり変わらなかったのは、カップ状成形物の外径側しごき面では、加工される素材とダイスが殆ど接触しない略流体潤滑状態であったと考えられる。このようにダイス側の潤滑条件を略流体潤滑状態にすると、ダイスとの摩擦に起因する外径側しごき面での剪断力が殆どなくなって、ポンチとダイスの間のしごき部における応力が板厚方向で均一な圧縮応力状態となり、つぎの図7で検証されるように、素材が板厚方向で均一に減厚変形するようになる。   The results of these surveys are considered as follows. That is, the surface roughness of the outer diameter surface of the cup-shaped molded product was not much different from the surface roughness of the material. The material to be processed and the die were hardly in contact with the ironed surface on the outer diameter side of the cup-shaped molded product. It is considered that the fluid lubrication was almost achieved. In this way, when the lubrication condition on the die side is set to a substantially fluid lubrication state, there is almost no shearing force on the ironing surface on the outer diameter side caused by friction with the die, and the stress at the ironing part between the punch and the die is reduced by the plate thickness. As shown in FIG. 7, the material is uniformly reduced in thickness in the thickness direction.

図7は、前記カップ状成形物の上端部の板厚断面写真を示す。上記推定を検証するように、ダイス側に潤滑性の優れたプレス加工油を塗布したカップ状成形物の上端部は、板厚方向で均一に軸方向へ延伸している。このように、素材が板厚方向で均一に減厚変形して軸方向へ延伸すると、ポンチに接触するカップ状成形物の内径面がポンチ表面に沿って軸方向へ相対移動し、この相対移動によるポンチ表面との摺動で内径面の面粗度が細かくなったものと考えられる。一方、通常の絞りしごき加工によるカップ状成形物の上端部は、外径面側が著しく軸方向に延伸している。これは、ダイスとの摩擦に起因する剪断力でカップ状成形物の外径面側が優先的に減厚変形し、内径面側があまり減厚変形しないからである。このように、内径面側があまり減厚変形しない通常の絞りしごき加工では、カップ状成形物の内径面がポンチ表面と殆ど相対移動しないので、その面粗度は素材とあまり変わらない。   FIG. 7 shows a plate thickness cross-sectional photograph of the upper end portion of the cup-shaped molded product. As the above estimation is verified, the upper end portion of the cup-shaped molded article in which the press working oil having excellent lubricity is applied to the die side is uniformly extended in the axial direction in the plate thickness direction. In this way, when the material is uniformly reduced in thickness in the plate thickness direction and stretched in the axial direction, the inner diameter surface of the cup-shaped molded product that contacts the punch moves relative to the punch surface in the axial direction, and this relative movement. It is considered that the surface roughness of the inner diameter surface became fine due to sliding with the punch surface. On the other hand, the outer diameter side of the upper end portion of the cup-shaped molded product obtained by normal drawing and ironing process is remarkably extended in the axial direction. This is because the outer diameter surface side of the cup-shaped molded product is preferentially reduced in thickness and sheared due to friction with the die, and the inner diameter surface side is not so reduced in thickness. As described above, in the normal drawing and ironing process in which the inner diameter surface side is not so thinly deformed, the inner diameter surface of the cup-shaped molded product hardly moves relative to the punch surface, so the surface roughness is not much different from that of the material.

前記外径側しごき面での潤滑条件を略流体潤滑状態とする加工方法では、図7に示したように、カップ状成形物の上端面が板厚方向で均一になるので、ブランク径を小さくして歩留も向上させることができる。また、ブランク径を小さくすることにより、絞り加工に必要なプレス荷重も低減される。   In the processing method in which the lubrication condition on the outer diameter side ironing surface is in a substantially fluid lubrication state, as shown in FIG. 7, the upper end surface of the cup-shaped molded product becomes uniform in the plate thickness direction. Yield can be improved. Further, by reducing the blank diameter, the press load necessary for drawing is also reduced.

つぎに、前記内径真円度と筒部偏肉量については、後の表1に示すように、いずれも10μm以下という優れた寸法精度が得られることを確認した。これらの調査結果は、以下のように考えられる。すなわち、上述したように、しごき加工におけるダイス側の潤滑条件が略流体潤滑状態とされて素材が板厚方向で均一に減厚変形すると、カップ状成形物の筒部偏肉量が低減されるととともに、ポンチに接触するカップ状成形物の内径面がポンチ表面に沿って軸方向へ相対移動してポンチ外径面の形状になじみ、ポンチから離型後もカップ状成形物の内径真円度が良好に保持されるものと考えられる。一方、通常の絞りしごき加工では、カップ状成形物の内径面側はあまり減厚変形せず、ポンチ表面とも殆ど相対移動しないので、カップ状成形物の内径真円度や筒部偏肉量はそれほど改善されない。   Next, with respect to the inner diameter roundness and the cylindrical portion thickness deviation, as shown in Table 1 later, it was confirmed that excellent dimensional accuracy of 10 μm or less was obtained. The results of these surveys are considered as follows. That is, as described above, when the die-side lubrication condition in the ironing process is substantially fluid lubricated and the material is uniformly reduced in thickness in the thickness direction, the amount of uneven thickness of the cylindrical portion of the cup-shaped molded product is reduced. In addition, the inner diameter surface of the cup-shaped molded product that contacts the punch moves relatively along the punch surface in the axial direction so that it conforms to the shape of the outer diameter surface of the punch. It is considered that the degree is well maintained. On the other hand, in the normal drawing and ironing process, the inner diameter side of the cup-shaped molded product is not deformed to a great extent and hardly moves relative to the punch surface. Not much improvement.

前記プレス加工の絞り工程での絞り回数を3回以下とし、前記しごき工程を、最終回の前記絞り工程と同時に行う絞りしごき工程とすることにより、プレス加工用の金型数と工程数を減らし、製造コストをより低減することができる。   By reducing the number of squeezing in the squeezing process of the press working to 3 times or less and making the squeezing process a squeezing and squeezing process that is performed simultaneously with the final squeezing process, the number of dies and processes for press working are reduced. The manufacturing cost can be further reduced.

なお、絞りしごき加工では、単なる絞り加工よりも大きな絞り比が得られることが知られている。すなわち、絞り加工では縮みフランジの変形抵抗とフランジ部でのしわ押さえ力に起因する引張応力によるポンチ肩部での破断で絞り限界が決まるが、絞りしごき加工では、ポンチ肩部に作用するフランジ側からの引張応力がしごき部で遮断されるので、絞り限界が高くなって大きな絞り比を得ることができる。   Incidentally, it is known that the drawing and ironing process can obtain a larger drawing ratio than a simple drawing process. That is, in drawing, the drawing limit is determined by fracture at the punch shoulder due to the tensile stress caused by the deformation resistance of the shrinking flange and the wrinkle holding force at the flange. Since the tensile stress from is cut off at the ironing portion, the drawing limit becomes high and a large drawing ratio can be obtained.

前記絞り工程での絞り回数を1回とし、前記しごき工程をこの1回の絞り工程と同時に行う絞りしごき工程とすることにより、さらに製造コストを低減できるとともに、金型の設定誤差等による寸法精度低下も抑制することができる。   By making the number of times of drawing in the drawing process one time and making the ironing process a drawing and ironing process that is performed simultaneously with this one drawing process, the manufacturing cost can be further reduced, and dimensional accuracy due to mold setting errors, etc. The decrease can also be suppressed.

前記素材の金属板を冷間圧延鋼板とすることにより、素材コストを低減することができる。   By using a cold-rolled steel plate as the metal plate, the material cost can be reduced.

前記冷間圧延鋼板をリン酸塩皮膜処理鋼鈑とすることにより、前記しごき工程における外径側しごき面でのプレス加工油の保持能力を高め、より低級なプレス加工油を用いて、外径側しごき面での潤滑条件を略流体潤滑状態とすることができる。   By making the cold-rolled steel sheet a phosphate-coated steel sheet, the holding capacity of the pressing oil on the outer diameter side ironing surface in the ironing process is increased, and the outer diameter is reduced by using a lower pressing oil. The lubricating condition on the side ironing surface can be set to a substantially fluid lubrication state.

上述したいずれかに記載の製造方法で製造したすべり軸受は、安価で寸法精度の良いものとすることができる。   A plain bearing manufactured by any one of the manufacturing methods described above can be inexpensive and have good dimensional accuracy.

この発明のすべり軸受の製造方法は、金属板から比較的歩留良く、かつ精度よく円筒部を成形できる絞り工程を含むプレス加工法を採用し、このプレス加工に、円筒部をポンチとダイス間でしごき減厚してさらに精度良く内径や肉厚等を寸法決めできるしごき工程を設け、このしごき工程で用いる円筒ポンチの外径面に複数の突条を設けて、これらの突条をカップ状成形物の内径面に溝として転写し、これらのカップ状成形物の内径面に転写された溝を、輪切り切断される円筒体に残してすべり軸受の内径面に油溝を形成するようにしたので、研削加工や圧印加工の別工程を設けることなく、内径面に油溝を有するすべり軸受を安価に良い寸法精度で製造することができる。   The manufacturing method of the plain bearing of the present invention employs a pressing method including a drawing process capable of forming a cylindrical portion with a relatively high yield and accuracy from a metal plate. In this pressing, the cylindrical portion is placed between a punch and a die. The ironing process is provided to allow the inner diameter and thickness to be more accurately determined by reducing the thickness of the ironing iron, and by providing a plurality of protrusions on the outer diameter surface of the cylindrical punch used in the ironing process, these protrusions are cup-shaped. The groove was transferred to the inner surface of the molded product as a groove, and the groove transferred to the inner surface of the cup-shaped product was left on the cylindrical body to be cut in a ring, and an oil groove was formed on the inner surface of the slide bearing. Therefore, a slide bearing having an oil groove on the inner diameter surface can be manufactured at a low cost and with good dimensional accuracy without providing a separate process of grinding or coining.

前記しごき工程におけるカップ状成形物の外径面となる外径側しごき面での潤滑条件を、略流体潤滑状態とすることにより、カップ状成形物の内径真円度、筒部偏肉量および内径面の面粗度を改善し、すべり軸受の寸法精度をより向上させるとともに、軸受面となる内径面の面粗度を細かいスムーズなものとすることができる。   By setting the lubrication condition on the outer diameter side ironing surface, which is the outer diameter surface of the cup-shaped molded product in the ironing step, to a substantially fluid lubrication state, the roundness of the inner diameter of the cup-shaped molded product, The surface roughness of the inner diameter surface can be improved, the dimensional accuracy of the slide bearing can be further improved, and the surface roughness of the inner diameter surface serving as the bearing surface can be made fine and smooth.

前記プレス加工の絞り工程での絞り回数を3回以下とし、しごき工程を、最終回の絞り工程と同時に行う絞りしごき工程とすることにより、プレス加工用の金型数と工程数を減らし、製造コストをより低減することができる。   By reducing the number of squeezing in the pressing process to 3 or less and making the ironing process a drawing ironing process that is performed at the same time as the final drawing process, the number of press molds and the number of processes can be reduced. Cost can be further reduced.

前記絞り工程での絞り回数を1回とし、しごき工程をこの1回の絞り工程と同時に行う絞りしごき工程とすることにより、さらに製造コストを低減できるとともに、金型の設定誤差等による寸法精度低下も抑制することができる。   When the number of times of drawing in the drawing process is set to 1 and the ironing process is a drawing and ironing process that is performed simultaneously with this one drawing process, the manufacturing cost can be further reduced, and the dimensional accuracy is reduced due to a setting error of the mold. Can also be suppressed.

前記素材の金属板を冷間圧延鋼板とすることにより、素材コストを低減することができる。   By using a cold-rolled steel plate as the metal plate, the material cost can be reduced.

前記冷間圧延鋼板をリン酸塩皮膜処理鋼鈑とすることにより、しごき工程における外径側しごき面でのプレス加工油の保持能力を高め、より低級なプレス加工油を用いて、外径側しごき面での潤滑条件を略流体潤滑状態とすることができる。   By using the cold-rolled steel sheet as a phosphate-coated steel sheet, the holding ability of the pressing oil on the outer diameter side ironing surface in the ironing process is increased, and a lower pressing oil is used to reduce the outer diameter side. The lubrication condition on the ironing surface can be set to a substantially fluid lubrication state.

上述したいずれかに記載の製造方法で製造したすべり軸受は、安価で寸法精度の良いものとすることができる。   A plain bearing manufactured by any one of the manufacturing methods described above can be inexpensive and have good dimensional accuracy.

以下、図面に基づき、この発明の実施形態を説明する。このすべり軸受1はリン酸塩皮膜処理を施した冷間圧延鋼板(SCM415)をプレス加工したものであり、図1に示すように、円筒状とされた内径面にヘリングボーン状に複数の油溝2が形成されている。この油溝2は、スパイラル状等の他の形状のものとすることもできる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. This plain bearing 1 is a cold-rolled steel plate (SCM415) that has been subjected to a phosphate film treatment, and as shown in FIG. 1, a plurality of oils are formed in a herringbone shape on a cylindrical inner surface. A groove 2 is formed. The oil groove 2 may have another shape such as a spiral shape.

図2は、前記すべり軸受1を製造する概略の工程を示す。まず、打ち抜き工程で、素材のSCM415製のリン酸塩皮膜処理冷間圧延鋼鈑が円形のブランクに打ち抜かれ、つぎに、このブランクがプレス加工による1回の絞りしごき工程でカップ状成形物とされる。こののち、切断工程でカップ状成形物が輪切り切断されて、カップ上端部とカップ底部とが除去された円筒体とされ、最後に、熱処理工程で円筒体を熱処理してすべり軸受1が製造される。なお、切断工程では、1つのカップ状成形物から複数のすべり軸受用円筒体を輪切り切断することもできる。また、円筒体を半割にして、半割のすべり軸受とすることもできる。   FIG. 2 shows a schematic process for manufacturing the slide bearing 1. First, in the punching process, the raw material SCM415-made cold-rolled steel plate made of SCM415 is punched into a circular blank, and then this blank is formed into a cup-shaped product in a single drawing and squeezing process by pressing. Is done. After that, the cup-shaped molded product is cut into a round shape in the cutting step to form a cylindrical body from which the upper end of the cup and the bottom of the cup have been removed. Finally, the cylindrical body is heat-treated in the heat treatment step to produce the plain bearing 1. The In the cutting step, a plurality of slide bearing cylindrical bodies can be cut into a ring from one cup-shaped molded product. Further, the cylindrical body can be halved to form a half-sliding bearing.

図3に示すように、前記円形のブランク3をカップ状成形物4とする絞りしごき工程では、カップ状成形物4の外径側しごき面での潤滑条件が略流体潤滑状態となるように、ダイス11側に潤滑性の優れたプレス加工油が塗布されるとともに、円筒ポンチ12の外径面にヘリングボーン状に複数の突条12aが設けられ、これらの突条12aがカップ状成形物4の内径面に油溝2として転写されるようになっている。なお、ダイス11から離型されたカップ状成形物4は、図4に示すように、スプリングバック現象によって円筒部が拡径し、その油溝2を形成された内径面が突条12aの設けられたポンチ12外径面から浮き上がるので、カップ状成形物4はポンチ12から容易に抜き取られる。   As shown in FIG. 3, in the drawing and ironing process in which the circular blank 3 is used as the cup-shaped product 4, the lubrication condition on the outer diameter side ironing surface of the cup-shaped product 4 is substantially fluid lubricated. A press working oil having excellent lubricity is applied to the die 11 side, and a plurality of protrusions 12 a are provided in a herringbone shape on the outer diameter surface of the cylindrical punch 12, and these protrusions 12 a are cup-shaped molded products 4. The oil groove 2 is transferred to the inner diameter surface of the nozzle. As shown in FIG. 4, the cup-shaped molded product 4 released from the die 11 has a cylindrical portion whose diameter is expanded by a springback phenomenon, and an inner diameter surface on which the oil groove 2 is formed is provided with the protrusion 12a. The cup-shaped molded product 4 can be easily pulled out from the punch 12 because it is lifted from the outer diameter surface of the punch 12.

図2の製造工程で製造したすべり軸受1について、その内径面の周方向と軸方向の面粗度を測定した。測定したすべり軸受1の寸法は、外径28mm、長さ16mm、肉厚1.0mmである。周方向面粗度は、すべり軸受1の両端から各2mmの位置と長さ方向中央位置の3箇所で測定し、軸方向面粗度は、周方向に90°の位相で4箇所測定した。なお、図6に示したように、素材ブランク3の面粗度は表裏面ともRa0.49μm程度、すべり軸受1の外径面となるカップ状成形物4の外径面の面粗度は、周方向、軸方向ともRa0.44μm程度である。   About the plain bearing 1 manufactured by the manufacturing process of FIG. 2, the surface roughness of the circumferential direction and axial direction of the internal diameter surface was measured. The measured dimensions of the slide bearing 1 are an outer diameter of 28 mm, a length of 16 mm, and a wall thickness of 1.0 mm. The circumferential surface roughness was measured at three locations, 2 mm each from the both ends of the slide bearing 1 and the central position in the length direction, and the axial surface roughness was measured at four locations with a 90 ° phase in the circumferential direction. As shown in FIG. 6, the surface roughness of the blank material 3 is about Ra 0.49 μm on both the front and back surfaces, and the surface roughness of the outer diameter surface of the cup-shaped molded product 4 that becomes the outer diameter surface of the slide bearing 1 is Both the circumferential direction and the axial direction are about Ra 0.44 μm.

図5(a)、(b)は、上記面粗度の測定結果の一例を示す。図5(a)は、すべり軸受1の長さ方向中央位置で測定した周方向面粗度であり、Ra0.18μmと非常に細かくなっている。図示は省略するが、両端から各2mmの位置で測定した周方向面粗度もRa0.05〜0.3μmの範囲にあり、素材ブランク3や外径面の面粗度よりも細かくなっている。図5(b)は、1つの位相で測定した軸方向面粗度であり、Ra0.15μmとなっている。図示は省略するが、他の位相で測定した軸方向面粗度も、いずれもRa0.3μm以下と非常に細かくなっている。   5A and 5B show an example of the measurement results of the surface roughness. FIG. 5A shows the circumferential surface roughness measured at the center in the length direction of the slide bearing 1 and is very fine as Ra 0.18 μm. Although illustration is omitted, the circumferential surface roughness measured at positions of 2 mm from both ends is also in the range of Ra 0.05 to 0.3 μm, which is finer than the surface roughness of the blank 3 and the outer diameter surface. . FIG. 5B shows the axial surface roughness measured with one phase, which is Ra 0.15 μm. Although illustration is omitted, the axial surface roughness measured at other phases is also very fine with Ra of 0.3 μm or less.

表1は、前記すべり軸受1の内径真円度と筒部偏肉量を測定した結果を示す。測定サンプル数は6個とし、内径真円度と筒部偏肉量の軸方向での測定位置は、前記内径面の周方向面粗度の測定位置と同じ3箇所とし、筒部偏肉量については、各軸方向位置において周方向に90°の位相で4箇所、合計12箇所で測定した。これらの測定結果から分かるように、いずれのすべり軸受1も内径真円度と筒部偏肉量が10μm以下となっており、良い寸法精度が得られている。   Table 1 shows the results of measuring the inner diameter roundness and the cylindrical part thickness deviation of the slide bearing 1. The number of measurement samples is 6, and the measurement positions in the axial direction of the inner diameter roundness and the cylindrical portion thickness deviation are the same three positions as the measurement positions of the circumferential surface roughness of the inner diameter surface. In each axial position, measurement was performed at a total of 12 locations at 4 locations with a 90 ° phase in the circumferential direction. As can be seen from these measurement results, any of the plain bearings 1 has an inner diameter roundness and a cylindrical portion thickness deviation of 10 μm or less, and good dimensional accuracy is obtained.

上述した実施形態では、素材をSCM415製のリン酸塩皮膜処理冷間圧延鋼鈑とし、プレス加工における絞り工程を1回のみとして、しごき工程をこの1回の絞り工程と同時に行う絞りしごき工程としたが、絞り工程を3回以下の複数回とし、しごき工程を最終回の絞り工程と同時に行う絞りしごき工程としてもよい。また、素材は実施形態のものに限定されることはなく、他の鋼板やホワイトメタル等の他の種類の金属板とすることもできる。   In the above-described embodiment, the raw material is a phosphate-coated cold-rolled steel plate made of SCM415, and the drawing process in the press process is performed only once, and the ironing process is performed simultaneously with this one drawing process. However, the drawing process may be a drawing and ironing process in which the drawing process is performed a plurality of times of 3 or less and the ironing process is performed simultaneously with the final drawing process. Moreover, a raw material is not limited to the thing of embodiment, It can also be other types of metal plates, such as another steel plate and a white metal.

すべり軸受の実施形態を示す切欠き正面図Notched front view showing an embodiment of a slide bearing 図1のすべり軸受の概略の製造工程を示す工程図Process drawing which shows the outline manufacturing process of the plain bearing of FIG. 図2の絞りしごき工程を説明する模式図Schematic diagram illustrating the drawing and squeezing process of FIG. 図3の絞りしごき工程で成形したカップ状成形物をダイスから離型した状態を示す正面断面図Front sectional drawing which shows the state which released the cup-shaped molded object shape | molded by the drawing ironing process of FIG. 3 from the die | dye. a、bは、それぞれ図2の製造工程で製造したすべり軸受内径面の周方向と軸方向の面粗度を示すグラフa and b are graphs showing the surface roughness in the circumferential direction and the axial direction of the inner surface of the plain bearing manufactured in the manufacturing process of FIG. 絞りしごき試験におけるカップ状成形物の内外径面の面粗度と素材ブランクの面粗度を示すグラフGraph showing the surface roughness of the inner and outer diameter surfaces of the cup-shaped molded product and the surface roughness of the blank material in the drawing ironing test 絞りしごき試験におけるカップ状成形物の上端部の板厚断面写真Thickness cross-sectional photograph of the upper end of a cup-shaped product in the drawing ironing test

符号の説明Explanation of symbols

1 すべり軸受
2 油溝
3 ブランク
4 カップ状成形物
11 ダイス
12 ポンチ
12a 突条
DESCRIPTION OF SYMBOLS 1 Sliding bearing 2 Oil groove 3 Blank 4 Cup-shaped molding 11 Die 12 Punch 12a Projection

Claims (6)

金属板を素材としたブランクを、円筒ポンチを用いた絞り工程を含むプレス加工でカップ状に成形し、この成形したカップ状成形物を輪切り切断して少なくとも1つの円筒体を形成して、この円筒体からすべり軸受を製造するすべり軸受の製造方法において、前記プレス加工にしごき工程を設け、前記しごき工程における前記カップ状成形物の外径面となる外径側しごき面での潤滑条件を、略流体潤滑状態とし、このしごき工程で用いる円筒ポンチの外径面に複数の突条を設けて、これらの突条を前記カップ状成形物の内径面に溝として転写し、これらのカップ状成形物の内径面に転写された溝を、前記輪切り切断して形成される円筒体に残して、前記すべり軸受の内径面に油溝を形成するようにしたことを特徴とするすべり軸受の製造方法。 A blank made of a metal plate is formed into a cup shape by a press process including a drawing process using a cylindrical punch, and the formed cup-shaped product is cut into round pieces to form at least one cylindrical body. In the manufacturing method of a sliding bearing for manufacturing a sliding bearing from a cylindrical body, an ironing step is provided in the pressing process, and a lubrication condition on an outer-diameter side ironing surface that is an outer diameter surface of the cup-shaped molded product in the ironing step is In a substantially fluid lubrication state , a plurality of ridges are provided on the outer diameter surface of the cylindrical punch used in the ironing process, and these ridges are transferred as grooves to the inner diameter surface of the cup-shaped molded product. An oil groove is formed on the inner diameter surface of the slide bearing while leaving the groove transferred to the inner diameter surface of the object in the cylindrical body formed by cutting the ring. 前記絞り工程での絞り回数を3回以下とし、前記しごき工程を最終回の絞り工程と同時に行う絞りしごき工程とした請求項に記載のすべり軸受の製造方法。 The diaphragm the number stop at step was 3 times or less, the ironing method for producing a sliding bearing according to claim 1 which process to a final times of the stop step and simultaneously drawn and ironed process. 前記絞り工程での絞り回数を1回とし、前記しごき工程をこの1回の絞り工程と同時に行う絞りしごき工程とした請求項に記載のすべり軸受の製造方法。 The sliding bearing manufacturing method according to claim 2 , wherein the number of times of drawing in the drawing step is one, and the ironing step is a drawing and ironing step performed simultaneously with the single drawing step. 前記素材の金属板を冷間圧延鋼板とした請求項1乃至3のいずれかに記載のすべり軸受の製造方法。 The manufacturing method of the slide bearing in any one of Claim 1 thru | or 3 which used the metal plate of the said raw material as the cold rolled steel plate. 前記冷間圧延鋼板をリン酸塩皮膜処理鋼鈑とした請求項に記載のすべり軸受の製造方法。 The manufacturing method of the sliding bearing of Claim 4 which used the said cold-rolled steel plate as the phosphate film processing steel plate. 請求項1乃至5のいずれかに記載の製造方法で製造したすべり軸受。 A plain bearing manufactured by the manufacturing method according to claim 1 .
JP2004323876A 2004-11-08 2004-11-08 Sliding bearing manufacturing method and sliding bearing Expired - Fee Related JP4463079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004323876A JP4463079B2 (en) 2004-11-08 2004-11-08 Sliding bearing manufacturing method and sliding bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004323876A JP4463079B2 (en) 2004-11-08 2004-11-08 Sliding bearing manufacturing method and sliding bearing

Publications (2)

Publication Number Publication Date
JP2006132708A JP2006132708A (en) 2006-05-25
JP4463079B2 true JP4463079B2 (en) 2010-05-12

Family

ID=36726425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004323876A Expired - Fee Related JP4463079B2 (en) 2004-11-08 2004-11-08 Sliding bearing manufacturing method and sliding bearing

Country Status (1)

Country Link
JP (1) JP4463079B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007148783A1 (en) * 2006-06-22 2009-11-19 日本電産株式会社 Bearing structure and vibration motor using the bearing structure
US20090087126A1 (en) 2007-10-01 2009-04-02 Saint-Gobain Performance Plastics Corporation Bearings
WO2011060043A2 (en) 2009-11-10 2011-05-19 Saint-Gobain Performance Plastics Corporation Closed end bearing cup
DE112020000708T5 (en) * 2019-02-06 2021-10-28 Taiho Kogyo Co., Ltd. Sliding element

Also Published As

Publication number Publication date
JP2006132708A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
Ghassemali et al. Progressive microforming process: towards the mass production of micro-parts using sheet metal
Gröbel et al. Manufacturing of functional elements by sheet-bulk metal forming processes
US9056375B2 (en) Manufacturing method for bearing outer ring
EP2103826A1 (en) Manufacturing method for bearing outer ring
EP2022995B1 (en) Shell needle bearing with seal ring and its manufacturing method
Ghassemali et al. On the microstructure of micro-pins manufactured by a novel progressive microforming process
JP3586896B2 (en) Manufacturing method of hollow parts with flange
JP5408226B2 (en) Method for manufacturing shell needle bearing with seal ring
JP4463079B2 (en) Sliding bearing manufacturing method and sliding bearing
JP5981884B2 (en) Hot upsetting forging apparatus and hot upsetting forging method
TW201545825A (en) Formed material manufacturing method and formed material
JP4435855B2 (en) Shell needle roller bearing
JP4429669B2 (en) Shell needle roller bearing
JP2007203343A (en) Shaping method and shaping die for cylindrical shaft
JP3720922B2 (en) Method and apparatus for manufacturing double row bearing
JP4572644B2 (en) Manufacturing method of high precision ring
JP5012038B2 (en) Metal ring manufacturing method
KR102022835B1 (en) Molding method manufacturing method and molding material
JP4978318B2 (en) Method for manufacturing shell needle bearing with seal ring
EP3628413A1 (en) Mold device for manufacturing columnar rolling element, method for manufacturing columnar rolling element, method for manufacturing rolling bearing, method for manufacturing vehicle, and method for manufacturing machine device
JP2010023112A (en) Method for producing yoke for universal joint
JP4508587B2 (en) Shell needle roller bearing
JP4508588B2 (en) Shell needle roller bearing
Kumar et al. Forming
CN113329830B (en) Cylindrical rotary member, method for manufacturing the same, and mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees