JP4508450B2 - Heat transfer tube and heat transfer system - Google Patents

Heat transfer tube and heat transfer system Download PDF

Info

Publication number
JP4508450B2
JP4508450B2 JP2001084372A JP2001084372A JP4508450B2 JP 4508450 B2 JP4508450 B2 JP 4508450B2 JP 2001084372 A JP2001084372 A JP 2001084372A JP 2001084372 A JP2001084372 A JP 2001084372A JP 4508450 B2 JP4508450 B2 JP 4508450B2
Authority
JP
Japan
Prior art keywords
heat transfer
heat
tube
transfer tube
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001084372A
Other languages
Japanese (ja)
Other versions
JP2002277189A (en
Inventor
隆敬 嘉数
勝久 徳満
章 岸本
洋基 薄井
均 菅原
誠 山内
善雄 五町
一 小野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Obayashi Corp
Osaka Gas Co Ltd
Original Assignee
Lion Corp
Obayashi Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp, Obayashi Corp, Osaka Gas Co Ltd filed Critical Lion Corp
Priority to JP2001084372A priority Critical patent/JP4508450B2/en
Publication of JP2002277189A publication Critical patent/JP2002277189A/en
Application granted granted Critical
Publication of JP4508450B2 publication Critical patent/JP4508450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷熱および温熱を水の顕熱により搬送するシステムにおいて、界面活性剤を水に添加することにより流動摩擦を低減させる方法に際し、熱交換器内で摩擦低減と同時に発現する伝熱性能低下を防止する熱交換器用伝熱管およびそれを用いた熱搬送システムに関する。
【0002】
【従来の技術】
例えば、地域冷暖房システムにおいて、熱供給側プラントから熱利用側のビルまで熱搬送媒体である水を循環させるための配管の長さは数km以上になり、その水搬送動力はかなり大きく、地域冷暖房システムのランニングコストの約60%〜70%であるとも言われている。
【0003】
最近、この水搬送動力を低減させる有効な方法として、粘弾性を示す界面活性剤水溶液を熱搬送媒体として用い、流動摩擦抵抗を著しく低減させる方法が提案されている。
【0004】
これは、配管内を流動する水に特定の陽イオン性界面活性剤とサリチル酸ナトリウムをそれぞれ数10〜数1000ppm溶解させると、界面活性剤が水中で、疎水基部を中心に親水基部を外周部に配置してミセル(会合体)を形成し、そのミセルが棒状の形態をなして高次に絡まって粘弾性を示すことに起因するといわれている。
【0005】
このような特性を示す界面活性剤および水搬送配管内の摩擦抵抗低減方法として、例えば特公平3−76360号公報、特公平4−6231号公報、特公平5−47534号公報、特開平8−311431公報等に記載された方法がある。
【0006】
しかしながら、これらの水溶液の特性として、流動摩擦抵抗の減少と同時に伝熱特性も低下することが知られている。つまり、これらの水溶液を地域冷暖房やビル空調等の熱搬送システムに利用することを考えた場合、確かに流動摩擦抵抗は減少し、それにともなって搬送動力も削減され、省エネルギー型熱搬送システムが構築されると考えられるが、その一方で、熱供給側プラントと熱利用側空調機内にそれぞれ設置されている熱交換器における伝熱性能が低下してしまうことになる。従って、従来の水または配管等機器材料の腐食を防止する添加物を溶解した水溶液を熱搬送媒体として用いたシステムと比較して、熱供給側プラントおよび熱利用側熱交換器の伝熱部分の面積を大きくする必要が生じることになる。
【0007】
【発明が解決しようとする課題】
本発明の目的は、粘弾性界面活性剤水溶液を熱搬送媒体として使用した時に、熱交換器部の伝熱部分の面積を従来の水系熱搬送媒体を用いるシステムと同じにしながら、従来の水系熱搬送媒体を用いる場合に比べて熱交換器部における伝熱特性が低下しない伝熱管およびそれを用いた熱搬送システムを提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、粘弾性界面活性剤水溶液を熱搬送媒体として用いる搬送動力削減型熱搬送システムにおいて、熱供給側プラント内で熱搬送媒体に熱を伝達させる(熱搬送媒体を加熱または冷却する)熱交換器と、熱利用側プラント内で熱搬送媒体から熱を伝達させる(熱搬送媒体を加熱または冷却する)熱交換器に関し、それらの熱交換器で使用されている伝熱管に、熱搬送媒体が流動する管内部の中心軸に沿って、管内面に密着する円筒状の充填物を伝熱管の上流部の一部に挿入することにより、上記目的が達成されることを見出した。
【0009】
すなわち、本発明は、下記に示すとおりの伝熱管およびそれを用いた熱搬送システムを提供するものである。
項1.界面活性剤水溶液を熱搬送媒体として用いる熱交換器の伝熱管であって、前記熱搬送媒体が流動する管内部の中心軸に沿って、管内面に密着する円筒状の充填物を伝熱管の上流部の一部に挿入した伝熱管。
項2.界面活性剤水溶液を熱搬送媒体として用いる熱搬送システムであって、前記熱搬送媒体に熱を供給する熱供給側プラントと、前記熱搬送媒体の熱を利用する熱利用側プラントと、前記熱供給側プラントと前記熱利用側プラントとの問で前記熱搬送媒体を循環させる配管とを備え、前記熱供給側プラント及び前記熱利用側プラントの少なくとも一方は、項1に記載の伝熱管を有する熱交換器を備えた熱搬送システム。
項3.項2記載の界面活性剤がオレイルトリヒドロキシエチルアンモニウム塩とサリチル酸塩の混合物であることを特徴とする項2の熱搬送システム。
【0010】
【発明の実施の形態】
粘弾性界面活性剤水溶液の伝熱性能は、伝熱管内部の加工形状により大きく変化する。そして、粘弾性界面活性剤水溶液が流動する伝熱管内部の中心軸に沿って、管内面に密着する円筒状の充填物を伝熱管の上流部の一部に挿入した場合には、例えば地域冷暖房システムの熱供給側プラントで実際に使用されている冷凍機の伝熱管のような、配管口径(内径)10〜20mmの範囲内で、実際に使用される流速範囲域である1〜2m/sで、従来型の水搬送時と同じ伝熱性能(熱伝達率)を提供することができる。
【0011】
このように、伝熱管内部の中心軸に沿って管内面に密着する円筒状の充填物を伝熱管の上流部の一部に挿入した場合には、粘弾性界面活性剤水溶液を熱搬送媒体として用いても伝熱性能が低下しないのは、円筒状充填物の空洞部に界面活性剤水溶液が流入する時、界面活性剤水溶液の流路が急激に縮小され、次に円筒状充填物の空洞部から界面活性剤が流出する時、界面活性剤水溶液の流路は急激に拡大されることになるため、界面活性剤水溶液は縮小および拡大流れの強い損失エネルギーを受けて棒状ミセルの高次構造が乱され、円筒充填物通過時および通過後しばらくは粘弾性が消失するためであると考えられる。
【0012】
本発明の伝熱管における円筒状充填物の内面空洞部の断面形状は、特に限定されるものではないが、例えば円形、四角形、三角形、半円形等が挙げられる。好ましくは、円形等である。
【0013】
また、円筒状充填物の内面空洞部の断面積についても特に限定されるものではないが、大きいと界面活性剤水溶液に与える縮小・拡大流れの損失エネルギーが小さくなるため効果がなく、逆に小さいとそれ自身が流れの妨げとなってしまうため良くない。よって伝熱管内部の断面積の10〜90%であるのが好ましく、15〜80%であるのがより好ましく、18〜75%であるのが特に好ましい。
【0014】
さらに、円筒状充填物の長さについても特に限定されるものではないが、短いと界面活性剤水溶液に縮小・拡大流れの損失エネルギーを与える時間が短くなるため効果がなく、逆に長いとコスト的に無駄である。伝熱管の上流側に伝熱管の全長の0.1〜10%の長さで挿入されているのが好ましく、より好ましくは0.5〜5%の長さであり、特に好ましくは0.7〜2%の長さである。
【0015】
円筒状充填物の材質は、特に限定されないが、合成樹脂または金属が好ましい。合成樹脂としては、アクリル樹脂、ポリ塩化ピニル、メラミン樹脂、ポリエチレン等が挙げられ、アクリル樹脂、ポリエチレン等が好ましい。金属としては、鉄、銅、金、銀、ステンレス、真ちゅう等が挙げられ、コストの面から鉄、銅、ステンレス等が好ましい。
【0016】
円筒状充填物は、伝熱管の内部に挿入された状態で固定されている。その固定手段は特に限定されないが、例えば、円筒状充填物の外部と伝熱管の内面を接着剤で密着して固定させればよい。
【0017】
熱搬送媒体として用いる界面活性剤水溶液に含まれる界面活性剤は特に限定されず、従来用いられているものでよいが、例えば、オレイルヒドロキシエチルジメチルアンモニウム塩とサリチル酸塩の混合物、オレイルビスヒドロキシエチルメチルアンモニウム塩とサリチル酸塩の混合物、オレイルトリヒドロキシエチルアンモニウム塩とサリチル酸塩の混合物、セチルトリメチルアンモニウム塩とサリチル酸塩の混合物、ステアリルトリメチルアンモニウム塩とサリチル酸塩の混合物等が挙げられる。好ましくは、オレイルトリヒドロキシエチルアンモニウム塩とサリチル酸塩の混合物である。尚、これらの混合物は系内で塩交換を行って、相当する第四級アンモニウムカチオンのサリチル酸塩を生成するものと推測される。
【0018】
界面活性剤水溶液中の界面活性剤の濃度も特に限定されない。前記第四級アンモニウム塩の濃度は50〜50000ppmが好ましく、100〜30000ppmがより好ましく、200〜10000ppmが特に好ましい。サリチル酸塩の濃度は、同時に使用される第四級アンモニウム塩のモル量の0.1〜5倍モル量が好ましく、0.3〜3倍モル量がより好ましく、0.5〜2倍モル量が特に好ましい。
【0019】
本発明の伝熱管を、地域冷暖房システムやビル空調システムの熱搬送、ゴミ焼却場や工場の排熱の搬送、または、河川水、海水、下水処理水等の温度差エネルギーの搬送に利用した場合には、粘弾性界面活性剤水溶液の流動摩擦抵抗低減により、水搬送動力が削減されるだけでなく、熱供給側プラントおよび熱利用側プラントにおいて、それぞれ、熱搬送媒体に熱を伝達する熱交換器を大型化したり、改良したりする必要がなくなり、従来の水用のもので対応可能となる。
【0020】
【実施例】
先ず、熱搬送システムに使用される熱交換器の一例として、地域冷暖房システムの熱供給プラント内における冷凍機の構造について説明する。
【0021】
冷凍機内で発生する冷熱を熱搬送媒体に伝達する部分は一般に蒸発器と呼ばれ、図1に示すようなシェルアンドチューブ型熱交換器で構成されている。図1に示すように、熱交換器10は、シェル11、伝熱管12を備える。シェル内は減圧下に保持され、多数の伝熱管(チューブ)12が一定方向に平行して設置されている。それぞれの伝熱管12の内部に熱搬送媒体が連続的に流動する一方で、シェル11内では、吸収式冷凍機の場合は水が、電動式ターボ冷凍機の場合はフロン液が、それぞれ連続的に噴出され、その液が伝熱管12の外側をたれ落ちながら蒸発(気化)する。その時の気化熱によって、伝熱管12内の熱搬送媒体は冷却される。冷却された熱搬送媒体は、ポンプにより配管を通じて、熱利用側に供給され、冷房の冷熱として利用される。
【0022】
図2は、熱搬送媒体の伝熱特性を評価するための評価装置の構成を示す図である。図2に示すように、10℃に調整した熱搬送媒体を媒体タンク21に充填し、ポンプ22により媒体タンク21内の熱搬送媒体を配管23〜25を介して伝熱特性計測部26に導入する。伝熱特性計測部26は、伝熱管12と、伝熱管12の周りを覆う円管27とを備え、円管27は、ステンレス製の呼び径40Aの円管である。伝熱管12と円管27とから構成される二重管(二重管熱交換器)の内側、すなわち円管27と伝熱管12との間の環状部分には、伝熱管12の管壁の温度が8℃になるように、約2〜3℃の冷水が常時流入される。この冷水により、伝熱管12内に流動する10℃の熱搬送媒体が冷却される。
【0023】
前記の構成により、本評価装置では、冷却時の伝熱管12の内側の伝熱特性として熱伝達率を算出する。なお、実際の冷凍機内蒸発器と評価装置では伝熱管内を流動する熱搬送媒体を冷却させる方法が異なるが、それらはいずれも伝熱管の外側に関することであり、この発明で議論する伝熱管の内側を流動する熱搬送媒体の伝熱特性(熱伝達率)には何ら影響はない。
(比較例1)
前述の評価装置の伝熱管として、管内径14mmの平滑銅管を使用した。熱搬送媒体として、上水を用い、この熱伝達率を計測した。
(実施例1)
前述の評価装置の伝熱管として、管内径14mmの平滑銅管の内部中心軸に沿って、外径13.9mm、内径10mmのアクリル樹脂製円筒状充填物を管上流部の1%のみに挿入して固定したものを使用した。
【0024】
伝熱管12の横断面図を図3に示す。また、伝熱管12の上流部の長手方向の断面図(縦断面図)を図4に示す。図3および図4において、13は円筒状充填物を示す。
【0025】
この伝熱管を装置に設置し、熱搬送媒体として、上水に塩化オレイルビスヒドロキシエチルメチルアンモニウム500ppmとサリチル酸ナトリウムを300ppm添加して、オレイルビスヒドロキシエチルメチルアンモニウムのサリチル酸塩からなる界面活性剤水溶液(OBHEと略す。)を用い、この熱伝達率を計測した。
(比較例2)
実施例1において、円筒状充填物を用いない以外は全て同じ条件で、熱搬送媒体の熱伝達率を計測した。
(実施例2)
実施例1において、熱搬送媒体として、上水に塩化オレイルトリヒドロキシエチルアンモニウム500ppmとサリチル酸ナトリウムを275ppm添加して、オレイルトリヒドロキシエチルアンモニウムのサリチル酸塩(OTHEと略す。)からなる界面活性剤水溶液を用いる以外は全て同じ条件で、熱搬送媒体の熱伝達率を計測した。
(比較例3)
実施例2において、円筒状充填物を用いない以外は全て同じ条件で、熱搬送媒体の熱伝達率を計測した。
【0026】
このようにして得られた各伝熱管における上水および界面活性剤水溶液についての熱伝達率を図5に示した。
【0027】
図5から分かるように、実機での使用流速範囲1〜2m/sで、円筒状充填物を挿入していない伝熱管では、同一の流速において界面活性剤水溶液の熱伝達率は上水のそれより低減している。しかし、円筒状充填物を挿入した伝熱管では、界面活性剤水溶液の熱伝達率は円筒状充填物を挿入していない伝熱管を用いて計測した上水のそれとほぼ同じである。つまり、界面活性剤水溶液を使用しても、この棒状充填物挿入伝熱管内では、上水に対して、伝熱特性の低下を防止できることがわかった。
【0028】
【発明の効果】
本発明の伝熱管によれば、粘弾性界面活性剤水溶液を熱搬送媒体として使用した時に、熱交換器部の伝熱部分の面積を従来型と同じにしながら、従来の水系熱搬送媒体を用いる場合に比べて熱交換器部における伝熱特性が低下しない。
【図面の簡単な説明】
【図1】シェルアンドチューブ型熱交換器の一例を示す槻略図である。
【図2】伝熱管の伝熱特性を評価するための評価装置の構成を示す図である。
【図3】本発明の伝熱管の一例を示す横断面図である。
【図4】本発明の伝熱管の一例を示す長手方向の断面図(縦断面図)である。
【図5】実施例および比較例における熱伝達率を示すグラフである。
【符号の説明】
10・・・熱交換器
11・・・シェル
12・・・伝熱管
13・・・円筒状充填物
21・・・媒体タンク
22・・・ポンプ
23、24、25・・・配管
26・・・伝熱特性計測部
27・・・円管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat transfer performance that is manifested simultaneously with friction reduction in a heat exchanger in a method of reducing flow friction by adding a surfactant to water in a system that conveys cold and warm heat by sensible heat of water. The present invention relates to a heat exchanger tube for heat exchanger that prevents a decrease and a heat transfer system using the same.
[0002]
[Prior art]
For example, in a district cooling and heating system, the length of a pipe for circulating water as a heat transfer medium from a heat supply side plant to a heat utilization side building is several kilometers or more, and the water transfer power is considerably large. It is also said to be about 60% to 70% of the running cost of the system.
[0003]
Recently, as an effective method for reducing the water conveyance power, a method of remarkably reducing the fluid friction resistance by using a surfactant aqueous solution exhibiting viscoelasticity as a heat conveyance medium has been proposed.
[0004]
This is because when a specific cationic surfactant and sodium salicylate are dissolved in water flowing through the pipes in the range of several tens to several thousand ppm, the surfactant is in water and the hydrophilic base is centered around the hydrophobic base. It is said that it is arranged to form micelles (aggregates), and the micelles form a rod-like form and are entangled in high order to exhibit viscoelasticity.
[0005]
As a surfactant exhibiting such characteristics and a method for reducing the frictional resistance in the water conveyance pipe, for example, Japanese Patent Publication No. 3-76360, Japanese Patent Publication No. 4-6231, Japanese Patent Publication No. 5-47534, Japanese Patent Application Laid-Open No. Hei 8- There is a method described in Japanese Patent No. 311431.
[0006]
However, it is known as a characteristic of these aqueous solutions that the heat transfer characteristics are lowered at the same time as the flow frictional resistance is reduced. In other words, when considering using these aqueous solutions in heat transfer systems such as district cooling and heating and building air conditioning, the flow friction resistance is certainly reduced, and the transfer power is reduced accordingly, and an energy-saving heat transfer system is built. However, on the other hand, the heat transfer performance in the heat exchangers installed in the heat supply side plant and the heat utilization side air conditioner respectively decreases. Therefore, compared with the conventional system using water or an aqueous solution in which additives that prevent corrosion of equipment materials such as pipes are used as the heat transfer medium, the heat transfer part of the heat supply side plant and the heat utilization side heat exchanger It will be necessary to increase the area.
[0007]
[Problems to be solved by the invention]
The object of the present invention is to use a conventional aqueous heat transfer system while making the area of the heat transfer part of the heat exchanger unit the same as that of a system using a conventional aqueous heat transfer medium when a viscoelastic surfactant aqueous solution is used as a heat transfer medium. It is an object of the present invention to provide a heat transfer tube and a heat transfer system using the heat transfer tube in which the heat transfer characteristics in the heat exchanger section do not deteriorate as compared with the case of using a transfer medium.
[0008]
[Means for Solving the Problems]
In the transport power reduction type heat transport system using a viscoelastic surfactant aqueous solution as a heat transport medium, the present inventors transmit heat to the heat transport medium in the heat supply side plant (heat or cool the heat transport medium). ) Concerning heat exchangers and heat exchangers that transfer heat from the heat transfer medium (heating or cooling the heat transfer medium) in the heat utilization side plant, heat is transferred to the heat transfer tubes used in those heat exchangers. It has been found that the above object can be achieved by inserting a cylindrical packing closely contacting the inner surface of the pipe into a part of the upstream portion of the heat transfer pipe along the central axis inside the pipe where the carrier medium flows.
[0009]
That is, the present invention provides a heat transfer tube as shown below and a heat transfer system using the heat transfer tube.
Item 1. A heat transfer tube of a heat exchanger that uses an aqueous surfactant solution as a heat transfer medium, and a cylindrical packing closely contacting the inner surface of the heat transfer tube along a central axis inside the tube through which the heat transfer medium flows. A heat transfer tube inserted in a part of the upstream part.
Item 2. A heat transfer system that uses an aqueous surfactant solution as a heat transfer medium, a heat supply side plant that supplies heat to the heat transfer medium, a heat use side plant that uses heat of the heat transfer medium, and the heat supply The heat supply side plant and the heat utilization side plant are provided with a pipe that circulates the heat transfer medium between the side plant and the heat utilization side plant, and at least one of the heat supply side plant and the heat utilization side plant is heat having the heat transfer tube according to Item 1. Heat transfer system with an exchanger.
Item 3. Item 2. The heat transfer system according to Item 2, wherein the surfactant according to Item 2 is a mixture of oleyl trihydroxyethylammonium salt and salicylate.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The heat transfer performance of the viscoelastic surfactant aqueous solution varies greatly depending on the processing shape inside the heat transfer tube. Then, when a cylindrical packing that is in close contact with the inner surface of the heat transfer tube along the central axis inside the heat transfer tube through which the viscoelastic surfactant aqueous solution flows is inserted into a part of the upstream portion of the heat transfer tube, for example, district heating and cooling Within the range of the pipe diameter (inner diameter) of 10 to 20 mm, such as the heat transfer pipe of a refrigerator that is actually used in the heat supply side plant of the system, the flow velocity range area that is actually used is 1 to 2 m / s. Thus, it is possible to provide the same heat transfer performance (heat transfer coefficient) as in conventional water conveyance.
[0011]
As described above, when a cylindrical filler that is in close contact with the inner surface of the tube along the central axis inside the heat transfer tube is inserted into a part of the upstream portion of the heat transfer tube, the viscoelastic surfactant aqueous solution is used as a heat transfer medium. Even if it is used, the heat transfer performance does not deteriorate. When the surfactant aqueous solution flows into the cavity of the cylindrical packing, the flow path of the surfactant aqueous solution is abruptly reduced, and then the cavity of the cylindrical packing When the surfactant flows out from the section, the flow path of the surfactant aqueous solution is rapidly expanded. Therefore, the surfactant aqueous solution is subjected to strong loss energy of contraction and expansion flow, and the higher order structure of the rod-like micelle. This is considered to be because viscoelasticity disappears when the cylindrical packing is passed and for a while after passing.
[0012]
The cross-sectional shape of the inner surface cavity of the cylindrical filler in the heat transfer tube of the present invention is not particularly limited, and examples thereof include a circle, a square, a triangle, and a semicircle. Preferably, it is circular or the like.
[0013]
Also, the cross-sectional area of the inner cavity of the cylindrical packing is not particularly limited, but if it is large, there is no effect because the loss energy of the contraction / expansion flow given to the surfactant aqueous solution is small, and conversely small. And it is not good because it will hinder the flow itself. Therefore, it is preferably 10 to 90% of the cross-sectional area inside the heat transfer tube, more preferably 15 to 80%, and particularly preferably 18 to 75%.
[0014]
Further, the length of the cylindrical packing is not particularly limited. However, if the length is short, there is no effect because the time for giving the loss energy of the contraction / expansion flow to the surfactant aqueous solution is shortened. Is wasteful. The length of the heat transfer tube is preferably inserted in the length of 0.1 to 10%, more preferably 0.5 to 5%, and particularly preferably 0.7 on the upstream side of the heat transfer tube. It is ~ 2% long.
[0015]
The material of the cylindrical filling is not particularly limited, but synthetic resin or metal is preferable. Examples of the synthetic resin include acrylic resin, polypinyl chloride, melamine resin, and polyethylene, and acrylic resin and polyethylene are preferable. Examples of the metal include iron, copper, gold, silver, stainless steel, brass and the like, and iron, copper, stainless steel and the like are preferable from the viewpoint of cost.
[0016]
The cylindrical packing is fixed in a state of being inserted into the heat transfer tube. The fixing means is not particularly limited. For example, the outside of the cylindrical packing and the inner surface of the heat transfer tube may be adhered and fixed with an adhesive.
[0017]
The surfactant contained in the surfactant aqueous solution used as the heat transfer medium is not particularly limited and may be a conventionally used one. For example, a mixture of oleylhydroxyethyldimethylammonium salt and salicylate, oleylbishydroxyethylmethyl Examples thereof include a mixture of ammonium salt and salicylate, a mixture of oleyl trihydroxyethylammonium salt and salicylate, a mixture of cetyltrimethylammonium salt and salicylate, a mixture of stearyltrimethylammonium salt and salicylate, and the like. Preferably, it is a mixture of oleyl trihydroxyethyl ammonium salt and salicylate. These mixtures are presumed to undergo salt exchange in the system to produce the corresponding quaternary ammonium cation salicylates.
[0018]
The concentration of the surfactant in the surfactant aqueous solution is not particularly limited. The concentration of the quaternary ammonium salt is preferably 50 to 50000 ppm, more preferably 100 to 30000 ppm, and particularly preferably 200 to 10000 ppm. The concentration of salicylate is preferably 0.1 to 5 times the molar amount of the quaternary ammonium salt used simultaneously, more preferably 0.3 to 3 times the molar amount, and 0.5 to 2 times the molar amount. Is particularly preferred.
[0019]
When the heat transfer pipe of the present invention is used for heat transfer of district air conditioning systems and building air conditioning systems, transfer of waste heat from garbage incineration plants and factories, or transfer of temperature difference energy such as river water, seawater, sewage treated water, etc. In addition, not only water transport power is reduced by reducing the flow frictional resistance of the viscoelastic surfactant aqueous solution, but also heat exchange that transfers heat to the heat transport medium in the heat supply side plant and the heat utilization side plant, respectively. It is no longer necessary to increase the size of the vessel or improve the vessel, and it can be handled with conventional water-use devices.
[0020]
【Example】
First, as an example of a heat exchanger used in a heat transfer system, a structure of a refrigerator in a heat supply plant of a district cooling and heating system will be described.
[0021]
A portion that transmits the cold heat generated in the refrigerator to the heat transfer medium is generally called an evaporator, and includes a shell-and-tube heat exchanger as shown in FIG. As shown in FIG. 1, the heat exchanger 10 includes a shell 11 and a heat transfer tube 12. The inside of the shell is held under reduced pressure, and a large number of heat transfer tubes (tubes) 12 are installed in parallel in a certain direction. While the heat transfer medium continuously flows inside each heat transfer tube 12, in the shell 11, water is absorbed continuously in the case of an absorption refrigeration machine, and chlorofluorocarbon liquid in the case of an electric turbo chiller. The liquid evaporates (vaporizes) while dripping down the outside of the heat transfer tube 12. The heat transfer medium in the heat transfer tube 12 is cooled by the heat of vaporization at that time. The cooled heat transfer medium is supplied to the heat utilization side through a pipe by a pump and used as cooling heat.
[0022]
FIG. 2 is a diagram illustrating a configuration of an evaluation apparatus for evaluating the heat transfer characteristics of the heat transfer medium. As shown in FIG. 2, the heat transfer medium adjusted to 10 ° C. is filled into the medium tank 21, and the heat transfer medium in the medium tank 21 is introduced into the heat transfer characteristic measurement unit 26 through the pipes 23 to 25 by the pump 22. To do. The heat transfer characteristic measuring unit 26 includes a heat transfer tube 12 and a circular tube 27 that covers the periphery of the heat transfer tube 12, and the circular tube 27 is a stainless tube having a nominal diameter of 40A. Inside the double pipe (double pipe heat exchanger) composed of the heat transfer tube 12 and the circular tube 27, that is, in the annular portion between the circular tube 27 and the heat transfer tube 12, the tube wall of the heat transfer tube 12 is provided. Cold water of about 2 to 3 ° C. is constantly introduced so that the temperature becomes 8 ° C. With this cold water, the 10 ° C. heat transfer medium flowing into the heat transfer tube 12 is cooled.
[0023]
With this configuration, the evaluation apparatus calculates the heat transfer coefficient as the heat transfer characteristic inside the heat transfer tube 12 during cooling. In addition, although the method for cooling the heat transfer medium flowing in the heat transfer tube is different between the actual refrigerator internal evaporator and the evaluation device, both are related to the outside of the heat transfer tube, and the heat transfer tube discussed in the present invention There is no effect on the heat transfer characteristics (heat transfer coefficient) of the heat transfer medium flowing inside.
(Comparative Example 1)
A smooth copper tube having a tube inner diameter of 14 mm was used as the heat transfer tube of the evaluation device described above. This heat transfer coefficient was measured using clean water as a heat transfer medium.
Example 1
As the heat transfer tube of the above-described evaluation apparatus, an acrylic resin cylindrical packing having an outer diameter of 13.9 mm and an inner diameter of 10 mm is inserted into only 1% of the upstream portion of the pipe along the inner central axis of a smooth copper tube having an inner diameter of 14 mm. And fixed one was used.
[0024]
A cross-sectional view of the heat transfer tube 12 is shown in FIG. FIG. 4 shows a longitudinal sectional view (longitudinal sectional view) of the upstream portion of the heat transfer tube 12. 3 and 4, reference numeral 13 denotes a cylindrical packing.
[0025]
This heat transfer tube is installed in the apparatus, and 500 ppm of oleylbishydroxyethylmethylammonium chloride and 300 ppm of sodium salicylate are added to water as a heat transfer medium, and a surfactant aqueous solution consisting of salicylate of oleylbishydroxyethylmethylammonium salt ( This heat transfer coefficient was measured using OBHE.
(Comparative Example 2)
In Example 1, the heat transfer coefficient of the heat transfer medium was measured under the same conditions except that the cylindrical packing was not used.
(Example 2)
In Example 1, a surfactant aqueous solution consisting of salicylate of oleyl trihydroxyethylammonium (abbreviated as OTHE) was added as a heat transfer medium by adding 500 ppm of oleyltrihydroxyethylammonium chloride and 275 ppm of sodium salicylate to clean water. The heat transfer coefficient of the heat transfer medium was measured under the same conditions except for use.
(Comparative Example 3)
In Example 2, the heat transfer coefficient of the heat transfer medium was measured under the same conditions except that the cylindrical packing was not used.
[0026]
FIG. 5 shows the heat transfer coefficients of the clean water and the surfactant aqueous solution in each heat transfer tube thus obtained.
[0027]
As can be seen from FIG. 5, the heat transfer coefficient of the surfactant aqueous solution is the same as that of clean water at the same flow rate in the heat transfer tube in which the cylindrical packing is not inserted in the flow rate range of 1 to 2 m / s in the actual machine. It is more reduced. However, in the heat transfer tube in which the cylindrical packing is inserted, the heat transfer coefficient of the surfactant aqueous solution is almost the same as that of clean water measured using the heat transfer tube in which the cylindrical packing is not inserted. In other words, it has been found that even if an aqueous surfactant solution is used, the heat transfer characteristics can be prevented from deteriorating with respect to the clean water in the rod-like filled heat transfer tube.
[0028]
【The invention's effect】
According to the heat transfer tube of the present invention, when the viscoelastic surfactant aqueous solution is used as the heat transfer medium, the conventional water-based heat transfer medium is used while the area of the heat transfer portion of the heat exchanger is the same as the conventional type. Compared to the case, the heat transfer characteristics in the heat exchanger section do not deteriorate.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a shell-and-tube heat exchanger.
FIG. 2 is a diagram showing a configuration of an evaluation apparatus for evaluating heat transfer characteristics of a heat transfer tube.
FIG. 3 is a cross-sectional view showing an example of a heat transfer tube of the present invention.
FIG. 4 is a longitudinal sectional view (longitudinal sectional view) showing an example of the heat transfer tube of the present invention.
FIG. 5 is a graph showing heat transfer coefficients in Examples and Comparative Examples.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Heat exchanger 11 ... Shell 12 ... Heat transfer tube 13 ... Cylindrical filling 21 ... Medium tank 22 ... Pumps 23, 24, 25 ... Pipe 26 ... Heat transfer characteristic measuring unit 27 ... circular pipe

Claims (3)

界面活性剤水溶液を熱搬送媒体として用いる熱交換器の伝熱管であって、
前記熱搬送媒体が流動する管内部の中心軸に沿って、管内面に密着する円筒状の充填物を伝熱管の上流部の一部に挿入した伝熱管において、該円筒状充填物の内面空洞部の断面形状が円形であり、かつ該円筒状充填物の内面空洞部の断面積が伝熱管内部の断面積の18〜75%であり、かつ該円筒状充填物の長さが伝熱管の全長の0.7〜2%である伝熱管
A heat exchanger tube of a heat exchanger that uses a surfactant aqueous solution as a heat carrier medium,
In a heat transfer tube in which a cylindrical packing that is in close contact with the inner surface of the tube is inserted into a part of the upstream portion of the heat transfer tube along a central axis inside the tube in which the heat transfer medium flows , an inner surface cavity of the cylindrical packing The cross-sectional shape of the portion is circular, the cross-sectional area of the inner cavity of the cylindrical packing is 18 to 75% of the cross-sectional area inside the heat transfer tube, and the length of the cylindrical packing is the length of the heat transfer tube Heat transfer tube that is 0.7-2% of the total length .
界面活性剤水溶液を熱搬送媒体として用いる熱搬送システムであって、前記熱搬送媒体に熱を供給する熱供給側プラントと、前記熱搬送媒体の熱を利用する熱利用側プラントと、前記熱供給側プラントと前記熱利用側プラントとの間で前記熱搬送媒体を循環させる配管とを備え、前記熱供給側プラント及び前記熱利用側プラントの少なくとも一方は、請求項1に記載の伝熱管を有する熱交換器を備えた熱搬送システム。  A heat transfer system that uses an aqueous surfactant solution as a heat transfer medium, a heat supply side plant that supplies heat to the heat transfer medium, a heat use side plant that uses heat of the heat transfer medium, and the heat supply A heat transfer medium according to claim 1, wherein at least one of the heat supply side plant and the heat use side plant includes a pipe that circulates the heat transfer medium between the side plant and the heat use side plant. Heat transfer system with heat exchanger. 請求項2記載の界面活性剤がオレイルトリヒドロキシエチルアンモニウム塩とサリチル酸塩の混合物であることを特徴とする請求項2の熱搬送システム。  The heat transfer system according to claim 2, wherein the surfactant according to claim 2 is a mixture of oleyl trihydroxyethylammonium salt and salicylate.
JP2001084372A 2001-03-23 2001-03-23 Heat transfer tube and heat transfer system Expired - Fee Related JP4508450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001084372A JP4508450B2 (en) 2001-03-23 2001-03-23 Heat transfer tube and heat transfer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001084372A JP4508450B2 (en) 2001-03-23 2001-03-23 Heat transfer tube and heat transfer system

Publications (2)

Publication Number Publication Date
JP2002277189A JP2002277189A (en) 2002-09-25
JP4508450B2 true JP4508450B2 (en) 2010-07-21

Family

ID=18940051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001084372A Expired - Fee Related JP4508450B2 (en) 2001-03-23 2001-03-23 Heat transfer tube and heat transfer system

Country Status (1)

Country Link
JP (1) JP4508450B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4771351B2 (en) * 2004-03-18 2011-09-14 大阪瓦斯株式会社 Heat transfer medium and heat transfer system using the same
JP2007101168A (en) * 2005-09-06 2007-04-19 New Industry Research Organization Heat exchanger device
JP5571418B2 (en) * 2010-03-18 2014-08-13 大阪瓦斯株式会社 Heat transfer medium and heat transfer system using the same
GB2525536B (en) * 2013-02-19 2019-05-08 Mitsubishi Electric Corp Heat exchanger having concentric pipes including intermediate heat transfer pipe and refrigeration cycle apparatus including the heat exchanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121284A (en) * 1998-10-13 2000-04-28 Osaka Gas Co Ltd Heat transfer tube and heat conveying system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU187016B (en) * 1983-02-01 1985-10-28 Energiagazdalkodasi Intezet Device for improving the heat-transfer coefficient of viscous liquids flowing in the tubes of heat exchangers
JPH11344295A (en) * 1998-06-03 1999-12-14 Lion Corp Piping system using frictional resistance decreasing agent for aqueous medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121284A (en) * 1998-10-13 2000-04-28 Osaka Gas Co Ltd Heat transfer tube and heat conveying system

Also Published As

Publication number Publication date
JP2002277189A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
Agarwal et al. Heat transfer augmentation for the flow of a viscous liquid in circular tubes using twisted tape inserts
CN109405589B (en) Spherical heat exchanger with double tube-pass independent heat exchange
CN101900498A (en) Heat exchanger
JP2008164240A (en) Heat pump system
CN101738119B (en) Liquid absorbing core for embedded channels of heat pipe
JP4508450B2 (en) Heat transfer tube and heat transfer system
CN104197760A (en) Pipeline type pulse heat pipe heat exchanger
JP4615422B2 (en) Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters
CN102121768A (en) Heat exchange apparatus with heat pipe soaking device for refrigeration air conditioning system
JP2000121284A (en) Heat transfer tube and heat conveying system
JP3750007B2 (en) Heat transfer tube and heat transfer system
JPH09194817A (en) Heat transfer medium and circulating system thereof
CN204830968U (en) Include fin formula heat exchanger of U type heat exchange tube
CN201569344U (en) Heat-pipe embedded conduit liquid absorbing core
JP2010096372A (en) Internal heat exchanger for carbon dioxide refrigerant
JP2001248991A (en) Heat transfer pipe and heat transferring system
JP2005016896A (en) Heat transporting medium and heat transporting system using the same
JP2000121283A (en) Heat exchanger and heat conveying system
PT890065E (en) REFRIGERATION CAPACITY ACCUMULATOR
CN201974081U (en) Heat-exchanging device with heat-pipe thermal spreader for refrigerative air-conditioning system
CN101126612A (en) Spiral type corrugated tube heat exchanging tube
JP3671450B2 (en) Fluid flow promoter and thermal energy transfer method using the same
JP2976538B2 (en) Heat exchanger
JP2005037092A (en) Heat exchanger and heat transfer system comprising the same
JP2010255980A (en) Heat exchanger and heat pump water heater using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4508450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees