JP2001248991A - Heat transfer pipe and heat transferring system - Google Patents

Heat transfer pipe and heat transferring system

Info

Publication number
JP2001248991A
JP2001248991A JP2000058552A JP2000058552A JP2001248991A JP 2001248991 A JP2001248991 A JP 2001248991A JP 2000058552 A JP2000058552 A JP 2000058552A JP 2000058552 A JP2000058552 A JP 2000058552A JP 2001248991 A JP2001248991 A JP 2001248991A
Authority
JP
Japan
Prior art keywords
heat transfer
heat
tube
transfer medium
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000058552A
Other languages
Japanese (ja)
Inventor
Akira Kishimoto
章 岸本
Masaaki Yoshikawa
正晃 吉川
Hiroki Usui
洋基 薄井
Hajime Onoshima
一 小野島
Yoshio Gomachi
善雄 五町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Osaka Gas Co Ltd
Original Assignee
Obayashi Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Osaka Gas Co Ltd filed Critical Obayashi Corp
Priority to JP2000058552A priority Critical patent/JP2001248991A/en
Publication of JP2001248991A publication Critical patent/JP2001248991A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/17District heating

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat-transferring pipe where a heat-transferring characteristic at a heat exchanger is not decreased as compared with that of the prior art using water-based heat transferring medium when viscous and resilient liquid solution of surface-active agent is used as heat transferring medium while an area of a heat transferring part of a heat exchanger is being kept same as that of the prior art. SOLUTION: There is provided a heat transferring pipe 12 of a heat exchanger where liquid solution of surface active agent is used as heat transferring medium and a rod-like filling material 13 is inserted along an inner central axis of the heat transferring pipe 12 where the heat transferring medium flows.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷熱および温熱を
水の顕熱により搬送するシステムにおいて、界面活性剤
を水に添加することにより流動摩擦を低減させる方法に
際し、熱交換器内で摩擦低減と同時に発現する伝熱性能
低下を防止する熱交換器用伝熱管およびそれを用いた熱
搬送システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing flow friction by adding a surfactant to water in a system for transferring cold and warm heat by sensible heat of water. The present invention relates to a heat exchanger tube for a heat exchanger that simultaneously prevents a decrease in heat transfer performance and a heat transfer system using the same.

【0002】[0002]

【従来の技術】例えば、地域冷暖房システムにおいて、
熱供給側プラントから熱利用側のビルまで熱搬送媒体で
ある水を循環させるための配管の長さは数km以上にな
り、その水搬送動力はかなり大きく、地域冷暖房システ
ムのランニングコストの約60%〜70%であるとも言
われている。
2. Description of the Related Art For example, in a district heating and cooling system,
The length of pipes for circulating water as a heat transfer medium from the heat supply side plant to the heat use side building is several kilometers or more, the water transfer power is considerably large, and the running cost of the district heating and cooling system is about 60%. % To 70%.

【0003】最近、この水搬送動力を低減させる有効な
方法として、粘弾性を示す界面活性剤水溶液を熱搬送媒
体として用い、流動摩擦抵抗を著しく低減させる方法が
提案されている。
[0003] Recently, as an effective method for reducing the water transfer power, a method has been proposed in which an aqueous surfactant solution exhibiting viscoelasticity is used as a heat transfer medium to significantly reduce the flow friction resistance.

【0004】これは、配管内を流動する水に特定の陽イ
オン性界面活性剤とサリチル酸ナトリウム等の対イオン
を数10〜数1000ppm溶解させると、界面活性剤が
水中で、疎水基部を中心に親水基部を外周部に配置して
ミセル(会合体)を形成し、そのミセルが棒状の形態を
なして高次に絡まって粘弾性を示すことに起因するとい
われている。
[0004] When a specific cationic surfactant and a counter ion such as sodium salicylate of several tens to several thousand ppm are dissolved in water flowing in a pipe, the surfactant is concentrated in the water around the hydrophobic base in water. It is said that the hydrophilic base is arranged on the outer periphery to form micelles (associates), and the micelles are rod-shaped and entangled in higher order to exhibit viscoelasticity.

【0005】このような特性を示す界面活性剤および水
搬送配管内の摩擦抵抗低減方法として、例えば特公平3
−76360、特公平4−6231、特公平5−475
34、特開平8−311431等がある。
As a method of reducing the frictional resistance in a surfactant and a water transfer pipe exhibiting such characteristics, for example, Japanese Patent Publication No.
-76360, JP-B-4-6231, JP-B5-475
34, and JP-A-8-31431.

【0006】しかしながら、これらの水溶液の特性とし
て、流動摩擦抵抗の減少と同時に伝熱特性も低下するこ
とが知られている。つまり、これらの水溶液を地域冷暖
房やビル空調等の熱搬送システムに利用することを考え
た場合、確かに流動摩擦抵抗は減少し、それにともなっ
て搬送動力も削減され、省エネルギー型熱搬送システム
が構築されると考えられるが、その一方で、熱供給側プ
ラントと熱利用側空調機内にそれぞれ設置されている熱
交換器における伝熱性能が低下してしまうことになる。
従って、従来の水または配管等機器材料の腐食を防止す
る添加物が溶解した水溶液を熱搬送媒体として用いたシ
ステム(以下、従来型熱搬送システムという)と比較し
て、熱供給側プラントおよび熱利用側熱交換器の伝熱部
分の面積を大きくする必要が生じることになる。
[0006] However, it is known that the characteristics of these aqueous solutions are such that the heat transfer characteristics are also reduced at the same time as the flow friction resistance is reduced. In other words, when considering the use of these aqueous solutions for heat transfer systems such as district heating and cooling, building air conditioning, etc., the flow friction resistance is certainly reduced, and the transfer power is also reduced accordingly, creating an energy-saving heat transfer system. However, on the other hand, the heat transfer performance of the heat exchangers installed in the heat supply-side plant and the heat utilization-side air conditioner will be reduced.
Therefore, as compared with a conventional system using a water or an aqueous solution in which additives for preventing corrosion of equipment materials such as pipes are dissolved as a heat transfer medium (hereinafter referred to as a conventional heat transfer system), the heat supply side plant and heat It is necessary to increase the area of the heat transfer portion of the use side heat exchanger.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、粘弾
性界面活性剤水溶液を熱搬送媒体として使用した時に、
熱交換器部の伝熱部分の面積を従来型と同じにしなが
ら、従来の水系熱搬送媒体を用いる場合に比べて熱交換
器部における伝熱特性が低下しない伝熱管およびそれを
用いた熱搬送システムを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an aqueous viscoelastic surfactant solution which is used as a heat transfer medium.
A heat transfer tube and a heat transfer tube using the same, in which the area of the heat transfer portion of the heat exchanger section is the same as that of the conventional type, and the heat transfer characteristics of the heat exchanger section are not reduced as compared with the case of using the conventional aqueous heat transfer medium. It is to provide a system.

【0008】[0008]

【課題を解決するための手段】本発明者らは、粘弾性界
面活性剤水溶液を熱搬送媒体として用いる搬送動力削減
型熱搬送システムにおいて、熱供給側プラント内で熱搬
送媒体に熱を伝達させる(熱搬送媒体を加熱または冷却
する)熱交換器と、熱利用側プラント内で熱搬送媒体か
ら熱を伝達させる(熱搬送媒体を加熱または冷却する)
熱交換器に関し、それらの熱交換器で使用されている伝
熱管に、熱搬送媒体が流動する管内部の中心軸に沿っ
て、棒状の充填物を挿入することにより、上記目的が達
成されることを見出した。
Means for Solving the Problems The inventors of the present invention provide a heat transfer system using a viscoelastic surfactant aqueous solution as a heat transfer medium to transfer heat to the heat transfer medium in a heat supply side plant. Heat exchanger (heats or cools the heat transfer medium) and transfers heat from the heat transfer medium in the heat utilization side plant (heats or cools the heat transfer medium)
Regarding heat exchangers, the above object is achieved by inserting a rod-shaped filler into heat transfer tubes used in the heat exchangers along a central axis inside the tubes through which the heat transfer medium flows. I found that.

【0009】すなわち、本発明は、下記に示すとおりの
伝熱管およびそれを用いた熱搬送システムを提供するも
のである。項1.界面活性剤水溶液を熱搬送媒体として
用いる熱交換器の伝熱管であって、前記熱搬送媒体が流
動する管内部の中心軸に沿って、棒状の充填物を挿入し
た伝熱管。項2.界面活性剤水溶液を熱搬送媒体として
用いる熱搬送システムであって、前記熱搬送媒体に熱を
供給する熱供給側プラントと、前記熱搬送媒体の熱を利
用する熱利用側プラントと、前記熱供給側プラントと前
記熱利用側プラントとの間で前記熱搬送媒体を循環させ
る配管とを備え、前記熱供給側プラント及び前記熱利用
側プラントの少なくとも一方は、項1に記載の伝熱管を
有する熱交換器を備えた熱搬送システム。
That is, the present invention provides a heat transfer tube and a heat transfer system using the same as described below. Item 1. A heat transfer tube for a heat exchanger using a surfactant aqueous solution as a heat transfer medium, wherein a rod-shaped filler is inserted along a central axis inside the tube through which the heat transfer medium flows. Item 2. A heat transfer system that uses a surfactant aqueous solution as a heat transfer medium, a heat supply-side plant that supplies heat to the heat transfer medium, a heat-use-side plant that uses heat of the heat transfer medium, A pipe that circulates the heat transfer medium between a heat supply-side plant and the heat utilization-side plant, wherein at least one of the heat supply-side plant and the heat utilization-side plant has the heat transfer tube according to item 1. Heat transfer system with exchanger.

【0010】[0010]

【発明の実施の形態】粘弾性界面活性剤水溶液の伝熱性
能は、伝熱管内部の加工形状により大きく変化する。そ
して、粘弾性界面活性剤水溶液が流動する伝熱管内部の
中心軸に沿って、棒状の充填物を挿入した場合には、例
えば地域冷暖房システムの熱供給側プラントで実際に使
用されている冷凍機の伝熱管のような、配管口径(内
径)10〜20mmの範囲内で、実際に使用される流速範
囲域である1〜2m/sで、従来型の水搬送時と同じ伝熱
性能(熱伝達率)を提供することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The heat transfer performance of a viscoelastic surfactant aqueous solution varies greatly depending on the processed shape inside a heat transfer tube. When the rod-shaped filler is inserted along the central axis inside the heat transfer tube through which the viscoelastic surfactant aqueous solution flows, for example, the refrigerator actually used in the heat supply side plant of the district cooling and heating system With a pipe diameter (inner diameter) of 10 to 20 mm and a flow velocity range of 1 to 2 m / s that is actually used, the same heat transfer performance as that of conventional water conveyance (heat transfer pipe) Transmission).

【0011】このように、伝熱管内部の中心軸に沿って
棒状の充填物を挿入した場合には、粘弾性界面活性剤水
溶液を熱搬送媒体として用いても伝熱性能が低下しない
のは、棒状の充填物を挿入することにより、熱搬送媒体
を同流量で流す場合でも伝熱管内部での流速が増加する
からであると考えられる。
As described above, when the rod-shaped filler is inserted along the central axis inside the heat transfer tube, the heat transfer performance does not decrease even when the viscoelastic surfactant aqueous solution is used as the heat transfer medium. It is considered that the insertion of the rod-shaped filler increases the flow velocity inside the heat transfer tube even when the heat transfer medium flows at the same flow rate.

【0012】本発明の伝熱管における棒状(柱状)の充
填物の断面の形状は、特に限定されるものではないが、
例えば円形、四角形、三角形、半円形等が挙げられる。
好ましくは、円形等である。
The cross-sectional shape of the rod-shaped (column-shaped) filler in the heat transfer tube of the present invention is not particularly limited.
For example, a circle, a quadrangle, a triangle, a semicircle, and the like can be given.
Preferably, it is circular or the like.

【0013】また、棒状充填物の断面積についても特に
限定されるものではないが、伝熱管の断面積の5〜90
%であるのが好ましく、10〜80%であるのがより好
ましく、15〜70%であるのが特に好ましい。
The cross-sectional area of the rod-shaped filler is not particularly limited, either.
%, More preferably 10 to 80%, particularly preferably 15 to 70%.

【0014】さらに、棒状充填物の長さについても特に
限定されるものではなく、熱交換器伝熱管の全長にわた
って挿入されている必要はない。伝熱管の上流側に伝熱
管の全長の5〜100%の長さで挿入されているのが好
ましく、より好ましくは10〜100%の長さであり、
特に好ましくは40〜100%の長さである。
Furthermore, the length of the rod-shaped packing is not particularly limited, and it is not necessary to insert the rod-shaped packing over the entire length of the heat exchanger heat transfer tube. It is preferable that the heat transfer tube is inserted into the upstream side of the heat transfer tube at a length of 5 to 100% of the total length of the heat transfer tube, more preferably 10 to 100%.
Particularly preferably, the length is 40 to 100%.

【0015】棒状充填物の材質は、特に限定されない
が、合成樹脂または金属が好ましい。合成樹脂として
は、アクリル樹脂、ポリ塩化ビニル、メラミン樹脂、ポ
リエチレン等が挙げられ、アクリル樹脂、ポリエチレン
等が好ましい。金属としては、鉄、銅、金、銀、ステン
レス、真ちゅう等が挙げられ、コストの面から鉄、銅、
ステンレス等が好ましい。
The material of the rod-shaped filler is not particularly limited, but is preferably a synthetic resin or a metal. Examples of the synthetic resin include an acrylic resin, polyvinyl chloride, a melamine resin, and polyethylene, and an acrylic resin and polyethylene are preferable. Examples of the metal include iron, copper, gold, silver, stainless steel, brass, and the like.
Stainless steel is preferred.

【0016】棒状充填物は、伝熱管の内部に挿入された
状態で固定されている。その固定手段は特に限定されな
いが、例えば、棒状充填物よりも小径の棒状の固定部材
を数本用いて、伝熱管の内面と棒状充填物の外面とを連
結するようにして固定させればよい。
The rod-shaped packing is fixed while being inserted inside the heat transfer tube. Although the fixing means is not particularly limited, for example, it may be fixed by using several rod-shaped fixing members having a smaller diameter than the rod-shaped filler so as to connect the inner surface of the heat transfer tube and the outer surface of the rod-shaped filler. .

【0017】熱搬送媒体として用いる界面活性剤水溶液
に含まれる界面活性剤は特に限定されず、従来より用い
られているものでよいが、例えば、オレイル−ビス(2
−ヒドロキシエチル)メチルアンモニウムのサリチル酸
塩、セチルトリメチルアンモニウムのサリチル酸塩、ス
テアリルトリメチルアンモニウムのサリチル酸塩等が挙
げられる。
The surfactant contained in the aqueous surfactant solution used as the heat transfer medium is not particularly limited, and may be those conventionally used. For example, oleyl-bis (2
-Hydroxyethyl) methylammonium salicylate, cetyltrimethylammonium salicylate, stearyltrimethylammonium salicylate, and the like.

【0018】界面活性剤水溶液中の界面活性剤の濃度も
特に限定されないが、50〜50000ppmが好まし
く、50〜10000ppmがより好ましく、50〜50
00ppmが特に好ましい。
The concentration of the surfactant in the aqueous surfactant solution is not particularly limited either, but is preferably 50 to 50,000 ppm, more preferably 50 to 10,000 ppm, and more preferably 50 to 50 ppm.
00 ppm is particularly preferred.

【0019】本発明の伝熱管を、地域冷暖房システムや
ビル空調システムの熱搬送、ゴミ焼却場や工場の排熱の
搬送、または、河川水、海水、下水処理水等の温度差エ
ネルギーの搬送に利用した場合には、粘弾性界面活性剤
水溶液の流動摩擦抵抗低減により、水搬送動力が削減さ
れるだけでなく、熱供給側プラントおよび熱利用側プラ
ントにおいて、それぞれ、熱搬送媒体に熱を伝達する熱
交換器を大型化したり、改良したりする必要がなくな
り、従来の水用のもので対応可能となる。
The heat transfer tube of the present invention is used for heat transfer of a district cooling / heating system or a building air conditioning system, transfer of waste heat from a garbage incineration plant or a factory, or transfer of temperature difference energy such as river water, seawater, and sewage treatment water. When used, not only the water transfer power is reduced by reducing the flow frictional resistance of the viscoelastic surfactant aqueous solution, but also heat is transferred to the heat transfer medium in the heat supply side plant and the heat utilization side plant, respectively. It is not necessary to increase or improve the heat exchanger to be used, and it is possible to use a conventional water exchanger.

【0020】[0020]

【実施例】先ず、熱搬送システムに使用される熱交換器
の一例として、地域冷暖房システムの熱供給プラント内
における冷凍機の構造について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, as an example of a heat exchanger used in a heat transfer system, a structure of a refrigerator in a heat supply plant of a district heating and cooling system will be described.

【0021】冷凍機内で発生する冷熱を熱搬送媒体に伝
達する部分は一般に蒸発器と呼ばれ、図1に示すような
シェルアンドチューブ型熱交換器で構成されている。図
1に示すように、熱交換器10は、シェル11、伝熱管
12を備える。シェル内は減圧下に保持され、多数の伝
熱管(チューブ)12が一定方向に平行して設置されて
いる。それぞれの伝熱管12の内部に熱搬送媒体が連続
的に流動する一方で、シェル11内では、吸収式冷凍機
の場合は水が、電動式ターボ冷凍機の場合はフロン液
が、それぞれ連続的に噴出され、その液が伝熱管12の
外側をたれ落ちながら蒸発(気化)する。その時の気化
熱によって、伝熱管12内の熱搬送媒体は冷却される。
冷却された熱搬送媒体は、ポンプにより配管を通じて、
熱利用側に供給され、冷房の冷熱として利用される。
The portion for transmitting the cold generated in the refrigerator to the heat transfer medium is generally called an evaporator, and is constituted by a shell and tube type heat exchanger as shown in FIG. As shown in FIG. 1, the heat exchanger 10 includes a shell 11 and a heat transfer tube 12. The inside of the shell is kept under reduced pressure, and a number of heat transfer tubes (tubes) 12 are installed in parallel in a certain direction. While the heat transfer medium continuously flows inside each heat transfer tube 12, water in the case of the absorption refrigerator and Freon liquid in the case of the electric turbo refrigerator are continuously flowing in the shell 11 respectively. And the liquid evaporates (evaporates) while dripping on the outside of the heat transfer tube 12. The heat transfer medium in the heat transfer tube 12 is cooled by the heat of vaporization at that time.
The cooled heat transfer medium is pumped through piping
It is supplied to the heat utilization side and is used as cooling heat for cooling.

【0022】図2は、伝熱管の伝熱特性を評価するため
の評価装置の構成を示す図である。図2に示すように、
10℃に調整した熱搬送媒体を媒体タンク21に充填
し、ポンプ22により媒体タンク21内の熱搬送媒体を
配管23〜25を介して伝熱特性計測部26に導入す
る。伝熱特性計測部26は、伝熱管12と、伝熱管12
の周りを覆う円管27とを備え、円管27は、ステンレ
ス製の呼び径40Aの円管である。伝熱管12と円管2
7とから構成される二重管(二重管熱交換器)の内側、
すなわち円管27と伝熱管12との間の環状部分には、
伝熱管12の管壁の温度が8℃になるように、約2〜3
℃の冷水が常時流入される。この冷水により、伝熱管1
2内に流動する10℃の熱搬送媒体が冷却される。ま
た、伝熱管を流動する熱搬送媒体の圧力損失を計測する
ため、二重管熱交換器の両端に直径2mmの穴28,29
を設け、差圧計を接続する。
FIG. 2 is a diagram showing a configuration of an evaluation device for evaluating the heat transfer characteristics of the heat transfer tube. As shown in FIG.
The heat transfer medium adjusted to 10 ° C. is filled in the medium tank 21, and the heat transfer medium in the medium tank 21 is introduced into the heat transfer characteristic measuring unit 26 via the pipes 23 to 25 by the pump 22. The heat transfer characteristic measuring unit 26 includes the heat transfer tube 12 and the heat transfer tube 12.
And a circular pipe 27 covering the periphery of the circular pipe. The circular pipe 27 is a circular pipe made of stainless steel and having a nominal diameter of 40A. Heat transfer tube 12 and circular tube 2
7, inside a double tube (double tube heat exchanger)
That is, in the annular portion between the circular tube 27 and the heat transfer tube 12,
About 2 to 3 so that the temperature of the tube wall of the heat transfer tube 12 becomes 8 ° C.
° C cold water is constantly introduced. This cold water allows the heat transfer tube 1
2 is cooled. In order to measure the pressure loss of the heat transfer medium flowing through the heat transfer tube, holes 28 and 29 having a diameter of 2 mm were provided at both ends of the double tube heat exchanger.
And connect a differential pressure gauge.

【0023】上記の構成により、本評価装置では、冷却
時の伝熱管12の内側の伝熱特性として熱伝達率を、流
動特性として圧力損失をそれぞれ算出する。なお、実際
の冷凍機内蒸発器と評価装置では伝熱管内を流動する熱
搬送媒体を冷却させる方法が異なるが、それらはいずれ
も伝熱管の外側に関することであり、この発明で議論す
る伝熱管の内側を流動する熱搬送媒体の伝熱特性(熱伝
達率)には何ら影響はない。
With the above configuration, the present evaluation apparatus calculates the heat transfer coefficient as the heat transfer characteristic inside the heat transfer tube 12 during cooling and the pressure loss as the flow characteristic. Note that the method of cooling the heat transfer medium flowing in the heat transfer tube differs between the actual evaporator in the refrigerator and the evaluation device, but they are all related to the outside of the heat transfer tube, and the method of cooling the heat transfer tube discussed in the present invention. There is no effect on the heat transfer characteristics (heat transfer coefficient) of the heat transfer medium flowing inside.

【0024】供試する熱搬送媒体としては、従来型のも
のとしては上水に亜硝酸系の配管腐食防錆剤であるクリ
サワーI−108(栗田工業社製)を750ppm溶解し
たもの(以下、従来型溶液という)を使用し、流動抵抗
低減型としては、前述の従来型熱搬送媒体(従来型溶
液)にオレイル−ビス(2−ヒドロキシエチル)メチル
アンモニウムクロライドを主成分とする界面活性剤:エ
ソカードO−12(ライオン社製)とサリチル酸ナトリ
ウム(和光純薬社製)をそれぞれ750ppm、450ppm
溶解させたもの(以下、摩擦抵抗低減水溶液、Drag
Reduction=DR溶液という)を使用した。
As a heat transfer medium to be tested, as a conventional type, 750 ppm of Kurisawa I-108 (manufactured by Kurita Kogyo Co., Ltd.), which is a nitrite-based pipe corrosion rust preventive, was dissolved in tap water (hereinafter, referred to as "heat transfer medium"). As a flow resistance reducing type, a surfactant mainly containing oleyl-bis (2-hydroxyethyl) methylammonium chloride in the above-mentioned conventional heat transfer medium (conventional solution): Esocard O-12 (manufactured by Lion) and sodium salicylate (manufactured by Wako Pure Chemical Industries) at 750 ppm and 450 ppm, respectively.
Dissolved (hereinafter referred to as frictional resistance reducing aqueous solution, Drag
Reduction = DR solution).

【0025】実施例1 上述の評価装置の伝熱管として、管内径14mmの平滑銅
管の内部中心軸に沿って直径6mmのアクリル樹脂製棒状
充填物を管上流部の40%のみに挿入して固定したもの
を使用した。
Example 1 As a heat transfer tube of the above-described evaluation device, an acrylic resin rod-like filler having a diameter of 6 mm was inserted along only the inner central axis of a smooth copper tube having an inner diameter of 14 mm into only 40% of the upstream portion of the tube. The fixed one was used.

【0026】伝熱管12の横断面図を図3に示す。ま
た、伝熱管12の上流部の長手方向の断面図(縦断面
図)を図4に示す。図において、13は棒状充填物を示
す。14は、棒状充填物13を伝熱管12の内部に固定
するための固定部材を示す。図においては、棒状充填物
13より小径の棒状の固定部材14が放射状に3本設け
られており、伝熱管12の内周面と棒状充填物13の外
周面とを連結して、棒状充填物13を伝熱管12の内部
に固定している。
FIG. 3 shows a cross-sectional view of the heat transfer tube 12. FIG. 4 is a cross-sectional view (longitudinal cross-sectional view) of the upstream portion of the heat transfer tube 12 in the longitudinal direction. In the figure, reference numeral 13 denotes a rod-like packing. Reference numeral 14 denotes a fixing member for fixing the rod-shaped filler 13 inside the heat transfer tube 12. In the figure, three rod-shaped fixing members 14 smaller in diameter than the rod-shaped filler 13 are provided radially, and the inner peripheral surface of the heat transfer tube 12 and the outer peripheral surface of the rod-shaped filler 13 are connected to form a rod-shaped filler. 13 is fixed inside the heat transfer tube 12.

【0027】この伝熱管を装置に設置し、DR溶液の圧
力損失および熱伝達率をそれぞれ計測した。
The heat transfer tube was installed in the apparatus, and the pressure loss and the heat transfer coefficient of the DR solution were measured.

【0028】比較例1 上述の評価装置の伝熱管として、管内径14mmの平滑銅
管を使用した。
Comparative Example 1 A smooth copper tube having an inner diameter of 14 mm was used as a heat transfer tube of the above-described evaluation apparatus.

【0029】この伝熱管を装置に設置し、従来型溶液お
よびDR溶液について圧力損失および熱伝達率をそれぞ
れ計測した。
This heat transfer tube was installed in the apparatus, and the pressure loss and the heat transfer coefficient of the conventional solution and the DR solution were measured, respectively.

【0030】このようにして得られた各伝熱管における
従来型溶液およびDR溶液についての圧力損失および熱
伝達率を図5に示した。
FIG. 5 shows the pressure loss and the heat transfer coefficient of the conventional solution and the DR solution in each of the heat transfer tubes thus obtained.

【0031】図5において、黒三角が棒状充填物挿入伝
熱管のDR溶液の結果を、黒丸が棒状充填物挿入なし伝
熱管のDR溶液の結果を、白丸が棒状充填物挿入なし伝
熱管の従来型溶液の結果を、それぞれ示している。同図
からも明らかなように、実機での使用流速範囲1〜2m/
sで、棒状充填物挿入なし伝熱管では、同一の流量にお
いてDR溶液の圧力損失が低下するとともに熱伝達率は
従来型溶液のそれより低減している。しかし、棒状充填
物挿入伝熱管のDR溶液の熱伝達率は、棒状充填物挿入
なし伝熱管の従来型溶液のそれより低下していない。つ
まり、DR溶液を使用しても、この棒状充填物挿入伝熱
管内では、従来型に対して、圧力損失を増加させること
なく伝熱特性の低下を防止できることがわかった。
In FIG. 5, the black triangles indicate the results of the DR solution of the heat transfer tube with the rod-shaped filler inserted, the black circles the results of the DR solution of the heat transfer tube without the inserted rod-shaped filler, and the white circle indicates the conventional heat transfer tube without the rod-shaped filler inserted. The results for the mold solutions are shown respectively. As is clear from the figure, the flow velocity range in the actual machine is 1-2 m /
In s, in the heat transfer tube without the rod-shaped filler inserted, the pressure loss of the DR solution is reduced at the same flow rate, and the heat transfer coefficient is lower than that of the conventional solution. However, the heat transfer coefficient of the DR solution in the heat transfer tube with the rod-shaped filling is not lower than that of the conventional solution in the heat transfer tube without the rod-shaped filling. That is, it was found that even when the DR solution was used, the heat transfer characteristics could be prevented from being reduced without increasing the pressure loss in the rod-shaped filler-inserted heat transfer tube as compared with the conventional type.

【0032】[0032]

【発明の効果】本発明の伝熱管によれば、粘弾性界面活
性剤水溶液を熱搬送媒体として使用した時に、熱交換器
部の伝熱部分の面積を従来型と同じにしながら、従来の
水系熱搬送媒体を用いる場合に比べて熱交換器部におけ
る伝熱特性が低下しない。
According to the heat transfer tube of the present invention, when an aqueous solution of a viscoelastic surfactant is used as a heat transfer medium, the area of the heat transfer portion of the heat exchanger section is made the same as that of the conventional type, and The heat transfer characteristics in the heat exchanger section do not decrease as compared with the case where the heat transfer medium is used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】シェルアンドチューブ型熱交換器の一例を示す
概略図である。
FIG. 1 is a schematic diagram showing an example of a shell and tube heat exchanger.

【図2】伝熱管の伝熱特性を評価するための評価装置の
構成を示す図である。
FIG. 2 is a diagram illustrating a configuration of an evaluation device for evaluating heat transfer characteristics of a heat transfer tube.

【図3】本発明の伝熱管の一例を示す横断面図である。FIG. 3 is a cross-sectional view showing one example of the heat transfer tube of the present invention.

【図4】本発明の伝熱管の一例を示す長手方向の断面図
(縦断面図)である。
FIG. 4 is a longitudinal sectional view (longitudinal sectional view) showing an example of the heat transfer tube of the present invention.

【図5】実施例および比較例における圧力損失および熱
伝達率を示す図である。
FIG. 5 is a diagram showing pressure loss and heat transfer coefficient in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

10…熱交換器 11…シェル 12…伝熱管 13…棒状充填物 14…固定部材 21…媒体タンク 22…ポンプ 23,24,25…配管 26…伝熱特性計測部 27…円管 28,29…穴 DESCRIPTION OF SYMBOLS 10 ... Heat exchanger 11 ... Shell 12 ... Heat transfer tube 13 ... Bar-shaped packing 14 ... Fixing member 21 ... Medium tank 22 ... Pump 23, 24, 25 ... Piping 26 ... Heat transfer characteristic measuring part 27 ... Circular pipe 28, 29 ... hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉川 正晃 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 薄井 洋基 兵庫県伊丹市行基町二丁目86番地 (72)発明者 小野島 一 東京都清瀬市下清戸四丁目640番地 株式 会社大林組技術研究所内 (72)発明者 五町 善雄 大阪府大阪市中央区北浜東4番33号 株式 会社大林組本店内 Fターム(参考) 3L054 BF20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masaaki Yoshikawa 4-1-2, Hirano-cho, Chuo-ku, Osaka City, Osaka Prefecture Inside Osaka Gas Co., Ltd. (72) Inventor Hiroki Usui 2-86 Gyokicho, Itami-shi, Hyogo Prefecture (72) Inventor Kazuo Onojima 4-640 Shimoseito, Kiyose-shi, Tokyo Inside Obayashi Corporation Technical Research Institute (72) Inventor Yoshio Gomachi 4-33 Kitahama Higashi, Chuo-ku, Osaka-shi, Osaka F-term (Obayashi Gumi head office) Reference) 3L054 BF20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 界面活性剤水溶液を熱搬送媒体として用
いる熱交換器の伝熱管であって、前記熱搬送媒体が流動
する管内部の中心軸に沿って、棒状の充填物を挿入した
伝熱管。
1. A heat transfer tube for a heat exchanger using a surfactant aqueous solution as a heat transfer medium, wherein a rod-shaped filler is inserted along a central axis inside the tube through which the heat transfer medium flows. .
【請求項2】 界面活性剤水溶液を熱搬送媒体として用
いる熱搬送システムであって、前記熱搬送媒体に熱を供
給する熱供給側プラントと、前記熱搬送媒体の熱を利用
する熱利用側プラントと、前記熱供給側プラントと前記
熱利用側プラントとの間で前記熱搬送媒体を循環させる
配管とを備え、前記熱供給側プラント及び前記熱利用側
プラントの少なくとも一方は、請求項1に記載の伝熱管
を有する熱交換器を備えた熱搬送システム。
2. A heat transfer system using a surfactant aqueous solution as a heat transfer medium, a heat supply side plant for supplying heat to the heat transfer medium, and a heat use side plant using heat of the heat transfer medium. And a pipe for circulating the heat transfer medium between the heat supply-side plant and the heat utilization-side plant, wherein at least one of the heat supply-side plant and the heat utilization-side plant is according to claim 1. A heat transfer system provided with a heat exchanger having the heat transfer tubes.
JP2000058552A 2000-03-03 2000-03-03 Heat transfer pipe and heat transferring system Pending JP2001248991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000058552A JP2001248991A (en) 2000-03-03 2000-03-03 Heat transfer pipe and heat transferring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000058552A JP2001248991A (en) 2000-03-03 2000-03-03 Heat transfer pipe and heat transferring system

Publications (1)

Publication Number Publication Date
JP2001248991A true JP2001248991A (en) 2001-09-14

Family

ID=18579133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000058552A Pending JP2001248991A (en) 2000-03-03 2000-03-03 Heat transfer pipe and heat transferring system

Country Status (1)

Country Link
JP (1) JP2001248991A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201713A (en) * 2011-03-24 2012-10-22 Osaka Gas Co Ltd Heat transfer medium and heat transfer system using the same
JP2012201781A (en) * 2011-03-25 2012-10-22 Osaka Gas Co Ltd Heat transfer medium and heat transfer system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201713A (en) * 2011-03-24 2012-10-22 Osaka Gas Co Ltd Heat transfer medium and heat transfer system using the same
JP2012201781A (en) * 2011-03-25 2012-10-22 Osaka Gas Co Ltd Heat transfer medium and heat transfer system using the same

Similar Documents

Publication Publication Date Title
TW201042230A (en) Heat exchanger
BR0305279A (en) Cross flow heat exchanger
EP1866636A4 (en) Methods for monitoring fouling of aqueous systems including enhanced heat exchanger tubes
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP2000121284A (en) Heat transfer tube and heat conveying system
JP2001248991A (en) Heat transfer pipe and heat transferring system
JP4508450B2 (en) Heat transfer tube and heat transfer system
JP2985070B2 (en) Ice making equipment
JP2000121271A (en) Heat transfer tube and heat conveying system
JP2008267631A (en) Heat exchanger
JP2000121283A (en) Heat exchanger and heat conveying system
JP2007271238A (en) Heat exchanger
Kishimoto et al. Influences of the inner-surface conditions of circular tubes on the heat transfer in a surfactant drag-reduction system
JP2008175450A (en) Heat exchanger
JP2003269884A (en) Heat exchanger and heat transfer system
JP4277129B2 (en) Surfactant supply control method and heat transfer method
CN210190316U (en) Cold roll and cooling device comprising same
JP2005016896A (en) Heat transporting medium and heat transporting system using the same
CN216010015U (en) Anticorrosive insulating tube convenient to change anticorrosive insulation material
WO2022190907A1 (en) Scale suppression unit
JP5571418B2 (en) Heat transfer medium and heat transfer system using the same
JP2010255980A (en) Heat exchanger and heat pump water heater using the same
RU116975U1 (en) HEATING SYSTEM
WO2011073470A1 (en) Thermal break device in connections to heat exchangers
JP2005037092A (en) Heat exchanger and heat transfer system comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100416