JP4508076B2 - 排気ガス浄化用触媒装置 - Google Patents

排気ガス浄化用触媒装置 Download PDF

Info

Publication number
JP4508076B2
JP4508076B2 JP2005307068A JP2005307068A JP4508076B2 JP 4508076 B2 JP4508076 B2 JP 4508076B2 JP 2005307068 A JP2005307068 A JP 2005307068A JP 2005307068 A JP2005307068 A JP 2005307068A JP 4508076 B2 JP4508076 B2 JP 4508076B2
Authority
JP
Japan
Prior art keywords
catalyst
way catalyst
exhaust gas
downstream side
ceria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005307068A
Other languages
English (en)
Other versions
JP2007111650A (ja
Inventor
健治 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005307068A priority Critical patent/JP4508076B2/ja
Publication of JP2007111650A publication Critical patent/JP2007111650A/ja
Application granted granted Critical
Publication of JP4508076B2 publication Critical patent/JP4508076B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、排気ガス浄化用触媒装置、特に、酸素吸蔵能を有する成分を含む三元触媒が排気系の上流側と下流側とに二個配置された形態で、HS(硫化水素)による排気臭を抑制可能な排気ガス浄化用触媒装置に関する。
従来、内燃機関の排気系に設けられる排気ガス浄化用触媒と空燃比制御装置とを備えた排気ガス浄化装置が知られている。排気ガス浄化用触媒(三元触媒)は、例えばコージェライト等の耐熱性セラミックスからなる担体基材と、この担体基材上に形成された活性アルミナ等からなる触媒担持層と、この触媒担持層に担持されたPt等の触媒金属とからなる。この三元触媒は、内燃機関の排気ガス中の炭化水素(HC)、一酸化炭素(CO)及び窒素酸化物(NOx )を浄化すべく、触媒担持層に主要な成分として、セリウム(Ce)酸化物が添加されている。このセリウム酸化物は、特に排気ガスがリーンの酸化雰囲気下では酸素を貯蔵し、排気ガスがリッチの還元雰囲気下では酸素を放出する酸素貯蔵能(OSC)をもつ。
また、触媒金属とセリウム酸化物とを含む三元触媒は、800℃以上の高温下で使用されると、セリウム酸化物の結晶成長により、酸素貯蔵能が低下しやすいと言われている。このため、セリウム酸化物の結晶成長を抑制して高い酸素貯蔵能を維持するため、セリウム酸化物以外にジルコニウム(Zr)酸化物をも添加することもある。
一方、空燃比制御装置では、三元触媒の上流側に空燃比センサが設けられ、三元触媒の下流側に酸素センサが設けられ、これら空燃比センサと酸素センサとは制御回路を介して空燃比制御手段と接続されている。空燃比センサは、三元触媒の上流側において空燃比(A/F)のリッチ又はリーンを検出し、その出力信号を制御回路に出力する。また、酸素センサは、三元触媒の下流側において浄化後の排気ガスの酸素濃度を検出し、その出力信号を制御回路に出力する。このため、空燃比制御手段は、空燃比センサの出力に応じて内燃機関の空燃比を理論空燃比(ストイキ)近傍に調整するとともに、酸素センサの出力に応じて空燃比センサの特性変化(リッチずれ又はリーンずれ)を検出し、空燃比センサの劣化補正を行うようにしている。かくて、精密なA/F制御の下、三元触媒が有効に作用するようになされている。
ところで、このような空燃比制御手段と共に用いられる三元触媒においては、空燃比センサの検出出力に応じて内燃機関の空燃比を理論空燃比(ストイキ)に制御しているが、車両のモード走行状態によっては、急加速時等で機関からリッチガスが排出される期間が長引き、三元触媒を単体で備えた排気ガス浄化装置では、この三元触媒がリッチガスで飽和されてしまい浄化率の点で未だ満足できない点がある。また、機関の始動直後等の触媒の活性化前にも浄化性能が低下することから、このような浄化率を向上させるべく、かかる三元触媒を上流側と下流側とに二個配置し、上流側の三元触媒についてその上下流に上述の空燃比センサおよび酸素センサを配置した排気ガス浄化装置も知られている。例えば、特許文献1参照。
また、触媒中でHSが生成されるのを防止することのできる触媒は、特許文献2に記載され、HSの排出を抑制しつつ、吸蔵型NOx触媒の再生を効率よく行なうようにした排ガス浄化装置が特許文献3に開示されている。
特開2003−200049号公報 特開平7−194978号公報 特開2000−204937号公報
ところで、燃料や潤滑油内にはイオウ成分が含まれているため、排気ガス中にもイオウ成分が含まれる。このため、上記三元触媒における触媒担持層の母材であるアルミナあるいはセリウム(Ce)酸化物のセリアは、空燃比がリーンのエンジン運転状態における酸素濃度の過剰な酸化雰囲気で酸素を貯蔵すると共に、排気ガス中のSO(酸化イオウ)等のイオウ酸化物を取り込んで硫酸化合物(M(SOx))をつくり貯蔵することが知られている。そして、空燃比がリッチになるとその硫酸化合物からイオウ酸化物が分離し、それが排気ガス中のHとかHCと反応してHS(硫化水素)をつくる。そして、このH2Sが生成された排気ガスが排出されると卵が腐敗したような異臭を放つため、その排気臭対策が望まれている。
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、排気ガスの浄化効率を低下させることなく排気臭の発生を抑制することのできる排気ガス浄化用触媒装置を提供することにある。
上記課題を解決する本発明に係る排気ガス浄化用触媒装置は、担体基材上に形成された触媒担持層に酸素吸蔵能を有する成分を含む三元触媒を排気系の上流側と下流側とに二個配置した排気ガス浄化用触媒装置において、前記下流側三元触媒における酸素吸蔵能を有する成分としてのセリアの量の前記上流側三元触媒における酸素吸蔵能を有する成分としてのセリアの量に対する比率を、HSの生成を抑制すべく、0.5より大きく1以下の範囲にしたことを特徴とする。
この形態によれば、下流側三元触媒における酸素吸蔵能を有する成分の量が上流側三元触媒に比べて相対的に少なく、上流側三元触媒がリッチ状態になると、下流側三元触媒も比較的速やかにリッチ状態になるので、硫酸化合物が貯蔵されるのが回避される。この結果、HS(硫化水素)の生成も抑制される。
ここで、少なくとも前記下流側三元触媒における前記触媒担持層は、θ‐アルミナと酸素吸蔵能力を有する成分としてのセリアとを含むことが好ましい。
この形態によれば、このθ‐アルミナは耐久劣化が少なく、結果として、貴金属の粒成長も少ないので、所定の浄化性能を長期間維持することができ排気ガスの浄化効率を低下させることがない。
以下、本発明に係る排気ガス浄化用触媒装置について詳細に説明する。
図1は、空燃比制御装置を備える内燃機関10の排気系に設けられた排気ガス浄化用触媒装置を示す模式図である。内燃機関10の吸気系には燃料噴射弁12が設けられており、排気系には、排気マニホールド14の集合部の直下流に上流側三元触媒20が設けられると共に、その下流に下流側三元触媒30が設けられている。そして、上流側三元触媒20の上流には空燃比センサ(以下、A/Fセンサと称す)16が取付けられ、上流側三元触媒20の下流で下流側三元触媒30の上流には第1の酸素センサ22、下流側三元触媒30の下流には第2の酸素センサ32が取付けられている。A/Fセンサ16は排気ガスの空燃比に応じた信号を出力する排気ガスセンサであり、酸素センサ22、32は排気ガス中の酸素濃度に応じた信号を出力する排気ガスセンサである。但し、実際の制御に用いられるのは、A/Fセンサ16と第1の酸素センサ22であり、第2の酸素センサ32は観察用である。
なお、40は内燃機関10を制御する電子制御ユニット(以下、ECUと称す)であり、上述のA/Fセンサ16、第1および第2の酸素センサ22、32はECU40に接続され、検出情報に応じた出力信号をECU40に供給する。ECU40は、本実施の形態では、A/Fセンサ16および第1の酸素センサ22からの出力信号に基づいて、燃料噴射弁12からの噴射燃料量を制御することにより、内燃機関10の空燃比をフィードバック制御する。
次に、上流側三元触媒20および下流側三元触媒30の触媒構造について、図2を参照して説明する。
上流側三元触媒20および下流側三元触媒30は共に、基本的構成として、担体基材としてのコージェライト基材に1層または2層の触媒担持層および触媒金属を担持させた構造を有し、図2(A)に1層コート触媒の例、図2(B)に2層コート触媒の例を示す。図2(A)に示す1層コート触媒の場合には、ハニカム担体の各セルのコージェライト基材に、白金(Pt)担持のセリアージルコニア助触媒およびロジウム(Rh)担持のジルコニア−アルミナ助触媒の層が担持されている。また、図2(B)に示す2層コート触媒の場合には、ハニカム担体の各セルのコージェライト基材に、白金(Pt)担持のセリアージルコニア助触媒とロジウム(Rh)担持のジルコニア−アルミナ助触媒の層とが積層されて担持されている。
ここで、上述の触媒構造を有する上流側三元触媒20および下流側三元触媒30における実施例として、上流側三元触媒20は暖機性能を向上させるべく、触媒容量が約0.9リットル(L)であるのに対し、下流側三元触媒30は触媒容量が約1.3リットル(L)である。そして、上流側三元触媒20には、上記アルミナとしてγ−アルミナまたはθ−アルミナが用いられるのに対し、下流側三元触媒30には、θ−アルミナが用いられている。そして、酸素吸蔵能を有する成分としてのセリアの量が、上流側三元触媒20では30g/Lであるのに対し、下流側三元触媒30では30g/L以下とされている。
以下に、本発明を実施例および比較例を用いてさらに説明するが、本発明はこれらの実施例に限定されるものでないことはいうまでもない。
(1)上流側三元触媒:
1. 0.3mol/Lのセリアージルコニアの複合酸化物(CZ)の硝酸塩溶液を用意し、乾燥させて135g/LのCZ粉末を得た。この中のセリア量は30g/Lで、残部(酸化Zr、水分、その他の希土類等)は105g/Lである。
2. θ‐アルミナ粉末を135g/L用意した。
3. 上記1.で得られたCZ粉末にPt溶液(Pソルトと云う)と水分とを適量添加しつつ混合し、120℃で乾燥し、そして400℃で焼成して再度、粉末化した。
4. 上記2.で用意したθ‐アルミナ粉末にRh溶液(Rソルトと云う)と水分とを適量添加しつつ混合し、120℃で乾燥し、そして400℃で焼成して再度、粉末化した。
5. 上記3.および4.でそれぞれ得られたPtとCZとの混合粉末およびRhとθ‐アルミナとの混合粉末に、水分とバインダーとして水酸化アルミニウムを適量加え、スラリー化した。
6. 上記5.のスラリーを用いてコージェライト基材に一層でコートした。
7. その後、200℃で一昼夜(12時間)乾燥させ、そして400℃で2時間焼成して上流側三元触媒を得た。ここで、触媒の貴金属担持量は、Pt=2.5g/L、Rh=0.5g/Lであった。
(2)下流側三元触媒
1. 0.3mol/Lのセリアージルコニアの複合酸化物(CZ)の硝酸塩溶液を用意し、乾燥させて60g/LのCZ粉末を得た。この中のセリア量は20g/Lで、残部(酸化Zr、水分、その他の希土類等)は40g/Lである。
2. θ‐アルミナ粉末を90g/L用意した。
3. 上記1.および2.でそれぞれ得られたCZ粉末およびθ‐アルミナ粉末に、水分とバインダーとして水酸化アルミニウムを適量加え、スラリー化した。
4. 上記3.のスラリーを用いてコージェライト基材に下層としてコートした。
5. その後、200℃で一昼夜(12時間)乾燥させ、そして400℃で2時間焼成して下層コート付きコージェライト基材を得た。
6. そして、上記5.で得られた下層コート付きコージェライト基材を貴金属(Pt)薬液に浸し、貴金属含浸下層コート付きコージェライト基材を得た。ここで、下層コートの貴金属担持量は、Pt=3g/Lであった。
7. 次に、θ‐アルミナ粉末40g/Lを用意し、水分とバインダーとして水酸化アルミニウムを適量加えてスラリー化し、上記6.で得られた貴金属含浸下層コート付きコージェライト基材に上層としてコートした。
8. その後、200℃で一昼夜(12時間)乾燥させ、そして400℃で2時間焼成して上下層コート付きコージェライト基材を得た。
9. そして、上記8.で得られた上下層コート付きコージェライト基材を貴金属(Rh)薬液に浸し、貴金属含浸上下層コート付きコージェライト基材からなる下流側三元触媒を得た。ここで、上層コートの貴金属担持量は、Rh=0.5g/Lであった。
(1)上流側三元触媒:
上記実施例1と同じである。
(2)下流側三元触媒
1. 0.45mol/Lのセリアージルコニアの複合酸化物(CZ)の硝酸塩溶液を用意し、乾燥させて60g/LのCZ粉末を得た。この中のセリア量は30g/Lで、残部(酸化Zr、水分、その他の希土類等)は30g/Lである。
2. θ‐アルミナ粉末を90g/L用意した。
3. 上記1.および2.でそれぞれ得られたCZ粉末およびθ‐アルミナ粉末に、水分とバインダーとして水酸化アルミニウムを適量加え、スラリー化した。
4. 上記3.のスラリーを用いてコージェライト基材に下層としてコートした。
5. その後、200℃で一昼夜(12時間)乾燥させ、そして400℃で2時間焼成して下層コート付きコージェライト基材を得た。
6. そして、上記5.で得られた下層コート付きコージェライト基材を貴金属(Pt)薬液に浸し、貴金属含浸下層コート付きコージェライト基材を得た。ここで、下層コートの貴金属担持量は、Pt=3g/Lであった。
7. 次に、θ‐アルミナ粉末40g/Lを用意し、水分とバインダーとして水酸化アルミニウムを適量加えてスラリー化し、上記6.で得られた貴金属含浸下層コート付きコージェライト基材に上層としてコートした。
8. その後、200℃で一昼夜(12時間)乾燥させ、そして400℃で2時間焼成して上下層コート付きコージェライト基材を得た。
9. そして、上記8.で得られた上下層コート付きコージェライト基材を貴金属(Rh)薬液に浸し、貴金属含浸上下層コート付きコージェライト基材からなる下流側三元触媒を得た。ここで、上層コートの貴金属担持量は、Rh=0.5g/Lであった。
(比較例)
(1)上流側三元触媒:
上記実施例1および実施例2と同じである。
(2)下流側三元触媒
1. 0.6mol/Lのセリアージルコニアの複合酸化物(CZ)の硝酸塩溶液を用意し、乾燥させて60g/LのCZ粉末を得た。この中のセリア量は41g/Lで、残部(酸化Zr、水分、その他の希土類等)は19g/Lである。
2. θ‐アルミナ粉末を90g/L用意した。
3. 上記1.および2.でそれぞれ得られたCZ粉末およびθ‐アルミナ粉末に、水分とバインダーとして水酸化アルミニウムを適量加え、スラリー化した。
4. 上記3.のスラリーを用いてコージェライト基材に下層としてコートした。
5. その後、200℃で一昼夜(12時間)乾燥させ、そして400℃で2時間焼成して下層コート付きコージェライト基材を得た。
6. そして、上記5.で得られた下層コート付きコージェライト基材を貴金属(Pt)薬液に浸し、貴金属含浸下層コート付きコージェライト基材を得た。ここで、下層コートの貴金属担持量は、Pt=3g/Lであった。
7. 次に、θ‐アルミナ粉末40g/Lを用意し、水分とバインダーとして水酸化アルミニウムを適量加えてスラリー化し、上記6.で得られた貴金属含浸下層コート付きコージェライト基材に上層としてコートした。
8. その後、200℃で一昼夜(12時間)乾燥させ、そして400℃で2時間焼成して上下層コート付きコージェライト基材を得た。
9. そして、上記8.で得られた上下層コート付きコージェライト基材を貴金属(Rh)薬液に浸し、貴金属含浸上下層コート付きコージェライト基材からなる下流側三元触媒を得た。ここで、上層コートの貴金属担持量は、Rh=0.5g/Lであった。
そして、図1に示す内燃機関10の排気系に、実施例1、2および比較例の上流側三元触媒および下流側三元触媒をそれぞれ配置し、北米排ガス試験法のLA4モードによる評価試験を行った。そのタイムチャートを図3に示す。ここで得られたHS(硫化水素)の発生量についての結果を図4に、および他のエミッション(炭化水素(HC)、窒素酸化物(NOx )および一酸化炭素(CO))についての結果を図5に示す。
まず、図4から分かるように、下流側三元触媒30における酸素吸蔵能を有する成分であるセリアの量(41g/L)の上流側三元触媒20におけるセリアの量(30g/L)に対する比率が1を大幅に超える比較例においては、HS(硫化水素)の発生量が100ppmにもなり、普通人の誰にでも排気臭として感じられるレベルであった。これに対し、下流側三元触媒30における酸素吸蔵能を有する成分であるセリアの量(30g/L)の上流側三元触媒20におけるセリアの量(30g/L)に対する比率が1である実施例2においては、HS(硫化水素)の発生量が10ppmであり、さらに、比率が下回る(約0.67)実施例1においては5ppm程度であった。このことから、かかる比率が約0.5程度まではHS(硫化水素)の発生量がさらに低下することが推定される。なお、HS(硫化水素)の発生量が10ppm以下では、普通人の嗅覚では排気臭として感じられないレベルである。
また、図5において、(A)はトータルの炭化水素(HC)、(B)はノンメタン炭化水素(HC)、(C)は窒素酸化物(NOx )、および(D)は一酸化炭素(CO)の排出量をそれぞれ示している。この図5の結果から分かるように、下流側三元触媒30における酸素吸蔵能を有する成分であるセリアの量の上流側三元触媒20におけるセリアの量に対する比率が1を大幅に超える比較例に対し、比率を1とした実施例2においては、エミッションとしての悪化は見られず、むしろ向上している。
上述のように、上流側三元触媒20と下流側三元触媒30におけるセリアの量の比率を変えるのみで、何故にHS(硫化水素)の発生量の低減作用が起こるのかについては明らかではないが、推測すると以下のメカニズムによるものと思われる。
すなわち、図3のタイムチャートでは、横軸に時間を取り、上段にLA4モードによる車両速度、中段に上流側三元触媒20の下流で、下流側三元触媒30の上流に配置された第1の酸素センサ22の出力(V)、および下段に下流側三元触媒30の下流に配置された第2の酸素センサ32の出力が示されている。そして、第1の酸素センサ22の出力については、比較例および実施例2の出力が共に実線で示され、一方、第2の酸素センサ32の出力については、比較例が一点鎖線で、実施例2が実線で示されている。
この図3から分かるように、比較例においては、第1の酸素センサ22の出力が0.5Vを超える、換言すると、上流側三元触媒20がリッチ状態になった後も暫くは第2の酸素センサ32の出力(一点鎖線で示されている)が0.5Vを超えない、換言すると、下流側三元触媒30がリーン状態を維持する。これに対し、実施例2では、第1の酸素センサ22の出力が0.5Vを超える、換言すると、上流側三元触媒20がリッチ状態になったら比較的速やかに第2の酸素センサ32の出力(実線で示されている)が0.5Vを超え、換言すると、下流側三元触媒30がリッチ状態になっている。
下流側三元触媒30のセリアの量が多い比較例においては、上流側三元触媒20がリッチ状態になったとしても、下流側三元触媒30では貯蔵されていた大量の酸素の影響でリーン状態が維持される結果、排気ガス中のSO等のイオウ酸化物が硫酸化合物(M(SOx))として貯蔵され続ける。そして、下流側三元触媒30がリーンからリッチ状態になった途端に、その硫酸化合物からイオウ酸化物が分離し、それが排気ガス中のHとかHCと反応してHS(硫化水素)が生成されるものと推定される。
ところが、下流側三元触媒30のセリアの量が少ない実施例2においては、上流側三元触媒20がリッチ状態になると、下流側三元触媒30も比較的速やかにリッチ状態になるので、硫酸化合物(M(SOx))が貯蔵されるのが回避される結果、HS(硫化水素)が生成されることもないものと推定される。
一方、上述のように下流側三元触媒30のセリアの量を少なくすると、SOxの貯蔵能も低下するが酸素の貯蔵能も低下するのは否定できない。このことは、空燃比の変動に対する下流側三元触媒30の緩衝能力も低下することを意味し、空燃比を浄化効率の高い理論空燃比近傍に比較的長く維持することが困難となる結果、浄化性能が低下するおそれがある。この性能の低下は、貴金属触媒を担持する触媒担持層の比表面積が相対的に大きく、排気ガスが触媒へ接触する機会が多い初期性能状態では触媒の処理能力が大きくさほど顕著ではない。しかしながら、ある期間使用した後の耐久性能状態では、触媒担持層が凝集し比表面積が小さくなる傾向にあり、それに担持されている貴金属も粒成長(シンタリング)し接触機会が減少するので、結局、浄化性能が低下する。この傾向は、触媒担持層の母材として、初期比表面積が大きいγ―アルミナを用いた場合に顕著である。
そこで、本発明では、この触媒担持層の母材として、初期比表面積が相対的に小さいα―アルミナまたは初期比表面積が相対的に中程度のθ‐アルミナ、より好ましくは、θ‐アルミナを用いている。このθ‐アルミナは耐久劣化が少なく、結果として、貴金属の粒成長も少ないので、所定の浄化性能を長期間維持することができる。なお、触媒担持層をθ‐アルミナとするのは、上流側三元触媒20および下流側三元触媒30の両者共であってもよいが、少なくとも下流側三元触媒30であればよい。
本発明にかかる排気ガス浄化用触媒装置を示す模式図である。 触媒構造を示す一部断面図であり、(A)は1層コート触媒の場合、(B)は2層コート触媒の場合を示す。 北米排ガス試験法のLA4モードと第1および第2の酸素センサの出力の様子を示すタイムチャートである。 比較例、実施例1および2のそれぞれにおけるHS(硫化水素)の発生量を示すグラフである。 比較例および実施例2における他のエミッション量を示すグラフであり、(A)はトータルの炭化水素(HC)、(B)はノンメタン炭化水素(HC)、(C)は窒素酸化物(NOx )、および(D)は一酸化炭素(CO)の排出量をそれぞれ示している。
符号の説明
10 内燃機関
12 燃料噴射弁
16 空燃比センサ(A/Fセンサ)
20 上流側三元触媒
22 第1の酸素センサ
30 下流側三元触媒
32 第2の酸素センサ
40 電子制御ユニット(ECU)

Claims (2)

  1. 担体基材上に形成された触媒担持層に酸素吸蔵能を有する成分を含む三元触媒を排気系の上流側と下流側とに二個配置した排気ガス浄化用触媒装置において、前記下流側三元触媒における酸素吸蔵能を有する成分としてのセリアの量の前記上流側三元触媒における酸素吸蔵能を有する成分としてのセリアの量に対する比率を、HSの生成を抑制すべく、0.5より大きく1以下の範囲にしたことを特徴とする排気ガス浄化用触媒装置。
  2. 少なくとも前記下流側三元触媒における前記触媒担持層は、θ‐アルミナと酸素吸蔵能を有する成分としてのセリアとを含むことを特徴とする請求項1に記載の排気ガス浄化用触媒装置。
JP2005307068A 2005-10-21 2005-10-21 排気ガス浄化用触媒装置 Expired - Fee Related JP4508076B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005307068A JP4508076B2 (ja) 2005-10-21 2005-10-21 排気ガス浄化用触媒装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005307068A JP4508076B2 (ja) 2005-10-21 2005-10-21 排気ガス浄化用触媒装置

Publications (2)

Publication Number Publication Date
JP2007111650A JP2007111650A (ja) 2007-05-10
JP4508076B2 true JP4508076B2 (ja) 2010-07-21

Family

ID=38094311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005307068A Expired - Fee Related JP4508076B2 (ja) 2005-10-21 2005-10-21 排気ガス浄化用触媒装置

Country Status (1)

Country Link
JP (1) JP4508076B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857220B2 (ja) * 2007-08-23 2012-01-18 本田技研工業株式会社 内燃機関の排気浄化装置
JP4751916B2 (ja) * 2008-06-30 2011-08-17 トヨタ自動車株式会社 排ガス浄化用触媒
EP2360361B1 (en) 2008-11-26 2016-11-30 Honda Motor Co., Ltd. Exhaust purification apparatus for internal combustion engine
JP2014097459A (ja) * 2012-11-14 2014-05-29 Cataler Corp 排気ガス浄化用触媒

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328566A (ja) * 1997-04-02 1998-12-15 Toyota Motor Corp 排ガス浄化用触媒
JP2000237541A (ja) * 1999-02-22 2000-09-05 Honda Motor Co Ltd 内燃機関の排気浄化装置
JP2002316049A (ja) * 2001-04-20 2002-10-29 Daiken Kagaku Kogyo Kk 排ガス浄化用触媒及びその製造方法
JP2004243306A (ja) * 2002-10-11 2004-09-02 Daihatsu Motor Co Ltd 排ガス浄化用触媒の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328566A (ja) * 1997-04-02 1998-12-15 Toyota Motor Corp 排ガス浄化用触媒
JP2000237541A (ja) * 1999-02-22 2000-09-05 Honda Motor Co Ltd 内燃機関の排気浄化装置
JP2002316049A (ja) * 2001-04-20 2002-10-29 Daiken Kagaku Kogyo Kk 排ガス浄化用触媒及びその製造方法
JP2004243306A (ja) * 2002-10-11 2004-09-02 Daihatsu Motor Co Ltd 排ガス浄化用触媒の製造方法

Also Published As

Publication number Publication date
JP2007111650A (ja) 2007-05-10

Similar Documents

Publication Publication Date Title
EP1322404B1 (en) Nox-trap
JP5720949B2 (ja) 排ガス浄化用触媒
US8938953B2 (en) Exhaust gas purifying method
EP1095702B1 (en) Catalyst for exhaust gas purification, process for producing the same, and method of purifying exhaust gas
US8975204B2 (en) Exhaust-gas-purifying catalyst
JP2010029752A (ja) 排気ガス浄化触媒装置、並びに排気ガス浄化方法
EP1188908B1 (en) Exhaust gas purifying system
WO2020195777A1 (ja) 排ガス浄化用触媒
CN113260777A (zh) 催化制品及其用于处理废气的用途
KR101483651B1 (ko) 내연 기관용 가스 정화 촉매
JP2009285604A (ja) 排ガス浄化用触媒
JP3965676B2 (ja) 排ガス浄化用触媒及び排ガス浄化システム
JP2006205050A (ja) 排ガス浄化用触媒
JP4508076B2 (ja) 排気ガス浄化用触媒装置
JP2009273986A (ja) 排ガス浄化用触媒
WO2020195778A1 (ja) 排ガス浄化用触媒
KR20080066944A (ko) 배기 가스 정화 장치 및 배기 가스 정화 방법
US20090124494A1 (en) Catalyst For Purifying Exhaust Gases and Exhaust-Gas Purification Controller Using the Same
JP4810947B2 (ja) 内燃機関の制御方法
JP3224054B2 (ja) 排気ガス浄化方法
US20100075839A1 (en) Exhaust gas purification catalyst for internal combustion engine
JP7288331B2 (ja) 排ガス浄化触媒装置
JP2002168117A (ja) 排気ガス浄化システム
JP6997838B1 (ja) 排ガス浄化用触媒
JP5741513B2 (ja) 排ガス浄化触媒

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4508076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees