JP4507458B2 - Method for producing hydrate slurry - Google Patents

Method for producing hydrate slurry Download PDF

Info

Publication number
JP4507458B2
JP4507458B2 JP2001163112A JP2001163112A JP4507458B2 JP 4507458 B2 JP4507458 B2 JP 4507458B2 JP 2001163112 A JP2001163112 A JP 2001163112A JP 2001163112 A JP2001163112 A JP 2001163112A JP 4507458 B2 JP4507458 B2 JP 4507458B2
Authority
JP
Japan
Prior art keywords
hydrate
slurry
heat exchanger
hydrate slurry
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001163112A
Other languages
Japanese (ja)
Other versions
JP2002349909A5 (en
JP2002349909A (en
Inventor
英雅 生越
信吾 高雄
繁則 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2001163112A priority Critical patent/JP4507458B2/en
Publication of JP2002349909A publication Critical patent/JP2002349909A/en
Publication of JP2002349909A5 publication Critical patent/JP2002349909A5/ja
Application granted granted Critical
Publication of JP4507458B2 publication Critical patent/JP4507458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【0001】
【発明の属する技術分野】
本発明は水和物スラリの製造方法に関する。
【0002】
【従来の技術】
ゲスト化合物(テトラn−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラiso−ブチルホスホニウム塩、トリiso−アミルスルホニウム塩などの各種塩類)を含む水溶液を冷却すると、水和物(液系包接水和物)が生成される。この水和物は0℃以上の温度で生成でき、しかも潜熱が大きく冷水に比較して数倍の熱量の冷熱を貯蔵することができる。また、この水和物は微細な粒子となって水溶液中に浮遊して比較的流動性の高い水和物スラリを形成する。このため、このような水和物スラリは、空調設備などの蓄冷材または冷熱輸送媒体として好ましい特性を有している。
【0003】
従来、このような水和物スラリの製造および負荷側の空調設備などでの利用は以下のようにして行われている。すなわち、水和物スラリタンクに例えばテトラn−ブチルアンモニウムブロマイド(TBAB)を含む水溶液を供給してスラリ製造運転(蓄熱運転)が開始される。水和物スラリタンク内の水溶液は製造ポンプによりスラリ製造熱交換器(例えば冷凍機の蒸発器)へ送られて熱交換により冷却され、水和物スラリが製造される。この水和物スラリは水和物スラリタンクに貯蔵される。また、負荷運転時には、水和物スラリタンク内の水和物スラリは負荷ポンプにより負荷側熱交換器に送られてその冷熱が利用されて水溶液となり、水溶液は水和物スラリタンクへ戻される。
【0004】
ところで、テトラn−ブチルアンモニウムブロマイド(TBAB)は、低濃度領域では水和数が小さく生成温度の低い第一水和物と水和数が大きく生成温度の高い第二水和物を生成し得る(高濃度領域では第一水和物のみが生成される)ことが知られている。2種の水和物のうちでは第二水和物の方が熱密度が大きく大きな冷熱量を有するため、空調負荷運転には第二水和物を含む水和物スラリを用いることが望ましい。
【0005】
しかし、従来の方法に従ってスラリ製造熱交換器において連続的に冷却を行うと、大きな過冷却が生じた後に過冷却が解除されることがあり、そのような場合に急激に水和物が生成して粘性が増加して流動抵抗が大きくなってポンプ動力が増加するうえ、最悪の場合には熱交換器が閉塞することもあった。また、スラリ製造運転時に最初に第一水和物が生成した後、第二水和物が生成し得る約8.0℃以下になっても第一水和物が第二水和物に変化せず、より低い温度まで過冷却されてから第二水和物に変化することがしばしば起こり、ポンプ動力の変動を招いていた。
【0006】
このため、水和物スラリの製造時に安定に運転するためには、できるだけ速やかに第二水和物を生成させることが重要になる。
【0007】
【発明が解決しようとする課題】
本発明の目的は、水和物生成時に第二水和物を速やかに生成させることができ、水和物スラリを安定的に製造できる方法を提供することにある。
【0008】
(1)本発明に係る水和物スラリの製造方法は、第一水和物または該第一水和物よりも水和数が大きく熱密度が大きい第二水和物を生成するゲスト化合物の水溶液を冷却して水和物スラリを製造する方法において、前記第二水和物を含む水和物スラリを貯蔵するタンクをスラリ製造熱交換器と負荷側熱交換器に接続し、前記タンクに貯蔵される水和物スラリの一部および前記負荷側熱交換器から輸送される水溶液を前記スラリ製造熱交換器へ輸送して冷却し、前記タンクに貯蔵される水和物スラリの一部を前記負荷側熱交換器へ輸送して冷熱を利用することを特徴とするものである。
【0011】
)また、上記()に記載のものにおいて、前記タンクに貯蔵される水和物スラリの一部を前記負荷側熱交換器へ輸送する負荷ポンプの流量をQf、前記タンクに貯蔵されている水和物スラリの一部および前記負荷側熱交換器から戻る前記水溶液を前記スラリ製造熱交換器へ輸送する製造ポンプの流量をQmとして、Qm>Qfとなるように制御することを特徴とするものである。
なお、本発明において、ゲスト化合物としては、テトラn−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラiso−ブチルホスホニウム塩およびトリiso−アミルスルホニウム塩からなる群より選択される少なくとも1種が用いられる。
【0012】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
図1は本発明の方法を実施するために用いられるスラリ製造・空調システムの構成図である。図1に示すように、第二水和物を含む水和物スラリを貯蔵するバッファタンク1が、スラリ製造熱交換器11と負荷側熱交換器21に接続するように設けられている。より具体的には、バッファタンク1とスラリ製造熱交換器11との間には製造ポンプ2を介装した送り配管3が設けられ、スラリ製造熱交換器11からの戻り配管4はバッファタンク1に接続されている。バッファタンク1と負荷側熱交換器21との間には負荷ポンプ5を介装した送り配管6が設けられ、負荷側熱交換器21からの戻り配管7はバッファタンク1からスラリ製造熱交換器11への送り配管3に接続されている。
【0013】
スラリ製造熱交換器11には冷凍機12で冷却された冷水が冷水ポンプ13により輸送されてスラリ製造に用いられる。
【0014】
また、製造ポンプ2の流量Qmと負荷ポンプ5の流量Qfはそれぞれ流量計(図示せず)により計測され、これらの流量は制御器31により制御される。
【0015】
このスラリ製造・空調システムの運転は以下のようにして行われる。まず、バッファタンク1にゲスト化合物として例えばテトラn−ブチルアンモニウムブロマイド(TBAB)を含む水溶液を入れ、予め蓄熱運転を行ってバッファタンク1に第二水和物を含む水和物スラリを貯蔵しておく。そして、負荷運転を行い、負荷ポンプ5によりバッファタンク1の第二水和物スラリの一部を負荷側熱交換器21へ輸送して冷熱を利用しながら、製造ポンプ2によりバッファタンク1の第二水和物スラリの一部および負荷側熱交換器21から戻る水溶液をスラリ製造熱交換器11へ輸送して冷却する。このような負荷運転は、制御器31により製造ポンプ2の流量Qmと負荷ポンプ5の流量Qfを、Qm>Qfとなるように制御することにより可能になる。
【0016】
このような運転を行うと、スラリ製造熱交換器11に第二水和物スラリと水溶液とが混合されて輸送されるため、スラリ製造熱交換器11内では第一水和物の生成を経ずに第二水和物スラリが安定して製造される。また、スラリ製造熱交換器11から戻る水和物スラリは、いったんバッファタンク1を経由した後、バッファタンク1から負荷側熱交換器21へ輸送される。このため、かりにスラリ製造熱交換器11の出口で第一水和物が生成したとしても、バッファタンク1内の第二水和物スラリと混合される結果、第一水和物は第二水和物に変化する。
【0017】
【発明の効果】
以上詳述したように本発明によれば、スラリ製造熱交換器へバッファタンクの第二水和物を含む水和物スラリの一部および負荷側熱交換器から戻る水溶液を輸送することにより、スラリ製造熱交換器で過冷却が起こらず第一水和物の生成を経ずに第二水和物を含む水和物スラリを安定して製造することができる。
【図面の簡単な説明】
【図1】本発明の方法を実施するために用いられるスラリ製造・空調システムの構成図。
【符号の説明】
1…バッファタンク
2…製造ポンプ
3…送り配管
4…戻り配管
5…負荷ポンプ
6…送り配管
7…戻り配管
11…スラリ製造熱交換器
12…冷凍機
13…冷水ポンプ
21…負荷側熱交換器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a hydrate slurry.
[0002]
[Prior art]
When an aqueous solution containing a guest compound (tetra n-butylammonium salt, tetraiso-amylammonium salt, tetraiso-butylphosphonium salt, various salts such as triiso-amylsulfonium salt) is cooled, a hydrate (liquid system inclusion) Hydrate) is produced. This hydrate can be produced at a temperature of 0 ° C. or higher, and has a large latent heat and can store cold heat having a heat quantity several times that of cold water. Further, this hydrate becomes fine particles and floats in an aqueous solution to form a hydrate slurry having a relatively high fluidity. For this reason, such a hydrate slurry has favorable characteristics as a cold storage material such as an air conditioner or a cold transport medium.
[0003]
Conventionally, the production of such a hydrate slurry and its use in a load-side air conditioning facility or the like have been performed as follows. That is, an aqueous solution containing, for example, tetra n-butylammonium bromide (TBAB) is supplied to the hydrate slurry tank, and the slurry manufacturing operation (heat storage operation) is started. The aqueous solution in the hydrate slurry tank is sent to a slurry production heat exchanger (for example, an evaporator of a refrigerator) by a production pump and cooled by heat exchange to produce a hydrate slurry. This hydrate slurry is stored in a hydrate slurry tank. Further, during the load operation, the hydrate slurry in the hydrate slurry tank is sent to the load-side heat exchanger by the load pump and the cold heat is used to form an aqueous solution, and the aqueous solution is returned to the hydrate slurry tank.
[0004]
By the way, tetra n-butylammonium bromide (TBAB) can produce a first hydrate having a low hydration number and a low production temperature in a low concentration region and a second hydrate having a high hydration number and a high production temperature. (It is known that only the first hydrate is produced in the high concentration region). Of the two types of hydrates, the second hydrate has a larger heat density and a larger amount of cold heat, so it is desirable to use a hydrate slurry containing the second hydrate for the air conditioning load operation.
[0005]
However, if cooling is continuously performed in a slurry production heat exchanger according to a conventional method, supercooling may be released after large supercooling occurs, and in such a case, a hydrate is rapidly formed. In addition, the viscosity increases, the flow resistance increases, the pump power increases, and in the worst case, the heat exchanger may be blocked. In addition, after the first hydrate is first formed during the slurry production operation, the first hydrate is changed to the second hydrate even when the temperature is about 8.0 ° C. or less at which the second hydrate can be formed. Instead, it often happened that after being cooled down to a lower temperature, it changed to the second hydrate, resulting in pump power fluctuations.
[0006]
For this reason, in order to operate stably at the time of manufacture of the hydrate slurry, it is important to generate the second hydrate as soon as possible.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a method capable of promptly producing a second hydrate at the time of producing a hydrate and stably producing a hydrate slurry.
[0008]
(1) The method of producing the hydrate slurry according to the present invention, the guest compound to generate a second hydrate large thermal density large hydration number than the monohydrate or said monohydrate a method of cooling the aqueous solution to produce a clathrate hydrate slurry, a tank for storing the hydrate slurry containing the first dihydrate connected to the load-side heat exchanger slurry manufacturing heat exchangers, to the tank A part of the hydrate slurry stored and the aqueous solution transported from the load side heat exchanger are transported to the slurry production heat exchanger to be cooled, and a part of the hydrate slurry stored in the tank is cooled. It is transported to the load side heat exchanger and uses cold energy .
[0011]
( 2 ) Further, in the above ( 1 ), the flow rate of the load pump that transports a part of the hydrate slurry stored in the tank to the load-side heat exchanger is Qf, and is stored in the tank. A flow rate of a production pump for transporting a part of the hydrate slurry and the aqueous solution returning from the load side heat exchanger to the slurry production heat exchanger is controlled so that Qm> Qf. It is what.
In the present invention, as the guest compound, at least one selected from the group consisting of a tetra n-butylammonium salt, a tetraiso-amylammonium salt, a tetraiso-butylphosphonium salt, and a triiso-amylsulfonium salt is used. It is done.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram of a slurry manufacturing / air conditioning system used for carrying out the method of the present invention. As shown in FIG. 1, a buffer tank 1 for storing a hydrate slurry containing a second hydrate is provided so as to be connected to a slurry production heat exchanger 11 and a load side heat exchanger 21. More specifically, a feed pipe 3 including a production pump 2 is provided between the buffer tank 1 and the slurry production heat exchanger 11, and a return pipe 4 from the slurry production heat exchanger 11 is provided in the buffer tank 1. It is connected to the. Between the buffer tank 1 and the load side heat exchanger 21, a feed pipe 6 having a load pump 5 is provided. A return pipe 7 from the load side heat exchanger 21 is connected to the slurry production heat exchanger from the buffer tank 1. 11 is connected to the feed pipe 3.
[0013]
Cold water cooled by the refrigerator 12 is transported to the slurry production heat exchanger 11 by a cold water pump 13 and used for slurry production.
[0014]
The flow rate Qm of the production pump 2 and the flow rate Qf of the load pump 5 are measured by a flow meter (not shown), and these flow rates are controlled by the controller 31.
[0015]
The slurry manufacturing / air conditioning system is operated as follows. First, an aqueous solution containing, for example, tetra n-butylammonium bromide (TBAB) as a guest compound is placed in the buffer tank 1, and a heat storage operation is performed in advance to store a hydrate slurry containing a second hydrate in the buffer tank 1. deep. Then, a load operation is performed, and a part of the second hydrate slurry of the buffer tank 1 is transported to the load-side heat exchanger 21 by the load pump 5 and the cold heat is used, while the production pump 2 uses the first of the buffer tank 1. A part of the dihydrate slurry and the aqueous solution returning from the load side heat exchanger 21 are transported to the slurry production heat exchanger 11 and cooled. Such a load operation can be performed by controlling the flow rate Qm of the production pump 2 and the flow rate Qf of the load pump 5 by the controller 31 so that Qm> Qf.
[0016]
When such an operation is performed, since the second hydrate slurry and the aqueous solution are mixed and transported to the slurry production heat exchanger 11, the first hydrate is generated in the slurry production heat exchanger 11. The second hydrate slurry is stably produced. The hydrate slurry returning from the slurry production heat exchanger 11 passes through the buffer tank 1 and is then transported from the buffer tank 1 to the load side heat exchanger 21. For this reason, even if the first hydrate is generated at the outlet of the slurry production heat exchanger 11, the first hydrate is mixed with the second hydrate slurry in the buffer tank 1 as a result. Change to Japanese.
[0017]
【The invention's effect】
As described in detail above, according to the present invention, by transferring a part of the hydrate slurry containing the second hydrate of the buffer tank and the aqueous solution returning from the load side heat exchanger to the slurry production heat exchanger, It is possible to stably produce a hydrate slurry containing the second hydrate without causing supercooling in the slurry production heat exchanger and without producing the first hydrate.
[Brief description of the drawings]
FIG. 1 is a block diagram of a slurry manufacturing / air conditioning system used for carrying out the method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Buffer tank 2 ... Production pump 3 ... Feed pipe 4 ... Return pipe 5 ... Load pump 6 ... Feed pipe 7 ... Return pipe 11 ... Slurry manufacture heat exchanger 12 ... Refrigerator 13 ... Cold water pump 21 ... Load side heat exchanger

Claims (2)

第一水和物または該第一水和物よりも水和数が大きく熱密度が大きい第二水和物を生成するゲスト化合物の水溶液を冷却して水和物スラリを製造する方法において、前記第二水和物を含む水和物スラリを貯蔵するタンクをスラリ製造熱交換器と負荷側熱交換器に接続し、前記タンクに貯蔵される水和物スラリの一部および前記負荷側熱交換器から輸送される水溶液を前記スラリ製造熱交換器へ輸送して冷却し、前記タンクに貯蔵される水和物スラリの一部を前記負荷側熱交換器へ輸送して冷熱を利用することを特徴とする水和物スラリの製造方法。A method of cooling the aqueous solution of the guest compound hydration number than the monohydrate or said monohydrate to produce a large thermal density is larger second dihydrate producing hydrate slurry, wherein A tank for storing a hydrate slurry containing a second hydrate is connected to a slurry production heat exchanger and a load side heat exchanger, a part of the hydrate slurry stored in the tank and the load side heat exchange. The aqueous solution transported from the vessel is transported to the slurry production heat exchanger and cooled, and a part of the hydrate slurry stored in the tank is transported to the load side heat exchanger to utilize the cold energy. A method for producing a hydrate slurry. 前記タンクに貯蔵される水和物スラリの一部を前記負荷側熱交換器へ輸送する負荷ポンプの流量をQf、前記タンクに貯蔵されている水和物スラリの一部および前記負荷側熱交換器から戻る前記水溶液を前記スラリ製造熱交換器へ輸送する製造ポンプの流量をQmとして、Qm>Qfとなるように制御することを特徴とする請求項記載の水和物スラリの製造方法。Qf is a flow rate of a load pump that transports a part of the hydrate slurry stored in the tank to the load-side heat exchanger, a part of the hydrate slurry stored in the tank and the load-side heat exchange the solution returning from vessel as Qm the flow rate of the production pump transport to the slurry preparation heat exchanger, Qm> method for producing a hydrate slurry according to claim 1, wherein the controller controls so that Qf.
JP2001163112A 2001-05-30 2001-05-30 Method for producing hydrate slurry Expired - Fee Related JP4507458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001163112A JP4507458B2 (en) 2001-05-30 2001-05-30 Method for producing hydrate slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001163112A JP4507458B2 (en) 2001-05-30 2001-05-30 Method for producing hydrate slurry

Publications (3)

Publication Number Publication Date
JP2002349909A JP2002349909A (en) 2002-12-04
JP2002349909A5 JP2002349909A5 (en) 2009-07-30
JP4507458B2 true JP4507458B2 (en) 2010-07-21

Family

ID=19006143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001163112A Expired - Fee Related JP4507458B2 (en) 2001-05-30 2001-05-30 Method for producing hydrate slurry

Country Status (1)

Country Link
JP (1) JP4507458B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100342179C (en) * 2005-10-31 2007-10-10 中国科学院广州能源研究所 Hydrate high density latent heat transfer central air conditioning system
JP6116093B2 (en) * 2013-07-01 2017-04-19 株式会社日立製作所 Heat source system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650577A (en) * 1992-07-31 1994-02-22 Mitsui Eng & Shipbuild Co Ltd Room cooling system
JPH08327098A (en) * 1995-05-26 1996-12-10 Takasago Thermal Eng Co Ltd Ice heat-accumulating system
JPH10185248A (en) * 1996-12-25 1998-07-14 Takasago Thermal Eng Co Ltd Ice storage device
JP2000038577A (en) * 1998-07-24 2000-02-08 Mitsubishi Chemicals Corp Method for reserving heat and heat-reserving apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650577A (en) * 1992-07-31 1994-02-22 Mitsui Eng & Shipbuild Co Ltd Room cooling system
JPH08327098A (en) * 1995-05-26 1996-12-10 Takasago Thermal Eng Co Ltd Ice heat-accumulating system
JPH10185248A (en) * 1996-12-25 1998-07-14 Takasago Thermal Eng Co Ltd Ice storage device
JP2000038577A (en) * 1998-07-24 2000-02-08 Mitsubishi Chemicals Corp Method for reserving heat and heat-reserving apparatus

Also Published As

Publication number Publication date
JP2002349909A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
CN101171318B (en) Heat storable substance, heat storage agent, heat storage material, heat transfer medium, cold insulation agent, cold insulation material, melting point controlling agent for heat storage agent, agent for prevention of overcooling for use in heat storage agent, heat storage agent, heat transfer medium and process for manufacturing any one of main agent of cool keeping agents
EP1235046B1 (en) Thermal storage material using hydrate and thermal storage device therefor, and production method of the thermal storage material
JP3324392B2 (en) Heat storage material
JP3641362B2 (en) Cold storage method using cold clathrate, cold storage system, and cold storage agent
US20010047662A1 (en) Air conditioning and thermal storage systems using clathrate hydrate slurry
JP2007107773A (en) Heat accumulator, heat pump system and solar system
JP2014016143A (en) Manufacturing method for hydrate slurry, manufacturing device for hydrate slurry, and hydrate heat storage type air conditioning system
JP4507458B2 (en) Method for producing hydrate slurry
JP4853851B2 (en) High-temperature cooling device using latent heat transport inorganic hydrate slurry
JP4304848B2 (en) Cold heat transport method, cold heat transport system, operation method of cold heat transport system, storage device, and hydrate production device
JPH11351775A (en) Thermal storage apparatus
JP4888521B2 (en) Hydrate slurry manufacturing equipment
JP3897330B2 (en) Heat transfer medium
JP4449248B2 (en) Method for producing hydrate slurry
JP2007132658A (en) Generation suppression method of liquid passage of hydrate slurry
JP4529305B2 (en) Method and apparatus for transporting hydrate slurry
JP2007046855A (en) Hydrate slurry thermal storage device and thermal storage method
JP2004085008A (en) Hydrate slurry manufacturing system and its operation method
JPH06185762A (en) Cooling or heating method
JPH04327790A (en) Latent heat storage method
JP2006336018A (en) Method for bringing distribution of hydrate particle diameter of hydrate slurry close to normal distribution, method for transporting latent heat, medium, and method for transporting hydrate slurry
JP2006336018A5 (en) Cryogenic transport method, hydrate slurry transport device, and district cooling and heating system
JP3947780B2 (en) Remodeling existing air conditioning system
JP3956556B2 (en) Method and apparatus for producing tetra n-butylammonium bromide hydrate heat storage material slurry
JP2003336868A (en) Remodeling method of existing air conditioning system and remodeling system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees