JP4506057B2 - Cold crucible melting and casting equipment - Google Patents
Cold crucible melting and casting equipment Download PDFInfo
- Publication number
- JP4506057B2 JP4506057B2 JP2001265168A JP2001265168A JP4506057B2 JP 4506057 B2 JP4506057 B2 JP 4506057B2 JP 2001265168 A JP2001265168 A JP 2001265168A JP 2001265168 A JP2001265168 A JP 2001265168A JP 4506057 B2 JP4506057 B2 JP 4506057B2
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- water
- metal
- coil
- cooled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- General Induction Heating (AREA)
- Continuous Casting (AREA)
- Crucibles And Fluidized-Bed Furnaces (AREA)
- Furnace Charging Or Discharging (AREA)
- Furnace Details (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、高周波電源を用いてコイルを励磁し、水冷金属るつぼ中の金属材料を誘導加熱溶解して、溶湯を鋳型に鋳造するコールドクルーシブル溶解鋳造装置に関する。
【0002】
【従来の技術】
コールドクルーシブル溶解装置は水冷された金属製るつぼの周囲に高周波誘導コイルが巻かれた装置である。水冷金属るつぼの内部に金属を入れ、コイルに高周波電流を流すと金属には渦電流が誘起され、金属は加熱され溶解する。この方法で溶解した金属は、水冷金属るつぼからの不純物の混入がないので、高純度の溶湯ができる。またこの溶湯を鋳型に鋳造することにより高純度鋳造製品の生産が可能で例えばチタニウム等の活性金属、高融点金属(クロム、ニオブ、モリブデン)、シリコン等の溶解に適している。また水冷金属るつぼに作用する電磁力が強いので溶湯は電磁攪拌され、均一な組成が要求される合金溶解に適している。
【0003】
図8は従来例の構成図を示す。この図8において、コールドクルーシブル溶解装置は、1つの電源に繋がれた円形のコイル2の内側に、電気的に絶縁された2つ以上のセグメント3をスリット3aを介してコイル2の周方向に並べて水冷金属るつぼ1を構成している。また水冷金属るつぼ底部は水冷金属やグラファイト等の断熱材で構成されている。水冷金属るつぼ1内部には金属材料が入れられる。
【0004】
水冷金属るつぼ1を構成するセグメント3は水等により加熱されないように冷却される。
高周波電源5から供給されるコイル2の電流は、スリット3aにより電気的に絶縁されたそれぞれのセグメント3にうず電流を誘導するとともに、金属材料にもうず電流を誘導し、金属材料は抵抗損により加熱し続けられ溶解されて溶湯4になる。この水冷金属るつぼ1と溶湯4に流れるうず電流の方向は対向面で互いに逆向きなので磁気的に反発力となり、水冷金属るつぼ1は固定されているので溶湯4に働く反発力が溶湯4の重量より大きければ溶湯4は水冷金属るつぼ1の側面から離れる。このため溶湯4はるつぼ底部が接触しるつぼ側面は溶湯静圧と電磁反発力がバランスする位置(σ[kg/m3 ]×h[m]=F[kg/m2 ])より下部では水冷金属るつぼ1と接触した状態で溶解する。
【0005】
ここで、
σ:溶湯の単位体積当たり重量[kg/m3 ]
h:溶湯へツド(上面からの高さ)[m]
F:溶湯表面に働く電磁反発力[kg/m2 ]である。
【0006】
コールドクルーシブル誘導加熱溶解法はるつぼ材からの不純物混入が無いため、純チタンやTi−6Al−4V等のチタン合金等の溶解に用いられている。この方式の場合、σh>Fになる溶湯の深さから下部では溶湯は水冷金属るつぼと接触するため水冷金属るつぼへの抜熱があることから溶解能力としては溶湯温度が1900℃〜2000℃以下の金属に限定されている。
【0007】
【発明が解決しようとする課題】
溶湯温度が1900℃を超えた金属を溶解する場合、上記方式では水冷金属るつぼとの接触による抜熱の影響によって溶解が困難である。また溶湯温度が1900℃を超える合金、および純金属の殆どはその密度が10g/cm3 を超えているためチタンの密度4.1g/cm3 と同容積の材料を溶解した場合と比較するとるつぼ側面の電磁反発力がバランスする位置はチタンでの非接触高さの半分以下となるため、るつぼへの披熱量はるつぼの接触面積に比例することから、当然るつぼへの抜熱量が増大し、溶解に要するエネルギーを増大させなければ金属を溶解することが出来ない。この問題は、従来技術で溶解可能な金属の場合においても、るつぼ容量を従来最大溶解量の数100kgからさらに増大させる場合においても、同様にるつぼの披熱量を低減させることが必要となることを示している。
【0008】
ここで図8の従来例の1コイル式装置について、金属の溶解能力に応じて設定されている運転周波数f1と電源容量P1とを用いて溶湯に作用する電磁反発力F1を電磁解析して、該電磁反発力F1と、溶湯静圧dhとのバランス状態を図9(a)、(b)に示す。図9(a)は溶湯に作用する電磁反発力と溶湯静圧とのバランス状態を模擬的に示した水冷金属るつぼの断面図、(b)は溶湯表面から底部までの高さ(深さ)を横軸に、溶湯高さdhと該dh各位置で溶湯に作用する電磁反発力F1とを縦軸方向に表した図である。この図9(b)において、溶湯静圧dhと電磁反発力F1とが交わる高さh1以降では溶湯とるつぼ側壁とが接触しており、そこからの抜熱による影響で溶解温度、もしくは溶解量に上限が生じる。
【0009】
なお、図9(a)は前記h1を水冷金属るつぼの断面図中に記載したものである。そこで、従来例では溶解困難な高融点金属や溶解量を従来より増大させることを目的として、従来例の1コイル式装置を用い水冷金属るつぼへの接触量を低減させるために溶湯静圧に打ち勝つ運転周波数(従来例より低くして電磁反発力を増大させる周波数)を選択すると、溶解金属への投入電力が周波数の低下に応じて減少することが起こり、これを補うためにはコイルへの通電電流を増加させなければならないが、コイルでの銅損を冷却する際の冷却効果の問題から通電電流には限界があり、必用な通電電流が得られない場合は加熱効果が低減し、例えば鋳造に必用なスーパーヒート(溶解金属の融点に対する昇温値)が十分に確保できなくなる可能性がある。一方コイルへの通電電流を増大させず、溶解材料への投入電力を増大させるために運転周波数を高く設定すると、今度は金属表面に作用する電磁反発力が小さくなるため、るつぼへの接触面積が上昇し、るつぼへの抜熱量が増え電源容量をさらに増大させる必要が生じる。しかし電源容量の増大はるつぼ自身の冷却効果を高める構造とする必要が生じ、るつぼ構造上冷却性能を満足できる電源容量にも上限があることから必然的に溶解量、および溶解温度に上限が生じてしまう。
【0010】
この発明は上記の課題を解決するために、溶解金属側面で水冷金属るつぼとの接触を低減し、水冷金属るつぼへの抜熱を減少させることにより、溶解量の増大、および密度が大きい金属や、高融点金属の溶解を可能にするコールドクルーシブル溶解鋳造装置を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するために請求項1の発明は、円形のコイルの内側に電気的に絶縁された2つ以上のセグメントを前記コイルの周方向に並べて水冷金属るつぼを構成し、高周波電源を用いて前記コイルを励磁し、水冷金属るつぼ中の金属材料を誘導加熱溶解し、前記金属材料が溶解された溶湯と前記水冷金属るつぼとの間にスカルを形成するコールドクルーシブル溶解装置であって、水冷金属るつぼ内で溶解した金属を前記水冷金属るつぼの傾転によって前記水冷金属るつぼ下部に据え付けた鋳型に鋳造するコールドクルーシブル溶解鋳造装置において、前記コイルは前記水冷金属るつぼ外周の上下に2段に設けるとともに、前記金属材料の溶解時に上コイルに通電する電流の周波数を下コイルに通電する電流の周波数より低くすることを特徴とする。
【0012】
ここで、周波数と溶湯表面に誘起する電力、および周波数と溶湯表面に作用する電磁反発力との関係は、コイル内に生じる交番磁界が溶湯に沿っている場合(即ち浸透深さが溶湯の大きさと比較して十分に小さい場合)には、溶湯への投入電力wは次式で与えられる。
w=1/2(πfμρ)1/2 ・Hm2 (1)
w:溶湯への投入電力[w]
f:運転周波数[Hz]
μ:金属の透磁率[H/m]
ρ:金属の抵抗率[Ω・m]
Hm:溶湯表面に沿う磁界強度[AT/m]
【0013】
一方、溶湯表面に作用する電磁反発力Fは次式で与えられる。
F=1/2(μHm2 ) (2)
上式より電磁反発力Fと投入電力wの関係は次式で与えられる。
F=W(μ/πfρ)1/2 (3)
この式は溶湯に投入される電力量が一定の時、周波数が低いほど電磁反発力が大きいことを示している。
【0014】
ここで、るつぼ側壁と溶湯との接触を減少させる目的でコイルを上下2段にして上コイルは従来例の運転周波数f1より低い運転周波数f2と電源容量P2とに設定し、下コイルはf1より高い運転周波数f3と、上コイルの運転周波数をf2に下げたことによる投入電力の低下を下コイルの運転周波数f3を高くすることでるつぼ側壁と溶湯とが接触する部分には従来例の1コイル式装置より高い発熱が生じる電源容量P3に設定し合計ではP2+P3=P1(従来例の運転周波数f1のときの電源容量)になるように設定して電磁解析を行い、その結果を図2(a)、(b)に示す。
【0015】
図2(a)は溶湯に作用する電磁反発力と溶湯静圧とのバランス状態を模擬的に示した水冷金属るつぼの断面図、(b)は溶湯表面から底部までの高さ(深さ)を横軸に、溶湯高さdhと、該dh各位置で溶湯に作用する電磁反発力F2,F3とを縦軸方向に表した図である。この図2(b)において、溶湯静圧dhと電磁反発力F2とが交わる高さh2以降では溶湯とるつぼ側壁とが接触しているが、上コイルにより溶湯に作用する電磁反発力F2は従来例のF1より大きくなっているので、溶湯とるつぼ側壁とが接触する位置h2はh1より下方に下げられている。
【0016】
なお、図2(a)は前記h2を水冷金属るつぼの断面図中に記載したものである。従って請求項1の構成により、図2(a),(b)に示すように上コイルには従来例の周波数f1より低い周波数f2の高周波電流を通電して、従来例の周波数f1に対応する電磁反発力F1より強いF2なる電磁反発力を生じさせることにより水冷金属るつぼと溶湯との接触位置をh1からh2に下げ、下コイルには従来例の周波数f1より高い周波数f3の高周波電流を通電することにより、電磁反発力F3は従来例のF1より小さくなるが電力投入密度は周波数が高い分大きくすることができる。これら水冷金属るつぼと、溶湯との接触位置を下げること、および下コイルでの電力投入密度を大きくして水冷金属るつぼへの抜熱を補うことにより、従来例より溶解量を増大させること、および高融点の金属を溶解することが可能になる。
【0017】
また、請求項2の発明のように、円形のコイルの内側に電気的に絶縁された2つ以上のセグメントを前記コイルの周方向に並べて水冷金属るつぼを構成し、高周波電源を用いて前記コイルを励磁し、水冷金属るつぼ中の金属材料を誘導加熱溶解し、前記金属材料が溶解された溶湯と前記水冷金属るつぼとの間にスカルを形成するコールドクルーシブル溶解装置であって、前記水冷金属るつぼ内で溶解した金属を前記水冷金属るつぼの底部に直結した水冷製の鋳型に鋳造するコールドクルーシブル溶解鋳造装置において、前記コイルは前記水冷金属るつぼ外周の上下に2段に設けるとともに、前記金属材料の溶解時に上コイルに通電する電流の周波数を下コイルに通電する電流の周波数より低くするようにしても良い。
【0018】
また、請求項3の発明は、円形のコイルの内側に電気的に絶縁された2つ以上のセグメントを前記コイルの周方向に並べて水冷金属るつぼを構成し、高周波電源を用いて前記コイルを励磁し、水冷金属るつぼ中の金属材料を誘導加熱溶解し、前記金属材料が溶解された溶湯と前記水冷金属るつぼとの間にスカルを形成するコールドクルーシブル溶解装置であって、前記水冷金属るつぼ内で溶解した金属を前記水冷金属るつぼの底部に直結した水冷製の鋳型に鋳造するコールドクルーシブル溶解鋳造装置において、前記コイルは前記水冷金属るつぼ外周の上下に2段に設けるとともに、前記金属材料の溶解時に上コイルに通電する電流の周波数を下コイルに通電する電流の周波数より低くすることを特徴とする。
【0019】
また、請求項4の発明のように、請求項3に記載のコールドクルーシブル溶解鋳造装置において、水冷金属るつぼ底部に溶解した金属の落下を防止する引抜駆動栓を設けて、該栓の引抜駆動により鋳造を行うことができる。また、請求項5の発明のように、請求項4記載のコールドクルーシブル溶解鋳造装置において、引抜駆動栓が水冷機能を有しており、先端部分が取り外し交換可能な水冷金属製で作ることができる。
【0020】
また、請求項6の発明のように、請求項4または請求項5に記載のコールドクルーシブル溶解鋳造装置において、引抜駆動栓の上部に材質が溶解した金属と同種類のとも材で作られた、引抜駆動栓とは着脱可能に取付けられるとも材栓を設けることができる。上記の請求項3から請求項6の発明の構成により、水冷金属るつぼで溶解した金属を、引抜駆動栓を介して冷却された前記溶解した金属と同じ材質のとも材栓に凝着させて、るつぼの下部に直結した鋳型に引き込み、該鋳型で冷却凝固させることにより、不純物などの混入が無い鋳塊を製造することが可能になる。
【0021】
【発明の実施の形態】
図1はこの発明の実施の形態の主要部の構成図を示す。この図1において、従来例と同一の符号を付けた部材はおおよそ同一の機能を有するのでその説明は省略する。この図1において、コールドクルーシブル溶解装置は、高周波電源5に接続された円形の上コイル2a、および高周波電源5より高い周波数の高周波電源6に接続された、上コイル2aとほぼ同じ内径を有する下コイル2bの内側に、電気的に絶縁された2つ以上のセグメント3をスリット3aを介して上下コイル2a、2bの周方向に並べて水冷金属るつぼ1を構成している。また水冷金属るつぼ1底部はセグメント3と同じ材質の金属で構成されている。水冷金属るつぼ1内部には金属材料が入れられる。水冷金属るつぼ1を構成するセグメント3は水等により加熱されないように冷却される。
【0022】
高周波電源5から供給される上コイル2a、および高周波電源6から供給される下コイル2bの電流は、それぞれスリット3aにより電気的に絶縁されたセグメント3にうず電流を誘導するとともに、金属材料にもうず電流を誘導し、金属材料は抵抗損により加熱し続けられ溶解されて溶湯4になる。
この水冷金属るつぼ1と溶湯4に流れるうず電流の方向は対向面では互いに逆向きなので磁気的に反発力となり、水冷金属るつぼ1は固定されているので溶湯4に働く反発力が溶湯4の重量より大きければ溶湯4は水冷金属るつぼ1の側面から離れる。
【0023】
ここで、上コイル2aに供給される電流の周波数は下コイル2bに供給される電流の周波数より低い値に設定されているので、図2に示すように溶湯4と水冷金属るつぼ1の側壁とが接触する位置はh2になり、水冷金属るつぼ1への抜熱量が軽減されるようになっている。
図3は請求項1の発明の実施の形態の主要部の構成図を示す。この図3において、図1の構成とほぼ同じ構成の水冷金属るつぼ1は傾転中心を中心として傾転可能な傾転手段を有しており、水冷金属るつぼ1内で溶解された金属は前記傾転手段により傾転される水冷金属るつぼ1上端部から出湯されて鋳型7に鋳造される。なお、この例では水冷金属るつぼ1、および鋳型7はチャンバーとよばれる溶解鋳造室内に収納されており所望の雰囲気中での溶解および鋳造が可能な構造になっている。
【0024】
図4は請求項2の発明の実施の形態の主要部の構成図を示す。この図4において、水冷金属るつぼ1は図1の構成とほぼ同じ構成となっているのでその説明は省略する。この図4が図3と異なる点は水冷金属るつぼ1で溶解した金属(溶湯4)を水冷金属るつぼ1の傾転により出湯して鋳型に鋳込む代りに溶湯4に浸漬したノズルに直結した鋳型8を設けて該鋳型8を吸引装置の中に設置して吸引装置によりノズルを介して吸引した溶湯4を鋳型8に鋳造するようにした点である。
【0025】
図5は請求項3の発明の実施の形態の主要部の構成図を示す。この図5において、コールドクルーシブル溶解装置は、高周波電源5に接続された円形の上コイル2a、および高周波電源5より高い周波数の高周波電源6に接続された、上コイル2aとほぼ同じ内径を有する下コイル2bの内側に、電気的に絶縁された2つ以上のセグメント3をスリット3aを介して上下コイル2a、2bの周方向に並べて水冷金属るつぼ1を構成している。また水冷金属るつぼ1底部は胴部と同じ径の底穴になっている。水冷金属るつぼ1内部には金属材料が入れられ、該水冷金属るつぼ1内で溶解されて溶湯4になる。水冷金属るつぼ1を構成するセグメント3は水等により加熱されないように冷却される。
【0026】
該水冷金属るつぼ1の底部には、水冷製で上部にスリットが入った鋳型10が直結され、その下部に引抜鋳造装置15が設けられている。前記水冷金属るつぼ1の底穴には該底穴に嵌合され、下部で水冷機能を有したとも材栓12、および該とも材栓12を駆動する引抜駆動栓11、引抜駆動部昇降台14が引抜駆動装置13に直結して設けられている。
【0027】
図5において、引抜駆動時に溶湯4は鋳型10中で凝固するよう電源電力、引抜速度、引抜駆動栓11及び水冷鋳型10の冷却が制御されるため所望の引抜鋳造が行える。水冷金属るつぼ1と鋳型10は双方とも金属製の場合、運転時の両者間での短絡や放電による損傷を避ける為、電気的に絶縁されるよう微少な空間を有した構造とするか、水冷金属るつぼ1と鋳型10との接触面に薄い絶縁物が挿入されていることが望ましい。
【0028】
金属材料溶解時、引抜駆動栓11は水冷金属るつぼ1の底穴に嵌合されている。引抜駆動時にるつぼ底穴付近の溶湯4と引抜駆動栓11の先端部が半溶融状態を形成する様にする場合、引抜駆動栓11の先端には溶湯4と同じ材質のとも材栓12を使用し、そのとも材栓12は水冷されていないが、下部で冷却された引抜駆動栓11からの接触熱伝達で水冷される様な構造となっている。引抜駆動時は鋳型10の位置を固定し、引抜駆動装置13を駆動して引抜駆動栓11、およびとも材栓12の駆動を行う。この場合の引抜駆動は、引抜開始時に上方向に駆動してから引下げを行ったり、引抜鋳造時には、連続的下引動作、間欠的下引動作、上下方向への可逆動作等、種々の方案が考えられるが、鋳型10中で溶湯4を連続的に凝固させて引抜きを行う。鋳型10中の溶湯4は溶解時は鋳型10からも抜熱を受けるが凝固により容積が収縮するため、鋳型10に接触せずに引抜きが行えるが、鋳型10内径を下部はテーパ状に広げたものを使用条件によって使い分ける。
【0029】
引抜駆動時にとも材栓を使用しないで引抜駆動栓11上部で軟接触状態とし、引抜駆動後に栓上部の凝固層を再溶解し出湯鋳造する場合、引抜駆動栓11は栓の上部まで水冷された銅製栓を使用する。この場合、るつぼ底穴付近は引抜駆動栓への抜熱により再凝固層が形成されるが、引抜駆動栓11の引下げによって抜熱が無くなることと、底部に磁束が侵入することによって再凝固層に渦電流が流れる様になるため、再凝固層を溶解し出湯することが可能である。この場合は1ショットによる鋳造となるが従来より出湯ストロークが短くなる利点が挙げられる。
【0030】
鋳型10は溶湯4が凝固した金属への不純物混入を避ける為には、水冷された金属製が望ましい。また鋳造時の制御を行う為に、図示していないコイルを鋳型10周囲に巻くこともでき、鋳型10にはコイルの巻かれている位置よりも下部にスリットが入った構造とすることにより、凝固時の温度制御や鋳型への接触等を制御する構成とすることができる。
【0031】
図6、図7は図5の発明のコールドクルーシブル溶解鋳造装置を雰囲気制御下で行えるようにした例の構成図で、図6は鋳造前の状態図、図7は鋳造中の状態図を示す。この図6、図7が図5と異なる点は図5が大気中での溶解鋳造としている代りに、水冷金属るつぼ1、および上下コイル2a、2b、鋳型10、とも材栓12、引抜駆動栓11、引抜鋳造装置15を真空ポンプ、および雰囲気制御装置を備えた真空チャンバー16内に収納するとともに、引抜鋳造装置15の可動部を引抜駆動部昇降台と真空チャンバー16との間で伸縮可能に密閉して真空状態が保てるようにした伸縮可能なベローズ17等で接続した点である。
【0032】
このように構成することにより、真空下、もしくは不活性ガス雰囲気下での溶解鋳造が可能になり、溶解材料からの脱ガス、および溶解鋳造時の金属の酸化防止が行える。
【0033】
【発明の効果】
この発明によれば、水冷るつぼ外周に巻かれるコイルが周波数の異なる2つ以上のコイルを有し、水冷るつぼ上部側のコイルには電磁力特性に優れる低い周波数を採用することでるつぼとの接触面積を低減してるつぼへの抜熱量を減らすことができ、水冷るつぼ下部のコイルには加熱特性に優れる上コイルよりも高い周波数を採用することで溶解金属の加熱を積極的に行い溶湯下部の凝固を抑制することができる。また上下のコイルは各々独自で電力制御することが可能となるので、従来のコールドクルーシブル溶解鋳造装置で困難だった高融点金属や合金の溶解及び鋳造品鋳造や従来装置で溶解可能な金属において溶解量を従来より増大させた場合においても溶解と鋳造品鋳造の対応が可能になる。
【図面の簡単な説明】
【図1】 この発明の実施の形態の主要部の構成図
【図2】 (a)は溶湯に作用する電磁反発力と溶湯静圧とのバランス状態を模擬的に示した水冷金属るつぼの断面図、(b)は溶湯表面から底部までの高さ(深さ)を横軸に、溶湯高さdhと、該dh各位置で溶湯に作用する電磁反発力F2,F3とを縦軸方向に表した図
【図3】 請求項1の発明の実施の形態の主要部の構成図
【図4】 請求項2の発明の実施の形態の主要部の構成図
【図5】 請求項3の発明の実施の形態の主要部の構成図
【図6】 図5の発明のコールドクルーシブル溶解鋳造装置を雰囲気制御下で行えるようにした例の構成図で、鋳造前の状態図
【図7】 図6の鋳造中の状態図
【図8】 従来例の構成図
【図9】 (a)は図8の構成で溶湯に作用する電磁反発力と溶湯静圧とのバランス状態を模擬的に示した水冷金属るつぼの断面図、(b)は図8の構成で溶湯表面から底部までの高さ(深さ)を横軸に、溶湯高さdhと、該dh各位置で溶湯に作用する電磁反発力F1とを縦軸方向に表した図
【符号の説明】
1 水冷金属るつぼ
2a 上コイル
2b 下コイル
5、6 高周波電源
7、8、10 鋳型
9 吸引装置
11 引抜駆動栓
12 とも材栓
15 引抜鋳造装置
16 真空チャンバー
17 ベローズ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cold crucible melting and casting apparatus in which a coil is excited using a high frequency power source, a metal material in a water-cooled metal crucible is induction-heated and melted, and a molten metal is cast into a mold.
[0002]
[Prior art]
The cold crucible melting device is a device in which a high frequency induction coil is wound around a water-cooled metal crucible. When a metal is placed inside a water-cooled metal crucible and a high frequency current is passed through the coil, an eddy current is induced in the metal, and the metal is heated and melted. Since the metal melted by this method is not mixed with impurities from the water-cooled metal crucible, a high-purity molten metal can be formed. Further, by casting this molten metal in a mold, it is possible to produce a high-purity cast product, which is suitable for melting active metals such as titanium, refractory metals (chromium, niobium, molybdenum), silicon and the like. In addition, since the electromagnetic force acting on the water-cooled metal crucible is strong, the molten metal is electromagnetically stirred and is suitable for melting an alloy that requires a uniform composition.
[0003]
FIG. 8 shows a configuration diagram of a conventional example. In FIG. 8, the cold crucible melting apparatus has two or more electrically insulated segments 3 in the circumferential direction of the
[0004]
The segment 3 constituting the water-cooled
The current of the
[0005]
here,
σ: Weight per unit volume of molten metal [kg / m 3 ]
h: Melt head (height from the top) [m]
F: Electromagnetic repulsive force [kg / m 2 ] acting on the molten metal surface.
[0006]
The cold crucible induction heating melting method is used for melting pure titanium, titanium alloys such as Ti-6Al-4V, and the like because no impurities are mixed from the crucible material. In the case of this method, since the molten metal comes into contact with the water-cooled metal crucible at the lower part from the depth of the molten metal satisfying σh> F, the molten metal temperature is 1900 ° C. to 2000 ° C. or less because the heat is removed to the water-cooled metal crucible. Limited to metals.
[0007]
[Problems to be solved by the invention]
When melting a metal having a molten metal temperature exceeding 1900 ° C., it is difficult to dissolve the metal due to the effect of heat removal due to contact with the water-cooled metal crucible. Also, most of the alloys whose molten metal temperature exceeds 1900 ° C. and pure metals have a density exceeding 10 g / cm 3 , so that the crucible is compared with the case where a material having the same volume as the titanium density of 4.1 g / cm 3 is melted. Since the position where the electromagnetic repulsive force on the side balances is less than half of the non-contact height with titanium, the amount of heat presented to the crucible is proportional to the contact area of the crucible, so the amount of heat removed to the crucible naturally increases, The metal cannot be dissolved unless the energy required for melting is increased. The problem is that, even in the case of metals that can be melted by the prior art, even when the crucible capacity is further increased from the conventional maximum melting amount of several hundred kg, it is necessary to similarly reduce the amount of heat displayed in the crucible. Show.
[0008]
Here, the electromagnetic repulsive force F1 acting on the molten metal using the operating frequency f1 and the power source capacity P1 set according to the melting ability of the metal is electromagnetically analyzed for the conventional one-coil device of FIG. FIGS. 9A and 9B show a balance state between the electromagnetic repulsion force F1 and the molten metal static pressure dh. 9A is a cross-sectional view of a water-cooled metal crucible simulating the balance between the electromagnetic repulsive force acting on the molten metal and the static pressure of the molten metal, and FIG. 9B is the height (depth) from the molten metal surface to the bottom. Is the horizontal axis, and the molten metal height dh and the electromagnetic repulsive force F1 acting on the molten metal at each position of the dh are shown in the vertical axis direction. In FIG. 9 (b), the crucible side wall where the molten metal is taken is in contact after the height h1 where the molten metal static pressure dh and the electromagnetic repulsive force F1 intersect, and the melting temperature or the amount of melting is affected by the heat removal from there. An upper limit occurs.
[0009]
In addition, Fig.9 (a) has described said h1 in sectional drawing of a water-cooled metal crucible. Therefore, in order to reduce the amount of contact with the water-cooled metal crucible by using the conventional one-coil type device for the purpose of increasing the refractory metal that is difficult to dissolve in the conventional example and the amount of dissolution, it is possible to overcome the static pressure of the molten metal. When the operating frequency (frequency that lowers the electromagnetic repulsion force by lowering the conventional example) is selected, the input power to the molten metal may decrease as the frequency decreases. To compensate for this, the coil is energized. Although the current must be increased, there is a limit to the energizing current due to the cooling effect when cooling the copper loss in the coil, and if the necessary energizing current cannot be obtained, the heating effect is reduced, for example, casting There is a possibility that the superheat (temperature rise value relative to the melting point of the molten metal) necessary for the heat treatment cannot be secured sufficiently. On the other hand, if the operating frequency is set high in order to increase the electric power applied to the melted material without increasing the energizing current to the coil, the electromagnetic repulsive force acting on the metal surface is reduced this time, so that the contact area to the crucible is reduced. As a result, the amount of heat extracted from the crucible increases and the power source capacity needs to be further increased. However, an increase in power supply capacity requires a structure that enhances the cooling effect of the crucible itself, and since there is an upper limit to the power supply capacity that can satisfy the cooling performance on the crucible structure, an upper limit is inevitably generated in the melting amount and the melting temperature. End up.
[0010]
In order to solve the above-mentioned problems, the present invention reduces the contact with the water-cooled metal crucible on the side of the molten metal and reduces the heat removal to the water-cooled metal crucible, thereby increasing the amount of dissolution, Another object of the present invention is to provide a cold crucible melting and casting apparatus that enables melting of a refractory metal.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention of
[0012]
Here, the relationship between the frequency and the electric power induced on the surface of the molten metal and the frequency and the electromagnetic repulsive force acting on the surface of the molten metal are determined when the alternating magnetic field generated in the coil is along the molten metal (that is, the penetration depth is larger than the molten metal). In the case where the electric power w is sufficiently small compared to the above, the input electric power w to the molten metal is given by the following equation.
w = 1/2 (πfμρ) 1/2 · Hm 2 (1)
w: Input power to molten metal [w]
f: Operating frequency [Hz]
μ: Magnetic permeability of metal [H / m]
ρ: Metal resistivity [Ω · m]
Hm: Magnetic field strength along the molten metal surface [AT / m]
[0013]
On the other hand, the electromagnetic repulsive force F acting on the molten metal surface is given by the following equation.
F = 1/2 (μHm 2 ) (2)
From the above equation, the relationship between the electromagnetic repulsive force F and the input power w is given by the following equation.
F = W (μ / πfρ) 1/2 (3)
This equation indicates that when the amount of power supplied to the molten metal is constant, the lower the frequency, the greater the electromagnetic repulsion force.
[0014]
Here, in order to reduce the contact between the crucible side wall and the molten metal, the upper coil is set to an operating frequency f2 lower than the operating frequency f1 of the conventional example and the power source capacity P2, and the lower coil is set to f1. In the portion where the crucible side wall and the molten metal come into contact with each other by increasing the operating frequency f3 of the lower coil to reduce the input power due to the high operating frequency f3 and lowering the operating frequency of the upper coil to f2, one coil of the conventional example Electromagnetic analysis is performed by setting the power source capacity P3 that generates heat higher than that of the formula apparatus and setting the total so that P2 + P3 = P1 (the power source capacity at the operation frequency f1 of the conventional example), and the result is shown in FIG. ) And (b).
[0015]
2A is a cross-sectional view of a water-cooled metal crucible simulating the balance between the electromagnetic repulsion force acting on the molten metal and the molten metal's static pressure, and FIG. 2B is the height (depth) from the molten metal surface to the bottom. Is a graph in which the molten metal height dh and the electromagnetic repulsive forces F2 and F3 acting on the molten metal at each position of the dh are represented in the vertical axis. In FIG. 2B, the crucible side wall is in contact with the crucible side wall after the height h2 at which the molten metal static pressure dh and the electromagnetic repulsive force F2 intersect, but the electromagnetic repulsive force F2 acting on the molten metal by the upper coil is conventional. Since it is larger than F1 in the example, the position h2 where the molten metal and the crucible side wall are in contact with each other is lowered below h1.
[0016]
FIG. 2A shows h2 in a cross-sectional view of a water-cooled metal crucible. Therefore, according to the structure of
[0017]
According to a second aspect of the present invention, a water-cooled metal crucible is formed by arranging two or more segments electrically insulated inside a circular coil in the circumferential direction of the coil, and the coil is formed using a high frequency power source. A cold-crucible melting apparatus that forms a skull between the molten metal in which the metal material is melted and the water-cooled metal crucible, wherein the metal material in the water-cooled metal crucible is formed by induction heating and melting. In the cold crucible melting and casting apparatus for casting the metal melted in a water-cooled mold directly connected to the bottom of the water-cooled metal crucible, the coil is provided in two stages above and below the outer periphery of the water-cooled metal crucible, The frequency of the current applied to the upper coil during melting may be set lower than the frequency of the current applied to the lower coil.
[0018]
According to a third aspect of the present invention, a water-cooled metal crucible is formed by arranging two or more segments electrically insulated inside a circular coil in the circumferential direction of the coil, and the coil is excited using a high frequency power source. A cold-crucible melting apparatus for melting a metal material in a water-cooled metal crucible by induction heating and forming a skull between the molten metal in which the metal material is melted and the water-cooled metal crucible, In the cold crucible melting and casting apparatus for casting the molten metal into a water-cooled mold directly connected to the bottom of the water-cooled metal crucible, the coil is provided in two stages above and below the outer periphery of the water-cooled metal crucible, and when the metal material is melted The frequency of the current flowing through the upper coil is made lower than the frequency of the current flowing through the lower coil.
[0019]
According to a fourth aspect of the present invention, in the cold crucible melting and casting apparatus according to the third aspect, a pull-out driving plug is provided to prevent the molten metal from falling at the bottom of the water-cooled metal crucible. Casting can be performed. Further, as in the invention of
[0020]
Further, as in the invention of claim 6, in the cold crucible melting and casting apparatus according to claim 4 or
[0021]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing the main part of an embodiment of the present invention. In FIG. 1, members denoted by the same reference numerals as those in the conventional example have approximately the same functions, and thus description thereof is omitted. In FIG. 1, the cold crucible melting device has a circular
[0022]
The currents of the
The directions of the eddy currents flowing in the water-cooled
[0023]
Here, since the frequency of the current supplied to the
FIG. 3 is a block diagram showing the main part of the embodiment of the first aspect of the present invention. In FIG. 3, a water-cooled
[0024]
FIG. 4 shows a configuration diagram of the main part of the embodiment of the invention of
[0025]
FIG. 5 shows a configuration diagram of the main part of the embodiment of the invention of claim 3. In FIG. 5, the cold crucible melting apparatus has a circular
[0026]
The bottom of the water-cooled
[0027]
In FIG. 5, since the molten metal 4 is controlled to be solidified in the mold 10 at the time of drawing driving, the power supply power, the drawing speed, the drawing driving stopper 11 and the cooling of the water-cooled mold 10 are controlled. When both the water-cooled
[0028]
When the metal material is melted, the pull-out driving plug 11 is fitted in the bottom hole of the water-cooled
[0029]
When pulling drive is performed, the material stopper is not used and the upper part of the pulling drive plug 11 is in a soft contact state, and after the pulling drive, the solidified layer on the top of the plug is redissolved and cast into hot water. Use copper stoppers. In this case, a resolidified layer is formed in the vicinity of the bottom hole of the crucible by removing heat to the extraction drive plug, but the resolidification layer is eliminated by the removal of heat removal by lowering the extraction drive plug 11 and the penetration of magnetic flux into the bottom. As an eddy current flows through the re-solidified layer, the re-solidified layer can be dissolved and discharged. In this case, casting is performed by one shot, but there is an advantage that the hot water stroke is shorter than the conventional one.
[0030]
The mold 10 is preferably made of water-cooled metal in order to prevent impurities from being mixed into the metal solidified by the molten metal 4. In order to control at the time of casting, a coil (not shown) can be wound around the mold 10, and the mold 10 has a structure with a slit below the position where the coil is wound, It can be set as the structure which controls the temperature control at the time of solidification, the contact to a casting_mold | template, etc.
[0031]
6 and 7 are configuration diagrams of an example in which the cold crucible melting and casting apparatus of the invention of FIG. 5 can be performed under atmosphere control, FIG. 6 is a state diagram before casting, and FIG. 7 is a state diagram during casting. . 6 and 7 are different from FIG. 5 in that, instead of FIG. 5 being melting casting in the atmosphere, the water-cooled
[0032]
By comprising in this way, melt | dissolution casting in a vacuum or inert gas atmosphere is attained, and deoxidation from a melt | dissolution material and the metal oxidation prevention at the time of melt | dissolution casting can be performed.
[0033]
【The invention's effect】
According to the present invention, the coil wound around the outer periphery of the water-cooled crucible has two or more coils having different frequencies, and the coil on the upper side of the water-cooled crucible is in contact with the crucible by adopting a low frequency with excellent electromagnetic force characteristics. The amount of heat removed from the crucible can be reduced by reducing the area, and the coil at the bottom of the water-cooled crucible uses a higher frequency than the upper coil, which excels in heating characteristics, to actively heat the molten metal and Coagulation can be suppressed. In addition, since the upper and lower coils can be controlled independently, melting of refractory metals and alloys that were difficult with conventional cold crucible melting and casting equipment, as well as melting with cast metals and metals that can be melted with conventional equipment. Even when the amount is increased as compared with the prior art, it is possible to cope with melting and casting.
[Brief description of the drawings]
FIG. 1 is a block diagram of a main part of an embodiment of the present invention. FIG. 2 (a) is a cross-sectional view of a water-cooled metal crucible simulating a balance state between an electromagnetic repulsive force acting on a molten metal and a molten metal's static pressure. FIG. 4B shows the height (depth) from the molten metal surface to the bottom on the horizontal axis, the molten metal height dh, and the electromagnetic repulsive forces F2 and F3 acting on the molten metal at each position of the dh in the vertical axis direction. FIG. 3 is a block diagram of the main part of the embodiment of the invention of
DESCRIPTION OF
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001265168A JP4506057B2 (en) | 2001-06-15 | 2001-09-03 | Cold crucible melting and casting equipment |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001181548 | 2001-06-15 | ||
JP2001-181548 | 2001-06-15 | ||
JP2001265168A JP4506057B2 (en) | 2001-06-15 | 2001-09-03 | Cold crucible melting and casting equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003065679A JP2003065679A (en) | 2003-03-05 |
JP4506057B2 true JP4506057B2 (en) | 2010-07-21 |
Family
ID=26616988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001265168A Expired - Fee Related JP4506057B2 (en) | 2001-06-15 | 2001-09-03 | Cold crucible melting and casting equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4506057B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102183144A (en) * | 2011-04-14 | 2011-09-14 | 张森 | Cold crucible vacuum inductive smelting device having energy beam auxiliary heat source |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5082234B2 (en) * | 2005-12-15 | 2012-11-28 | シンフォニアテクノロジー株式会社 | Cold crucible induction heating melting furnace |
JP2008049358A (en) * | 2006-08-23 | 2008-03-06 | Shinko Electric Co Ltd | Induction smelting apparatus |
CN103557704B (en) * | 2013-10-12 | 2015-12-09 | 深圳市华星光电技术有限公司 | Crucible heating Apparatus and method for |
JP7128600B1 (en) * | 2022-01-27 | 2022-08-31 | 山田 榮子 | Scrap metal mass melting equipment |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3047056B2 (en) * | 1992-06-02 | 2000-05-29 | 科学技術庁金属材料技術研究所長 | Floating melting apparatus and its operation method |
JP3129076B2 (en) * | 1994-03-02 | 2001-01-29 | 富士電機株式会社 | Floating melting apparatus and its tapping method |
JPH1080751A (en) * | 1996-09-09 | 1998-03-31 | Fuji Electric Co Ltd | Continuous casting apparatus |
-
2001
- 2001-09-03 JP JP2001265168A patent/JP4506057B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102183144A (en) * | 2011-04-14 | 2011-09-14 | 张森 | Cold crucible vacuum inductive smelting device having energy beam auxiliary heat source |
Also Published As
Publication number | Publication date |
---|---|
JP2003065679A (en) | 2003-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7848383B2 (en) | Cold crucible induction furnace with eddy current damping | |
JP2009125811A (en) | Method for centrifugally casting highly reactive titanium metals | |
JPH02287091A (en) | Induction furnace | |
JP2009125810A (en) | System for centrifugally casting highly reactive titanium metal | |
JP2009285726A (en) | Tapping method in cold crucible melting furnace | |
JP2014510641A (en) | Open bottom conductive cooled crucible for ingot electromagnetic casting. | |
JP4099062B2 (en) | Treatment of molten metal by moving electrical discharge | |
JP4506057B2 (en) | Cold crucible melting and casting equipment | |
JP3902133B2 (en) | Method for producing metal ingot or billet by melting electrode and apparatus for performing the same | |
JP3028736B2 (en) | Metal melting and continuous casting method | |
JP2002122386A (en) | Water-cooled copper crucible for levitational melting | |
JPH05280871A (en) | Water-cooled divided copper crucible for induction melting service | |
JP2005059015A (en) | Device for melting and casting metal | |
JP3676781B2 (en) | Method for producing a metal ingot or billet by melting an electrode in a conductive slag bath and apparatus for carrying out the same | |
JP5000149B2 (en) | Cold Crucible Induction Dissolver | |
RU2735329C1 (en) | Method of levitation melting using annular element | |
JPH0441062A (en) | Method and apparatus for casting high melting point metal and active metal | |
JPH0711352A (en) | Method for continuously melting and casting high melting point active metal | |
JPH1187044A (en) | Bottom part molten metal tap type float solution device and its tap method | |
JP2926961B2 (en) | Equipment for continuous melting and casting of metals | |
JP2002192332A (en) | Float molten casting device | |
JPH0531571A (en) | Method and apparatus for manufacturing casting | |
EP0457502A1 (en) | Method and apparatus for precision casting | |
WO2008094335A1 (en) | Group ivb metal processing with electric induction energy | |
JP2004314121A (en) | Device for melting and casting metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060703 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060704 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060914 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071227 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20081215 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20090219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090721 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090917 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091027 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100305 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100406 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100419 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140514 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |