JP2002122386A - Water-cooled copper crucible for levitational melting - Google Patents

Water-cooled copper crucible for levitational melting

Info

Publication number
JP2002122386A
JP2002122386A JP2000313604A JP2000313604A JP2002122386A JP 2002122386 A JP2002122386 A JP 2002122386A JP 2000313604 A JP2000313604 A JP 2000313604A JP 2000313604 A JP2000313604 A JP 2000313604A JP 2002122386 A JP2002122386 A JP 2002122386A
Authority
JP
Japan
Prior art keywords
water
cooled copper
copper crucible
melting
levitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000313604A
Other languages
Japanese (ja)
Inventor
Hideaki Tadano
英顕 只野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000313604A priority Critical patent/JP2002122386A/en
Publication of JP2002122386A publication Critical patent/JP2002122386A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate a reaction of a copper of a stock of a crucible with a molten metal when the metal is contact held in the crucible in melting a material containing aluminum and another low melting point alloy as main components. SOLUTION: A levitational melding apparatus melts the metal material thrown in the water-cooled copper crucible by induction heating by levitating the material by an electromagnetic repulsion force by exciting an induction coil disposed on an outer peripheral side of the crucible by using a high-frequency power source. In this apparatus, an inside surface of the crucible 1 at least from bottom to a height opposed to a maximum molten metal height or higher is coated with an insulator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、低融点金属の中
に高融点の金属を合金化するための浮揚溶解用の水冷銅
るつぼに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water-cooled copper crucible for levitation melting for alloying a high melting point metal into a low melting point metal.

【0002】[0002]

【従来の技術】図7は従来例の構成図を示す。この図7
において、水冷銅るつぼ1は円形の誘導コイル2の内側
に,電気的に絶縁されたセグメント1aの複数個を誘導
コイル2の周方向にスリット7を介して並べて構成され
ている。この水冷銅るつぼ1の内部はくりぬかれてお
り,このくりぬかれた部分に被溶解物が入れられる。誘
導コイル2を励磁することにより発生する磁束はスリッ
トの隙間から水冷銅るつぼ1内に侵入し被溶解物と鎖交
する。水冷銅るつぼ1を構成するセグメント1aは水等
により加熱されないように冷却される。
2. Description of the Related Art FIG. 7 shows a configuration diagram of a conventional example. This FIG.
The water-cooled copper crucible 1 comprises a plurality of electrically insulated segments 1a arranged inside a circular induction coil 2 through a slit 7 in the circumferential direction of the induction coil 2. The inside of the water-cooled copper crucible 1 is hollowed out, and the material to be melted is put in the hollowed-out portion. The magnetic flux generated by exciting the induction coil 2 penetrates into the water-cooled copper crucible 1 from the gap of the slit and interlinks with the material to be melted. The segment 1a constituting the water-cooled copper crucible 1 is cooled so as not to be heated by water or the like.

【0003】誘導コイル2に通電された高周波電流は,
電気的に絶縁されたそれぞれのセグメント1aにうず電
流を誘導するとともに,被加熱物にもうず電流を誘導す
る。金属は,非磁性体はもちろん磁性体でも加熱されて
キュリー点以上になると非磁性体となり、水冷銅るつぼ
1のセグメント1aに誘導されたうず電流と金属に誘導
されるうず電流とは対向する表面部分では互いに逆向き
なので磁気的に反発力となり,るつぼは固定されている
ので被加熱物に働く浮揚力が被加熱物の重量より大きけ
れは被加熱物は水冷銅るつぼ1から離れて浮上する。
The high-frequency current applied to the induction coil 2 is
An eddy current is induced in each of the electrically isolated segments 1a, and a current is further induced in the object to be heated. When a metal, not to mention a non-magnetic material, is heated to a Curie point or higher and becomes a non-magnetic material, the metal becomes a non-magnetic material, and the eddy current induced in the segment 1a of the water-cooled copper crucible 1 and the eddy current induced in the metal are opposed to each other. Since the portions are opposite to each other, they are magnetically repulsive. Since the crucible is fixed, if the levitation force acting on the object to be heated is greater than the weight of the object to be heated, the object to be heated floats away from the water-cooled copper crucible 1.

【0004】被加熱物は抵抗損により熱を発生して加熱
し続けて溶湯4になる。このため被加熱物は全体もしく
はその殆どの部分が水冷銅るつぼ1に非接触状態で溶解
する。この溶解法では、水冷銅るつぼ1からの混入物が
無く,溶解雰囲気を不活性ガス置換雰囲気で行うことに
より,原材料純度を損ねない溶解が可能である。
The object to be heated generates heat due to resistance loss and continues to be heated to become molten metal 4. For this reason, the whole to-be-heated thing or the most part melt | dissolves in the water-cooled copper crucible 1 in a non-contact state. In this dissolving method, there is no contaminant from the water-cooled copper crucible 1, and dissolving is performed in an inert gas replacement atmosphere, so that dissolving without deteriorating the purity of the raw material is possible.

【0005】また、高真空雰囲気で行うことで脱ガス効
果による精練効果が期待できる為,高純度材料の溶解に
適している。純金属や合金溶製を純金属母材からでも既
に合金化された再溶解材からでも行えて,特に合金溶製
時においては,母原料からの一括溶解や溶解時の成分調
整も自由に行える利点がある。また、この溶湯を鋳型に
流し込むことにより高純度鋳造製品の生産が可能で、例
えばチタン等の活性金属,高融点金属(クロム,ニオ
ブ,モリブデン)、シリコン等の溶解に適している。
[0005] Further, since the scouring effect due to the degassing effect can be expected by performing in a high vacuum atmosphere, it is suitable for dissolving high purity materials. Pure metals and alloys can be melted from a pure metal base material or from a remelted material that has already been alloyed. Particularly when melting alloys, batch melting from the base material and component adjustment during melting can be performed freely. There are advantages. By casting the molten metal into a mold, it is possible to produce a high-purity cast product, which is suitable for dissolving active metals such as titanium, high-melting metals (chromium, niobium, molybdenum), silicon, and the like.

【0006】また、るつぼに作用する電磁力が強いので
溶湯は電磁攪拌され,均一な組成が要求される合金溶解
に適している。浮揚溶解装置によって溶解された製品の
取出し方法は様々であるが水冷銅るつぼ1の底に流出口
6を設けて、この流出口6から連続的または間欠的に溶
湯を取出す方法がある。
Further, since the electromagnetic force acting on the crucible is strong, the molten metal is electromagnetically stirred, and is suitable for alloy melting in which a uniform composition is required. There are various methods for taking out the product melted by the flotation melting apparatus, but there is a method in which an outlet 6 is provided at the bottom of the water-cooled copper crucible 1 and the molten metal is continuously or intermittently taken out from the outlet 6.

【0007】この底部出湯方式では流出口6の下部に鋳
型やロール,アトマイザーを設置することで、先に述べ
た高純度純金属や高純度合金の鋳造品や線材,リボン,
粉末等を得る事が可能である。なお、流出口6は、溶解
初期など溶解した溶湯が少なくて充分に浮揚力が付与で
きない場合にそこから洩れるのを防止するためと、停電
事故時に浮揚力が無くなり溶湯が流出するのを防止する
ためとに栓5が着脱できるようになっている。
In this bottom tapping method, a mold, a roll, and an atomizer are installed below the outlet 6, so that the above-mentioned cast product of high-purity pure metal or high-purity alloy, wire, ribbon,
It is possible to obtain powder and the like. In addition, the outflow port 6 is used to prevent the molten metal from leaking therefrom when the molten metal is small and sufficient buoyancy cannot be imparted, such as in the initial stage of melting, and to prevent the molten metal from flowing out due to the loss of buoyancy during a power failure. In this case, the stopper 5 can be detached.

【0008】[0008]

【発明が解決しようとする課題】近年,配線材や反射膜
用ターゲット材等の用途にアルミニウムの特性改善を目
的としてモリブデンやチタン等を添加元素として使用す
る場合がある。この場合のアルミニウム及び添加材料に
よって得られる合金は鋳造品であったり、粉末であった
り形態は種々あるが,いずれの場合においても素材が高
純度であり、かつ、組成にばらつきが無い事が要求され
る。
In recent years, molybdenum, titanium, or the like has been used as an additional element for the purpose of improving the characteristics of aluminum in applications such as wiring materials and target materials for reflective films. In this case, the alloy obtained from the aluminum and the additive material may be in the form of a casting, a powder, or in various forms. In any case, it is required that the material be of high purity and have no variation in composition. Is done.

【0009】このような材料を溶製する場合,浮揚溶解
装置は先述の理由から好適であると考えられているが,
下記の問題が発生する可能性が有る。例として,Al−
Ti2at.%の純金属母材、Al,Tiを各々用意
し,これらを浮揚溶解して均一組成のAl−Ti2a
t.%合金を溶製することを考える。
When smelting such a material, a levitation melting apparatus is considered to be suitable for the above-mentioned reason.
The following problems may occur. As an example, Al-
Ti2at. % Pure metal base material, Al and Ti are prepared, and these are floated and dissolved to obtain a uniform composition of Al-Ti2a.
t. Consider the production of a% alloy.

【0010】まず、浮揚溶解装置の水冷銅るつぼは,水
冷によってるつぼの表面温度が低温に抑えられているが
るつぼ中を流れる渦電流により,るつぼ自身が加熱され
るため通電されていない状態よりもるつぼ表面の温度は
高温となっている。Al−Ti2at.%においては,
図5に示すAlとTiの台金状態図から,固相―液相境
界面温度が約1100℃となっている。これは,上記組
成を合金溶製化するためには,溶解金属温度を1100
℃を超える溶湯温度で保持して合金拡散させた後,取り
出す事が必要であることを意味する。
First, the water-cooled copper crucible of the levitation melting apparatus has a surface temperature of the crucible kept low by water cooling, but the crucible itself is heated by an eddy current flowing in the crucible, so that the crucible itself is not energized. The temperature of the crucible surface is high. Al-Ti2at. In%,
From the diagram of the metal plate of Al and Ti shown in FIG. 5, the solid-liquid interface temperature is about 1100 ° C. This is because the temperature of the molten metal must be 1100 in order to melt the above composition.
It means that it is necessary to take out the alloy after the alloy has been diffused while maintaining the temperature at a temperature of the molten metal exceeding ℃.

【0011】次に、図6に示すAl−Cuの合金状態図
を見ると,Al−Cuの合金の固相―液相境界温度はA
lat.100%からCu側へ辿って見ていくと,Cu
の増加とともに固相―液相境界面温度はAlの融点66
0℃から徐々に低下し,Al−Cu17at.%の組成
付近で極小値548℃となる。これらの事柄は,Alが
主成分の溶湯が1100℃以上(Alとして見た場台4
00℃以上のスーパーヒート)で保持された場合,水冷
るつぼと溶湯が接触した部分で、水冷銅るつぼのCuと
溶解金属Alが合金化する可能性があることを示してい
る。この問題は 溶解金属がCuの混入によって汚染されること 水冷銅るつぼか繰り返し使用不能となること 合金化による溶損が進んだ場合,銅るつぼの冷却水が
通過する部分まで溶損して水蒸気爆発等の事故に至るこ
と 等の可能性があることを示している。
Next, looking at the Al-Cu alloy phase diagram shown in FIG. 6, the solid-liquid boundary temperature of the Al-Cu alloy is A
lat. Looking from 100% to the Cu side, Cu
The solid-liquid interface temperature rises with the melting point of Al 66
0 ° C. and gradually decreased from Al-Cu17 at. %, The local minimum value is 548 ° C. In these matters, the melt containing Al as a main component is 1100 ° C.
This indicates that, when the molten metal is kept at a temperature of more than 00 ° C., the Cu in the water-cooled copper crucible and the molten metal Al may be alloyed in a portion where the molten metal contacts the water-cooled crucible. The problem is that the molten metal is contaminated by the incorporation of Cu. Water-cooled copper crucibles cannot be used repeatedly. If erosion due to alloying progresses, the copper crucible is eroded to the point where the cooling water passes, causing steam explosion, etc. It may indicate that there is a possibility of an accident.

【0012】これらの現象はアルミニウム以外の低融点
金属(錫等)が主成分である合金の高温保持においても
同様に水冷銅るつぼが反応する可能性がある。この発明
は上記の課題を解決するためになされたもので,その目
的とするところは、アルミニウムや他の低融点合金を主
成分とする材料の溶製に際し,溶湯がるつぼと接触保持
された場合に,るつぼの素材である銅が溶解金属と反応
しないようにした浮揚溶解用の水冷銅るつぼを提供する
ことにある。
[0012] These phenomena may also be caused by the water-cooled copper crucible reacting even when the alloy containing a low melting point metal other than aluminum (such as tin) as a main component is kept at a high temperature. SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has an object to solve the problem when a molten metal is held in contact with a crucible when melting a material mainly containing aluminum or another low melting point alloy. Another object of the present invention is to provide a water-cooled copper crucible for levitation melting in which copper, which is a material of the crucible, does not react with molten metal.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に請求項1記載の発明は,水冷銅るつぼの外周側に配置
した誘導コイルを高周波電源を用いて励磁し,水冷銅る
つぼ内に投入した金属材料を電磁反発力で浮揚させ誘導
加熱により溶解する浮揚溶解装置において,水冷銅るつ
ぼの少なくとも底面から最大湯高に対向する高さ以上の
高さまでの内側表面に絶縁物をコーティングすることを
特徴とする。
According to a first aspect of the present invention, an induction coil disposed on the outer peripheral side of a water-cooled copper crucible is excited by using a high-frequency power supply, and is introduced into the water-cooled copper crucible. In a levitation melting apparatus, which floats the melted metal material by electromagnetic repulsion and melts it by induction heating, it is necessary to coat the inner surface of the water-cooled copper crucible with an insulator from at least the bottom to a height not less than the height facing the maximum hot water. Features.

【0014】上記構成により、コーティング材料にジル
コニア等のセラミックスを使用すれは強固な保護被膜を
形成して,万一スーパーヒートされた高温の溶湯がるつ
ぼに接触した場合でも水冷銅るつぼが溶損しないように
することが可能である。また、保護被膜は水冷銅つぼに
よって水冷されており,溶湯温度が材料の耐熱温度より
低けれは,溶湯が保護皮膜上に接触し保持されていて
も,溶湯内へ保護被膜材が混入されず、高純度溶解を維
持することが可能であり,水冷銅るつぼは繰り返し使用
が可能である。
According to the above-mentioned structure, when ceramics such as zirconia is used as a coating material, a strong protective film is formed, and even if a superheated high-temperature molten metal comes into contact with the crucible, the water-cooled copper crucible will not be damaged. It is possible to do so. In addition, the protective coating is water-cooled by a water-cooled copper pot. If the temperature of the molten metal is lower than the heat-resistant temperature of the material, the protective coating material is not mixed into the molten metal even if the molten metal is in contact with and held on the protective coating. High purity dissolution can be maintained, and the water-cooled copper crucible can be used repeatedly.

【0015】また、請求項2記載の発明は,水冷銅るつ
ぼの外周側に配置した誘導コイルを高周波電源を用いて
励磁し,水冷銅るつぼ内に投入した金属材料を電磁反発
力で浮揚させ誘導加熱により溶解する浮揚溶解装置にお
いて,セグメントを横並びに並べて構成する水冷銅るつ
ぼのセグメントとセグメントの間、もしくは胴部に縦長
のスリットを掘削して形成する水冷銅るつぼのスリット
の隙間に絶縁物をコーティングすることを特徴とする。
According to a second aspect of the present invention, the induction coil disposed on the outer peripheral side of the water-cooled copper crucible is excited by using a high-frequency power source, and the metal material put into the water-cooled copper crucible is levitated by electromagnetic repulsion to induce induction. In a flotation melting apparatus that melts by heating, an insulator is placed between the segments of a water-cooled copper crucible composed of side-by-side segments, or in the gap between the slits of a water-cooled copper crucible formed by excavating a longitudinal slit in the body. It is characterized by coating.

【0016】上記構成により、請求項1の場合と同様に
強固な保護被膜をセグメント間もしくはスリット内に形
成するので,万一スーパーヒートされた高温の溶湯が水
冷銅るつぼのセグメントとセグメントの間もしくはスリ
ットの隙間に入り込んだ場合でも水冷銅るつぼが溶損し
ないようにすることが可能である。また、保護被膜は水
冷銅るつぼによって水冷されており,溶湯温度が材料の
耐熱温度より低ければ,溶湯がセグメントとセグメント
の間もしくはスリットの隙間に入り込んだまま保護皮膜
上に接触し保持されていても,溶湯内へ保護被膜が混入
されず高純度溶解を維持することが可能であり,水冷銅
るつぼは繰り返し使用が可能である。
According to the above construction, a strong protective film is formed between the segments or in the slits as in the case of the first aspect, so that the superheated high-temperature molten metal is formed between the segments of the water-cooled copper crucible or between the segments. It is possible to prevent the water-cooled copper crucible from being melted even when it enters the gap of the slit. The protective coating is water-cooled by a water-cooled copper crucible. If the temperature of the molten metal is lower than the heat-resistant temperature of the material, the molten metal contacts and is held on the protective coating while entering between the segments or the gap between the slits. In addition, the protective coating is not mixed into the molten metal, so that high-purity dissolution can be maintained, and the water-cooled copper crucible can be used repeatedly.

【0017】また請求項3記載の発明は,請求項1また
は請求項2に記載の浮揚溶解用の水冷銅るつぼにおい
て、水冷銅るつぼの底穴に挿入する栓の少なくとも上面
を含む部分に絶縁物をコーティングすることを特徴とす
る。上記構成により,請求項1の場合と同様に強固な保
護被膜を栓に形成するので,万一スーパーヒートされた
高温の溶湯が出湯栓の上面あるいは側面に接触した場合
でも出湯栓は溶損しないようにすることが可能である。
また、保護被膜は出湯栓によって水冷されており,溶湯
温度が材料の耐熱温度より低ければ,溶湯が出湯栓上面
あるいは側面の保護皮膜上に接触して保持されていて
も,溶湯内へ保護被膜が混入されず、高純度溶解並びに
出湯栓を開栓し溶湯を出湯させることによって高純度合
金の鋳造品並びに高純度合金材料を製造することが可能
である。また,出湯栓は繰り返し使用可能である。
According to a third aspect of the present invention, there is provided a water-cooled copper crucible for fusing and melting according to the first or second aspect, wherein at least a portion including an upper surface of a plug inserted into a bottom hole of the water-cooled copper crucible is provided with an insulating material. Characterized by coating. With the above configuration, a strong protective coating is formed on the plug in the same manner as in claim 1, so that even if the superheated high-temperature molten metal contacts the top surface or side surface of the tap, the tap does not melt. It is possible to do so.
Also, the protective coating is water-cooled by a tap, and if the temperature of the molten metal is lower than the heat-resistant temperature of the material, the protective coating enters the molten metal even if the molten metal is in contact with and held on the protective coating on the top surface or side surface of the tap. Is not mixed, and a high-purity alloy casting and a high-purity alloy material can be manufactured by opening a high-purity melting and tapping plug and discharging the molten metal. The tap can be used repeatedly.

【0018】また、請求項4の発明は、請求項1ないし
請求項3のいずれかに記載の浮揚溶解用の水冷銅るつぼ
を用いて,アルミニウムを主成分(50at.%以上)
とした合金系材料を母原料とする合金、もしくは既に合
金化された再溶解材から合金を溶製化することを特徴と
する。また、請求項5の発明は、請求項1ないし請求項
3のいずれかに記載の浮揚溶解用の水冷銅るつぼを用い
て,請求項4に記載のアルミニウムを主成分(50a
t.%以上)とした合金系材料を母原料の中、もしくは
既に台金化された再溶解材の中に1000℃以上の融点
を持つジルコニウム,イットリウム,バナジウム,モリ
ブデン,シリコン,ニッケル,チタン,クロム,ニオ
ブ,セリウム,ハフニウム,タンタル,タングステン等
の金属を少なくとも1つ以上を含んでいる材料を合金溶
製化することを特徴とする。
According to a fourth aspect of the present invention, there is provided a water-cooled copper crucible for levitation melting according to any one of the first to third aspects, wherein aluminum is used as a main component (50 at.% Or more).
The invention is characterized in that the alloy is made from an alloy using the alloy material as a base material or a remelted material that has already been alloyed. According to a fifth aspect of the present invention, there is provided a water-cooled copper crucible for levitation melting according to any one of the first to third aspects, wherein the aluminum of the fourth aspect is used as a main component (50a
t. % Or more) in the base material or in the remelted material already metallized, zirconium, yttrium, vanadium, molybdenum, silicon, nickel, titanium, chromium, having a melting point of 1000 ° C. or more. It is characterized in that a material containing at least one metal such as niobium, cerium, hafnium, tantalum, tungsten or the like is melted and alloyed.

【0019】また、請求項6の発明は、請求項1ないし
請求項3のいずれかに記載の浮揚溶解用の水冷銅るつぼ
を用いて,請求項4に記載のアルミニウムを主成分(5
0at.%以上)とした合金系材料を母原料の合金組
成、もしくは既に合金化された再溶解材の合金組成の固
相―液相境界面温度が860℃以上である材料を合金溶
製化することを特徴とする。
According to a sixth aspect of the present invention, there is provided a water-cooled copper crucible for levitation and melting according to any one of the first to third aspects, wherein the aluminum of the fourth aspect is used as a main component (5).
0 at. % Or more), the alloy composition of the base material or the alloy composition of the remelted material that has already been alloyed, and the solid-liquid interface temperature of the alloy composition is 860 ° C or more. It is characterized by.

【0020】また、請求項7の発明は、請求項1ないし
請求項3のいずれかに記載の浮揚溶解用の水冷銅るつぼ
を用いて,アルミニウム以外の錫,亜鉛,マグネシウ
ム,インジウム,アンチモン等の低融点金属を主成分低
融点金属とした台金系材料を母原料、もしくは既に合金
化された再溶解材から合金溶製化することを特徴とす
る。
The invention of claim 7 provides a water-cooled copper crucible for levitation melting according to any one of claims 1 to 3, wherein tin, zinc, magnesium, indium, antimony or the like other than aluminum is used. The present invention is characterized in that a base metal material mainly composed of a low-melting-point metal and a low-melting-point metal is alloyed from a base material or an already alloyed remelted material.

【0021】また、請求項8の発明は、請求項1ないし
請求項3のいずれかに記載の浮揚溶解用の水冷銅るつぼ
を用いて,請求項7に記載の低融点金属を主成分(50
at.%以上)とした台金系材料を母原料もしくは既に
合金化された再溶解材中に1000℃以上の融点を持つ
ジルコニウム,イットリウム,バナジウム,モリブデ
ン,シリコン,ニッケル,チタン,クロム,ニオブ,セ
リウム,ハフニウム,タンタル,タングステン、鉄、コ
バルト、ネオジウム、パラジウム等の金属を少なくとも
1つ以上含んでいる材料を合金溶製化することを特徴と
する。
According to an eighth aspect of the present invention, there is provided a water-cooled copper crucible for levitation melting according to any one of the first to third aspects, wherein the low melting point metal according to the seventh aspect is used as a main component (50%).
at. % Or more) in a base material or a re-melted material which has already been alloyed, having a melting point of 1000 ° C. or more, zirconium, yttrium, vanadium, molybdenum, silicon, nickel, titanium, chromium, niobium, cerium, It is characterized in that a material containing at least one metal such as hafnium, tantalum, tungsten, iron, cobalt, neodymium, palladium and the like is alloyed and melted.

【0022】また、請求項9の発明は、請求項1ないし
請求項3のいずれかに記載の浮揚溶解用の水冷銅るつぼ
を用いて,請求項7に記載の低融点金属を土成分(50
at.%以上)とした合金系材料を母原料の合金組成、
もしくは既に合金化された再溶解材の合金組成の固相―
液相境界面温度が主成分である低融点金属の融点から2
00℃以上高い材料を合金溶製化することを特徴とす
る。
According to a ninth aspect of the present invention, there is provided a water-cooled copper crucible for levitation and melting according to any one of the first to third aspects, wherein the low melting point metal according to the seventh aspect is replaced with an earth component (50%).
at. % Or more), the alloy composition of the base material
Or the solid phase of the alloy composition of the remelted material already alloyed
The liquidus temperature is 2
It is characterized in that a material having a temperature higher than 00 ° C. is melted.

【0023】上記請求項4から請求項9に記載の構成に
より、水冷銅るつぼを用いてアルミニウムを主成分(5
0at.%以上)とした合金(特に1000℃以上の融
点を持つジルコニウム,イットリウム,バナジウム,モ
リブデン,シリコン,ニッケル,チタン,クロム,ニオ
ブ,セリウム,ハフニウム,タンタル,タングステン等
の金属を少なくとも1つ以上を含んでいる材料の合金、
および合金組成の固相―液相境界面温度が860℃以上
である材料の合金)、およびアルミニウム以外の錫,亜
鉛,マグネシウム,インジウム,アンチモン等の低融点
金属を主成分低融点金属とした合金系材料を母原料、も
しくは既に合金化された再溶解材から合金(特に100
0℃以上の融点を持つジルコニウム,イットリウム,バ
ナジウム,モリブデン,シリコン,ニッケル,チタン,
クロム,ニオブ,セリウム,ハフニウム,タンタル,タ
ングステン、鉄、コバルト、ネオジウム、パラジウム等
の金属を少なくとも1つ以上含んでいる材料の合金、お
よび合金組成の固相―液相境界面温度が主成分である低
融点金属の融点から200℃以上である材料の合金)を
溶製化することが可能になる。
According to the above-mentioned constitution of the present invention, aluminum is used as the main component (5) using a water-cooled copper crucible.
0 at. % Or more) (including at least one metal such as zirconium, yttrium, vanadium, molybdenum, silicon, nickel, titanium, chromium, niobium, cerium, hafnium, tantalum, and tungsten having a melting point of 1000 ° C. or more). Alloy of the material,
And alloys whose materials have a solid-liquid interface temperature of 860 ° C or higher) and alloys containing low-melting metals other than aluminum, such as tin, zinc, magnesium, indium, and antimony, as main components. The base material is an alloy (especially 100
Zirconium, yttrium, vanadium, molybdenum, silicon, nickel, titanium,
Alloys of materials containing at least one metal such as chromium, niobium, cerium, hafnium, tantalum, tungsten, iron, cobalt, neodymium, palladium, etc., and the solid-liquid interface temperature of the alloy composition as the main component An alloy of a material whose temperature is 200 ° C. or higher from the melting point of a certain low melting point metal can be melted.

【0024】[0024]

【発明の実施の形態】図1はこの発明の実施形態の主要
部の構成図を示し、図2は図1の表面にコーティングし
たセグメントの概観図を、図3は図1の側面にコーティ
ングしたセグメントの概観図を、図4は図1の出湯栓に
コーティングした図を示す。この図1〜図3において、
従来例と同一の符号を付けた部分はおおよそ同一の機能
を有するのでその説明は省略する.この図1〜図3にお
いて、水冷銅るつぼ1の内面とスリット7の隙間及びる
つぼ流出口6にセットされた出楊栓5の全体においてセ
ラミックス例えはジルコニアを溶射した保護被膜8がコ
ーティングされている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a structural view of a main part of an embodiment of the present invention, FIG. 2 is a schematic view of a segment coated on the surface of FIG. 1, and FIG. FIG. 4 shows a schematic view of the segments, and FIG. In FIGS. 1 to 3,
The parts denoted by the same reference numerals as those in the conventional example have approximately the same functions, and therefore description thereof will be omitted. In FIGS. 1 to 3, a protective coating 8 sprayed with ceramics, such as zirconia, is coated on the inner surface of the water-cooled copper crucible 1, the gap between the slit 7, and the entire spout 5 set at the crucible outlet 6. .

【0025】上記のジルコニア溶射は銅製のるつぼ、ま
たは出湯栓5の被溶射面をサンドブラスト等で処埋して
細かい凹凸を付けて溶射材料の銅への食い込みを良くし
てからジルコニア溶射材と馴染みが良いニッケル・クロ
ム合金を溶射しアンダーコーティングした後,ジルコニ
アを仕上溶射している。なお,ジルコニアに代えてアル
ミナ,イットリア,マグネシア,カルシア等のセラミッ
クを用いても良い。
In the above zirconia spraying, the surface to be sprayed of the copper crucible or the tap 5 is buried with sand blast or the like to give fine irregularities to improve the penetration of the sprayed material into the copper, and then become familiar with the zirconia sprayed material. After spraying a good nickel-chromium alloy and undercoating, zirconia is finish-sprayed. Instead of zirconia, ceramics such as alumina, yttria, magnesia, and calcia may be used.

【0026】この水冷銅るつぼ1のなかに金属を投入し
て、高周波電源3から誘導コイル2に高周波電流を通電
すると、高周波電流により発生した磁束は水冷銅るつぼ
のセグメント1aに渦電流を誘起するとともに、セング
メント1a間の隙間を通して侵入して、るつぼの中に投
入した金属にも渦電流を誘起して、該金属を浮揚させて
溶解して溶湯4にする。溶解された溶湯4は流出口6か
ら、出湯栓6を抜いて下方に出湯して鋳型等に鋳込まれ
る。
When a metal is put into the water-cooled copper crucible 1 and a high-frequency current is supplied from the high-frequency power supply 3 to the induction coil 2, the magnetic flux generated by the high-frequency current induces an eddy current in the segment 1a of the water-cooled copper crucible. At the same time, the metal enters the gap between the segments 1a, induces an eddy current in the metal charged in the crucible, and floats and melts the metal to form the molten metal 4. The molten metal 4 is removed from the outlet 6 by tapping the tap 6 and poured downward to be cast into a mold or the like.

【0027】[0027]

【発明の効果】この発明によれば,浮揚溶解装置におい
てアルミニウムや他の低融点合金を主成分とする材料の
溶製に際し、1000℃以上の融点をもつ組成元素が含
まれている合金もしくは,所望の合金組成の固相−液相
境界面温度が主成分であるアルミニウム等の低融点金属
の融点から200℃以上となる材料を溶製化する場合の
いずれか片方、もしくは両方を満足する条件において,
主成分金属のスーパーヒートから200℃以上で保持さ
れた溶湯中のアルミニウムや他の低融点金属が水冷銅る
つぼと反応せず,るつぼからの汚染の無い高純度溶解を
維持して溶製することや、高純度材の鋳造品や高純度材
製品を製造することに効果がある。
According to the present invention, when a material containing aluminum or another low melting point alloy as a main component is produced in a levitation melting apparatus, an alloy containing a composition element having a melting point of 1000 ° C. or more, or Conditions for satisfying one or both of the cases in which a solid phase-liquid phase interface temperature of a desired alloy composition is melted to a temperature of 200 ° C. or more from the melting point of a low melting point metal such as aluminum as a main component. At
Aluminum and other low-melting metals in the molten metal maintained at 200 ° C or higher from the superheat of the main component metal do not react with the water-cooled copper crucible, and maintain high purity melting without contamination from the crucible. Also, it is effective in manufacturing a high-purity material casting or a high-purity material product.

【0028】また,水冷銅るつぼの溶損が無いため,る
つぼが繰り返し使用可能であることや、溶損が進行した
場合に発生する水蒸気爆発に至る危険を避けられる効果
がある。
Further, since there is no erosion of the water-cooled copper crucible, there is an effect that the crucible can be used repeatedly and a danger of a steam explosion generated when the erosion progresses can be avoided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態の主要部分の構成図FIG. 1 is a configuration diagram of a main part of an embodiment of the present invention.

【図2】図1の表面にコーティングしたセグメントの概
観図
FIG. 2 is a schematic view of a segment coated on the surface of FIG. 1;

【図3】図1の側面にコーティングしたセグメントの概
観図
FIG. 3 is a schematic view of a segment coated on the side surface of FIG. 1;

【図4】図1の出湯栓にコーティングした図FIG. 4 is a view of the tap of FIG. 1 coated on the tap;

【図5】Al−Tiの合金状態図FIG. 5 is an alloy phase diagram of Al—Ti.

【図6】Al−Cuの合金状態図FIG. 6 is an alloy phase diagram of Al—Cu.

【図7】従来例の構成図FIG. 7 is a configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 水冷銅るつぼ 1a セグメント 8 保護被膜8 Reference Signs List 1 water-cooled copper crucible 1a segment 8 protective coating 8

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】水冷銅るつぼの外周側に配置した誘導コイ
ルを高周波電源を用いて励磁し,水冷銅るつぼ内に投入
した金属材料を電磁反発力で浮揚させ誘導加熱により溶
解する浮揚溶解装置において,水冷銅るつぼの少なくと
も底面から最大湯高に対向する高さ以上の高さまでの内
側表面に絶縁物をコーティングすることを特徴とする浮
揚溶解用の水冷銅るつぼ
An induction coil disposed on the outer periphery of a water-cooled copper crucible is excited by using a high-frequency power source, and a metal material charged in the water-cooled copper crucible is levitated by electromagnetic repulsion and melted by induction heating. A water-cooled copper crucible for levitation and melting, characterized in that an insulating material is coated on an inner surface of the water-cooled copper crucible from at least the bottom surface to a height not less than the maximum hot water height.
【請求項2】水冷銅るつぼの外周側に配置した誘導コイ
ルを高周波電源を用いて励磁し,水冷銅るつぼ内に投入
した金属材料を電磁反発力で浮揚させ誘導加熱により溶
解する浮揚溶解装置において,セグメントを横並びに並
べて構成する水冷銅るつぼのセグメントとセグメントの
間、もしくは胴部に縦長のスリットを掘削して形成する
水冷銅るつぼのスリットの隙間に絶縁物をコーティング
することを特徴とする浮揚溶解用の水冷銅るつぼ。
2. A flotation melting apparatus in which an induction coil arranged on the outer peripheral side of a water-cooled copper crucible is excited by using a high-frequency power source, and a metal material put in the water-cooled copper crucible is levitated by electromagnetic repulsion and melted by induction heating. Flotation characterized by coating an insulator between the segments of a water-cooled copper crucible comprising side-by-side arranged segments or between the segments or a slit of a water-cooled copper crucible formed by excavating a vertically long slit in a body. Water-cooled copper crucible for melting.
【請求項3】請求項1または請求項2に記載の浮揚溶解
用の水冷銅るつぼにおいて、水冷銅るつぼの底穴に挿入
する栓の少なくとも上面を含む部分に絶縁物をコーティ
ングすることを特徴とする浮揚溶解用の水冷銅るつぼ。
3. A water-cooled copper crucible for levitation and melting according to claim 1, wherein a portion including at least an upper surface of a plug inserted into a bottom hole of the water-cooled copper crucible is coated with an insulator. Water-cooled copper crucible for flotation melting.
【請求項4】請求項1ないし請求項3のいずれかに記載
の浮揚溶解用の水冷銅るつぼを用いて,アルミニウムを
主成分(50at.%以上)とした合金系材料を母原料
とする合金、もしくは既に合金化された再溶解材から合
金を溶製化することを特徴とする浮揚溶解用の水冷銅る
つぼ。
4. An alloy using a water-cooled copper crucible for levitation and melting according to any one of claims 1 to 3 and comprising an alloy material containing aluminum as a main component (50 at.% Or more) as a base material. Or a water-cooled copper crucible for levitation melting, wherein an alloy is melted from a remelted material that has already been alloyed.
【請求項5】請求項1ないし請求項3のいずれかに記載
の浮揚溶解用の水冷銅るつぼを用いて,請求項4に記載
のアルミニウムを主成分(50at.%以上)とした合
金系材料を母原料の中、もしくは既に台金化された再溶
解材の中に1000℃以上の融点を持つジルコニウム,
イットリウム,バナジウム,モリブデン,シリコン,ニ
ッケル,チタン,クロム,ニオブ,セリウム,ハフニウ
ム,タンタル,タングステン、鉄、コバルト、ネオジウ
ム、パラジウム等の金属を少なくとも1つ以上を含んで
いる材料を合金溶製化することを特徴とする浮揚溶解用
の水冷銅るつぼ。
5. An alloy material containing aluminum as a main component (50 at.% Or more) according to claim 4, using the water-cooled copper crucible for levitation and melting according to any one of claims 1 to 3. Zirconium having a melting point of 1000 ° C. or more in the base material or in the remelted material already metallized,
Alloy melting a material containing at least one metal such as yttrium, vanadium, molybdenum, silicon, nickel, titanium, chromium, niobium, cerium, hafnium, tantalum, tungsten, iron, cobalt, neodymium, palladium, etc. A water-cooled copper crucible for levitation melting.
【請求項6】請求項1ないし請求項3のいずれかに記載
の浮揚溶解用の水冷銅るつぼを用いて,請求項4に記載
のアルミニウムを主成分(50at.%以上)とした合
金系材料を母原料の合金組成、もしくは既に合金化され
た再溶解材の合金組成の固相―液相境界面温度が860
℃以上である材料を合金溶製化することを特徴とする浮
揚溶解用の水冷銅用るつぼ。
6. An alloy material containing aluminum as a main component (50 at.% Or more) according to claim 4, using the water-cooled copper crucible for levitation and melting according to any one of claims 1 to 3. The solid-liquid interface temperature of the alloy composition of the base material or the alloy composition of the remelted material already alloyed is 860.
A water-cooled copper crucible for levitation melting, characterized by alloying a material having a temperature of at least ℃.
【請求項7】請求項1ないし請求項3のいずれかに記載
の浮揚溶解用の水冷銅るつぼを用いて,アルミニウム以
外の錫,亜鉛,マグネシウム,インジウム,アンチモン
等の低融点金属を主成分低融点金属とした合金系材料を
母原料、もしくは既に合金化された再溶解材から合金溶
製化することを特徴とする浮揚溶解用の水冷銅るつぼ。
7. A water-cooled copper crucible for levitation and melting according to claim 1, wherein a low melting point metal other than aluminum, such as tin, zinc, magnesium, indium and antimony, is used as a main component. A water-cooled copper crucible for levitation melting, wherein an alloy-based material having a melting point metal is alloyed from a base material or an already alloyed remelted material.
【請求項8】請求項1ないし請求項3のいずれかに記載
の浮揚溶解用の水冷銅るつぼを用いて,請求項7に記載
の低融点金属を主成分(50at.%以上)とした台金
系材料を母原料もしくは既に合金化された再溶解材中に
1000℃以上の融点を持つジルコニウム,イットリウ
ム,バナジウム,モリブデン,シリコン,ニッケル,チ
タン,クロム,ニオブ,セリウム,ハフニウム,タンタ
ル,タングステン、鉄、コバルト、ネオジウム、パラジ
ウム等の金属を少なくとも1つ以上含んでいる材料を合
金溶製化することを特徴とする浮揚溶解用の水冷銅るつ
ぼ。
8. A base comprising the low melting point metal according to claim 7 as a main component (50 at.% Or more) using the water-cooled copper crucible for levitation and melting according to any one of claims 1 to 3. Zirconium, yttrium, vanadium, molybdenum, silicon, nickel, titanium, chromium, niobium, cerium, hafnium, tantalum, tungsten having a melting point of 1000 ° C. or higher in a gold-based material as a base material or a re-melted material that has already been alloyed. A water-cooled copper crucible for levitation melting, characterized by alloying a material containing at least one metal such as iron, cobalt, neodymium, and palladium.
【請求項9】請求項1ないし請求項3のいずれかに記載
の浮揚溶解用の水冷銅るつぼを用いて,請求項7に記載
の低融点金属を土成分(50at.%以上)とした合金
系材料を母原料の合金組成、もしくは既に合金化された
再溶解材の合金組成の固相―液相境界面温度が主成分で
ある低融点金属の融点から200℃以上である材料を合
金溶製化することを特徴とする浮揚溶解用の水冷銅るつ
ぼ。
9. An alloy comprising the low melting point metal according to claim 7 as an earth component (50 at.% Or more) using the water-cooled copper crucible for levitation and melting according to any one of claims 1 to 3. A material whose base material has a solid-liquid interface temperature of 200 ° C or more from the melting point of the low-melting-point metal whose main component is the alloy composition of the base material or the alloy composition of the remelted material that has already been alloyed. A water-cooled copper crucible for flotation melting characterized by being manufactured.
JP2000313604A 2000-10-13 2000-10-13 Water-cooled copper crucible for levitational melting Pending JP2002122386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000313604A JP2002122386A (en) 2000-10-13 2000-10-13 Water-cooled copper crucible for levitational melting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000313604A JP2002122386A (en) 2000-10-13 2000-10-13 Water-cooled copper crucible for levitational melting

Publications (1)

Publication Number Publication Date
JP2002122386A true JP2002122386A (en) 2002-04-26

Family

ID=18792997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000313604A Pending JP2002122386A (en) 2000-10-13 2000-10-13 Water-cooled copper crucible for levitational melting

Country Status (1)

Country Link
JP (1) JP2002122386A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277169A (en) * 2001-03-22 2002-09-25 Shinko Electric Co Ltd Induction heating melting furnace
JP2002286375A (en) * 2001-03-28 2002-10-03 Shinko Electric Co Ltd Induction heating melting furnace
JP2005140491A (en) * 2003-04-16 2005-06-02 Daido Steel Co Ltd Melting/tapping device for metal
JP2007085645A (en) * 2005-09-22 2007-04-05 Tanaka Kikinzoku Kogyo Kk Floating melting casting method, and water-cooled crucible used in casting method
WO2007063748A1 (en) * 2005-11-30 2007-06-07 Kabushiki Kaisha Kobe Seiko Sho INDUCTION MELTING APPARATUS EMPLOYING HALIDE TYPE CRUCIBLE, PROCESS FOR PRODUCING THE CRUCIBLE, METHOD OF INDUCTION MELTING, AND PROCESS FOR PRODUCING INGOT OF ULTRAHIGH-PURITY Fe-, Ni-, OR Co-BASED ALLOY MATERIAL
JP2009097734A (en) * 2007-10-12 2009-05-07 Fuji Denki Thermosystems Kk Induction heating device
KR101371161B1 (en) 2013-03-18 2014-03-25 한국생산기술연구원 Titanium scrap and titanium sponge refining equipment and process using calcium gas
CN105222586A (en) * 2015-10-21 2016-01-06 上海大学 A kind of annular water jacketed copper crucible
JP2016505480A (en) * 2012-11-19 2016-02-25 韓国水力原子力株式会社Koreahydro & Nuclear Power Co., Ltd. Glass melting furnace bottom metal sector and glass melting furnace
CN107677126A (en) * 2017-10-31 2018-02-09 百色学院 A kind of electromagnetic suspension water jacketed copper crucible
CN108183632A (en) * 2017-11-29 2018-06-19 西北工业大学 A kind of method that form to electromagnetic suspension liquid metal is regulated and controled
CN115369272A (en) * 2022-07-23 2022-11-22 陕西斯瑞新材料股份有限公司 Preparation method of suspension smelting high-melting-point Cr2Nb intermetallic compound

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277169A (en) * 2001-03-22 2002-09-25 Shinko Electric Co Ltd Induction heating melting furnace
JP2002286375A (en) * 2001-03-28 2002-10-03 Shinko Electric Co Ltd Induction heating melting furnace
JP4655301B2 (en) * 2003-04-16 2011-03-23 大同特殊鋼株式会社 Metal melting and tapping equipment
JP2005140491A (en) * 2003-04-16 2005-06-02 Daido Steel Co Ltd Melting/tapping device for metal
JP2007085645A (en) * 2005-09-22 2007-04-05 Tanaka Kikinzoku Kogyo Kk Floating melting casting method, and water-cooled crucible used in casting method
WO2007063748A1 (en) * 2005-11-30 2007-06-07 Kabushiki Kaisha Kobe Seiko Sho INDUCTION MELTING APPARATUS EMPLOYING HALIDE TYPE CRUCIBLE, PROCESS FOR PRODUCING THE CRUCIBLE, METHOD OF INDUCTION MELTING, AND PROCESS FOR PRODUCING INGOT OF ULTRAHIGH-PURITY Fe-, Ni-, OR Co-BASED ALLOY MATERIAL
US7967057B2 (en) 2005-11-30 2011-06-28 Kobe Steel, Ltd. Induction melting apparatus employing halide type crucible, process for producing the crucible, method of induction melting, and process for producing ingot of ultrahigh-purity Fe-, Ni-, or Co-based alloy material
JP2009097734A (en) * 2007-10-12 2009-05-07 Fuji Denki Thermosystems Kk Induction heating device
JP2016505480A (en) * 2012-11-19 2016-02-25 韓国水力原子力株式会社Koreahydro & Nuclear Power Co., Ltd. Glass melting furnace bottom metal sector and glass melting furnace
KR101371161B1 (en) 2013-03-18 2014-03-25 한국생산기술연구원 Titanium scrap and titanium sponge refining equipment and process using calcium gas
CN105222586A (en) * 2015-10-21 2016-01-06 上海大学 A kind of annular water jacketed copper crucible
CN107677126A (en) * 2017-10-31 2018-02-09 百色学院 A kind of electromagnetic suspension water jacketed copper crucible
CN107677126B (en) * 2017-10-31 2023-09-19 百色学院 Electromagnetic suspension water-cooled copper crucible
CN108183632A (en) * 2017-11-29 2018-06-19 西北工业大学 A kind of method that form to electromagnetic suspension liquid metal is regulated and controled
CN115369272A (en) * 2022-07-23 2022-11-22 陕西斯瑞新材料股份有限公司 Preparation method of suspension smelting high-melting-point Cr2Nb intermetallic compound

Similar Documents

Publication Publication Date Title
US20110094705A1 (en) Methods for centrifugally casting highly reactive titanium metals
US20090133850A1 (en) Systems for centrifugally casting highly reactive titanium metals
US6144690A (en) Melting method using cold crucible induction melting apparatus
JP2002122386A (en) Water-cooled copper crucible for levitational melting
CN101829770A (en) System for centrifugally casting high-activity titanium
JPH0755348A (en) Device to dissolve solid covering made of electrically conductive material
JPH06200334A (en) Device for producing high-purity metal and alloy
JPH077707B2 (en) Metal contamination prevention method
US4612649A (en) Process for refining metal
JP4496791B2 (en) Electromagnetic hot water nozzle and metal melting / hot water device using the same
JP2006153362A (en) Metal melting and tapping device, and its casting device
JP4379917B2 (en) Metal melting and tapping equipment
JP2949222B1 (en) Refining method of molten metal
JP4655301B2 (en) Metal melting and tapping equipment
JP2001041661A (en) Cold crucible induction melting device
JP3087277B2 (en) Cold wall crucible melting device and melting method
JP2008180471A (en) Tapping electromagnetic nozzle device for cold crucible melting furnace and tapping method
JP2000274951A (en) Cold crucible induction melting system and tapping method
JPH0531571A (en) Method and apparatus for manufacturing casting
Fautrelle et al. Magnetohydrodynamics applied to materials processing
JP4366705B2 (en) Ingot manufacturing method and apparatus
JP2000088467A (en) Floating melting apparatus
JPH10332890A (en) Device for batch dissolution and lumping and method for dissolution and lumping
JP2000268948A (en) Tapping method of cold crucible inductive melting device
KR101532827B1 (en) Electromagnetic stirring melting centrifugal atomization device