JP4505624B2 - Non-contact filtering method and apparatus using ultrasonic waves - Google Patents

Non-contact filtering method and apparatus using ultrasonic waves Download PDF

Info

Publication number
JP4505624B2
JP4505624B2 JP2002182052A JP2002182052A JP4505624B2 JP 4505624 B2 JP4505624 B2 JP 4505624B2 JP 2002182052 A JP2002182052 A JP 2002182052A JP 2002182052 A JP2002182052 A JP 2002182052A JP 4505624 B2 JP4505624 B2 JP 4505624B2
Authority
JP
Japan
Prior art keywords
ultrasonic
frequency
reflector
transducer
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002182052A
Other languages
Japanese (ja)
Other versions
JP2004024959A (en
Inventor
晃透 小塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002182052A priority Critical patent/JP4505624B2/en
Publication of JP2004024959A publication Critical patent/JP2004024959A/en
Application granted granted Critical
Publication of JP4505624B2 publication Critical patent/JP4505624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流路中を流れる液体媒質中における微小物体の軌跡を制御し、流路中の任意の部位を通過させることにより微小物体を連続的に濃縮することを可能とする、超音波を用いた非接触フィルタリング方法及びその装置に関するものである。
【0002】
【従来の技術】
従来より、工場排水、家庭排水等では、固形分が多く含まれている。これは、環境を汚染する原因物質となるものであり、可能な限り取り除かなければならない。しかし、この固形分は、大きな固まりであれば、網状のフィルタを用いて容易に濾過できるが、微小な微粒子の場合は、これを濾過し、液体媒質のみを排出することは困難である。もちろん、細かい網目のフィルタを用いてより細かい微小物体を除去することも可能であるが、目詰まりなどの問題があり、メンテナンスが大変である。また、フィルタにより除去できる大きさには限界がある。
【0003】
また、上記排水に薬剤等を投入して固形分を凝集・凝固させ、除去することも行われているが、更に新たな薬剤を排水と共に放出することになり、環境への影響を考えると好ましくない。また、有害な化学物質等を含む排水の放出は禁じられており、工場では浄化槽を設置して、微生物等を用いて分解し、無害化して排出している。しかし、その際に有用な微生物も排出されている。
【0004】
網状フィルタや薬剤等による従来のフィルタリングに対して、超音波を用いるものは、音波を伝搬する媒質中であれば使用でき、対象とする物体は音響的に媒質と異なる音響インピーダンスを持ち、音波を反射又は吸収するものであれば音響放射圧による力が作用する。力の作用範囲は、定在波音場を形成することにより、半波長のオーダの微小間隔で力を作用させることが可能である。また、超音波の発生装置の人体に対する安全性に関しては、液体媒質と人体の間に空気層が存在すれば超音波は遮断されるため、超音波の漏洩に関して配慮することは容易である。
【0005】
定在波音場中で波長に比べて十分に小さな物体(以下、微小物体と表記する)が、音圧の腹から節に向かう力を受けることは古くから知られている。音圧の節と腹は音波の伝搬方向に4分の1波長間隔で交互に存在するため、音の伝搬方向に関して微小物体が捕捉される力学的な安定点は非常に小さな領域に限られる。また、音の伝搬方向の鉛直面に関しては、振動子面積相当の比較的広い領域に力の作用範囲は分布し、微小物体は媒質の流れる方向に自由に移動することが可能である。
【0006】
更に詳しく説明すると、図1に示すように、水中において、超音波振動子と反射板を平行に設置し、電圧を印加することにより、超音波振動子と反射板との間に定在波音場が生成される。この生成される定在波音場は振動子と反射板に囲まれた微小領域に限られ、定在波音場中では、図2(a)に示すように、4分の1波長間隔で音圧の腹と節が交互に存在し、音場中を浮遊する微小物体は、音圧の腹から節に向かう力を受け、半波長間隔に存在する音圧の節に捕捉される。定在波音場は、振動子と反射板を平行に設置することで容易に生成できる。
【0007】
微小物体を非接触で操作する技術が、例えば、マイクロマシンやバイオテクノロジー等の分野で求められている。非接触で力を作用させるには、静電力やレーザ光の放射圧を用いた研究が数多く行われているが、超音波の音響放圧を用いることも可能である。微小領域では、微細な埃などによる汚染を避けるため、液体中であれば密閉された容器中で行う必要がある。超音波は伝搬する媒質があれば離れたところから力を作用させることができるため、密閉された容器中に外部から超音波を照射して非接触で力を作用させることができると考えられる。
【0008】
本発明者は、これまで、水中を浮遊する個々の粒子を操作することを目的として、超音波の音響放射圧を用いた非接触3次元マイクロマニピュレーションの実現に取り組んできたが、セラミックスの原料微粉体の精製等にも、クリーンな非接触マイクロマニピュレーション技術が求められている。その場合はパイプライン中を多量に流れる粒子群を、連続して操作することが必要である。本発明者は、流体中を流れる微粒子の濃縮及びフィルタリングを目的として、複数の電極を持つ矩形振動子を試作し、電極間に加える電圧の位相を変化させることで、粒子の流れる方向を制御することを試みたが、移動速度が音場の移動に追随しない等の問題があった。これは、平面波による定波音場において、音波の伝搬方向に対して、垂直な方向に作用する力が弱いためと考えられる。強力な力を作用させるには、音波の伝搬方向において、音圧の腹から節に向かって作用する力を利用すべきである。
【0009】
【発明が解決しようとする課題】
本発明者は、凹面型振動子を用いてその焦点位置に反射板を設置して生じる定在波音場中で、周波数を変化することにより音圧の節に捕捉した個々の微小物体を、音軸上で一次元的に移動させる方法を研究する中で、周波数を連続的に変化させることにより、音波の伝搬方向への粒子の移動を行い、粒子の流れる方向を制御することを試みた結果、流体中を媒質と共に流れる粒子の操作に発展させることに成功し、本発明を完成させるに至った。
すなわち、本発明が解決しようとする課題は、音圧の節に捕捉され、層状に整列した微小物体を一次元的に移動操作を行いこれらを濃縮するための非接触フィルタリング方法及び装置を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)超音波を用いた非接触フィルタリング方法であって、1)液体媒質で満たされている流路中に、該流路に沿って超音波振動子と反射板を所定の間隔を保って平行に設置し、超音波振動子を所定の電気信号で駆動して該振動子で超音波を放射し、放射される超音波が反射板で反射して振動子と反射板との間に共鳴を考慮せずに定在波の音場を生成し、流路中に生成される定在波音場の音圧の節もしくは音圧の腹に液体媒質中に分散する微小物体を捕捉し、2)上記超音波振動子に加える電気信号を変化させることにより振動子から放射される音波の波長を制御し、上記超音波振動子に加える超音波の周波数を初期値から連続的に増加又は減少させ、その後に、瞬時に初期値に戻す操作を繰り返し行うことにより反射板又は振動子側の所定の位置に集めて連続して捕捉した微小物体の軌跡を変化させて層状に整列させた微小物体の移動操作を行い、3)移動させた上記媒質中の微小物体を濃縮液として取り出すこと、を特徴とする超音波非接触フィルタリング方法。
(2)上記超音波振動子を細長い長方形とすることを特徴とする、前記(1)に記載の超音波非接触フィルタリング方法。
(3)共鳴を考慮せずに定在波を生成し、周波数変化を可能とすることを特徴とする、前記(2)に記載の超音波非接触フィルタリング方法。
(4)連続して捕捉物体の軌跡を変化させ、流路中を通過させることにより液体媒質中に分散する微小物体を濃縮する、前記(1)に記載の超音波非接触フィルタリング方法。
前記(1)に記載の方法に使用する装置であって、液体媒質の流路の壁面に所定の間隔を保って平行に配置された超音波振動子と反射板、上記超音波振動子に所定の電気信号を供給する手段、超音波の周波数を連続的に制御する手段、上記媒質中の微小物体を濃縮液として取り出す手段、を構成要素として含み、振動子へ供給する電気信号の周波数を連続的に増加又は減少させ、その後に、瞬時に初期値に戻す操作を繰り返し行うことにより、超音波の音場を電気的に制御し、音圧の節の位置を制御することで反射板又は振動子側に集めて連続的に捕捉して所定の位置に移動させた上記媒質中の微小物体を濃縮液として取り出すようにしたことを特徴とする超音波非接触フィルタリング装置。
【0011】
【発明の実施の形態】
次に、本発明について更に詳細に説明する。
本発明による非接触フィルタリング方法は、微小物体が分散して流れる液体媒質中に流路に沿って超音波振動子と反射板を所定の距離を保って平行に配置し、超音波振動子を所定の電気信号で駆動し、放射される超音波を反射板で反射させることにより、生成される定在波音場中で、上記媒質中の微小物体を、上記音場中の音圧の節に捕捉し、一次元的に移動操作を行いこれらを濃縮することを特徴とする。
【0012】
また、本発明による非接触フィルタリング装置は、微小物体が分散する液体媒質の流路の壁面に所定の間隔を保って、配置された超音波振動子と反射板、上記複数の振動子へ電気信号を供給する手段、超音波の周波数を連続的に制御する手段、及び所定の位置に移動させた上記媒質中の微小物体を濃縮液として取り出す手段、とから成り、放射される超音波を用いて生成される定在波音場中の音圧の節に上記媒質中の微小物体を捕捉し、濃縮するようにしたことを特徴とする。
【0013】
以下、本発明を図面を用いて説明する。
図3は、本発明による超音波を用いた非接触フィルタリング方法の原理及び基本装置を示す説明図である。多数の微小物体が分散、浮遊する液体媒質が上から下に流れる流路中の壁面に、超音波振動子と反射板を所定の間隔を保って平行に配置する。上記超音波振動子に所定の電気信号を供給すると、振動子は超音波を放射し、反射板との間に定在波の音場が形成される。超音波振動子としては、平板矩形超音波振動子が用いる。
【0014】
本発明では、後記する実施例に示したように、ファンクションジェネレータにより周波数約2.0MHzの正弦波交流を生成し、パワーアンプで増幅の上、超音波振動子へ供給し、形成した定在波音場中に平均径16μmのアルミナ粒子の懸濁液をピペットを用いて上方から注入したところ、音圧の節の層に沿ってアルミナ粒子が流れ落ちる様子が確認された。なお、音圧の節は振動子と反射板の間に半波長の間隔で生成される。
【0015】
水中での音速を1500m/sとすると、2.0MHzの場合の半波長は0.375mmであるので、この層の間隔は半波長に相当し、音圧の節に捕捉されて流れ落ちているといえる。音圧の節の各層の下方に粒子の取り出し口を用意しておけば、高密度の粒子懸濁液を採取することが可能となる。しかし、各層毎に取り出し口を用意するのは大変である。ところで、振動子へ供給する電気信号の周波数を変化させることにより、超音波の音場を電気的に制御し、音圧の節の位置を制御することができる。周波数を変化させると波長が変わり、音圧の節の間隔も変わるために捕捉した粒子を動かすことができる。
【0016】
そこで、後記する実施例に示したように、次に、超音波の周波数を1.9MHzから2.1MHzまで連続して変化させ、その後、瞬時に初期値である1.9MHzに戻すことを繰り返し行い、音場を生成した。図5はこの音場中にアルミナ粒子を左上から投入した際の、粒子の挙動を撮影した写真である。左上から右下に流れている様子が確認される。粒子は比重が4であるので、何も力が作用しない状況では、自重で真下に沈降する。しかし、超音波による定在波が存在するため音圧の節に捕捉され、層状に凝集する。そして、更に、周波数が変化することにより、音圧の節の間隔が変化し、中心部の音圧の節が左から右へと移動し、捕捉された粒子も沈降しながら右へと移動する。
【0017】
周波数変化時の計算による音圧の節の移動を図6に示す。1.9MHzに比べ、2.1MHzでは波長が短いために音圧の節が3個多い。そして、1.9MHzから2.1MHz間で連続的に周波数を変化させた後、2.1MHzから瞬時に1.9MHzに戻す操作を1回行うことで、音圧の節は3個分反射板の方へ移動する。この操作を高速で繰り返し行うことで、すべての粒子を反射板近傍に集めることができ、反射板近傍に取り出し口を設けておけば、高濃度の懸濁液を採取することが可能である。すなわち、懸濁液の濃縮が実現できる。なお、周波数を逆に2.1MHzから1.9MHzに連続して減少させ、瞬時に2.1MHzに戻す操作を行うと、これまで示したことと逆に振動子側へ粒子を集めることができる。
【0018】
本発明において、上記微小物体は、定在波音波中で波長に比べて十分に小さな物体であれば、物体の種類に限定されることなく適用可能である。また、本発明において、超音波振動子及び反射板の種類、形態及び設置方法、振動子の電気信号を供給する手段、超音波の周波数を連続的に制御する手段、及び上記媒質中の微小物体を濃縮液として取り出す手段は、特に限定されるものではなく、それらの具体的構成は、それらの使用目的に応じて適宜設計することができる。また、上記方法における諸条件についても、特に制限されるものではなく、それらの使用目的に応じて任意に変更することができる。
【0019】
【実施例】
次に、実施例に基づいて本発明を具体的に説明するが、本発明は以下の実施例によって何ら限定されるものではない。
実施例1
本実施例では、微粒子の懸濁液を音場中に投入し、超音波の音響放射圧を用いて粒子を濃縮することを試みた。流路に沿った長い距離中に均一な音場を生成するために、長方形の振動子を用いた。そして、超音波を放射し、反射板との間に定在波を生成し、周波数を変化させることにより、捕捉した粒子を音軸上で移動させ、音場を通過する粒子を片側に引き寄せることを試みた。
【0020】
(1)装置及び操作方法
振動子はセラミックス製で、40×22mmの矩形、共振周波数2.0MHz、裏面電極40×6mmである。また、媒質の水と接する表面電極は一部を裏面に折り返して、裏面から両電極のリード線を引き出した。なお、裏面電極の絶縁と振動子の固定のために、アクリル製の枠に振動子をシリコンゴムで固定した。ファンクションジェネレータ(NF回路設計ブロック製、1946、以下FGと略す)で発生した約2MHzの正弦波信号をアンプ(ENI製、325LA)で増幅し、振動子に印加する。水を満たしたガラス水槽中で振動子をガラスの壁面(厚さ3mm)と10mmの間隔で平行に固定し、壁面との間に定在波音場を生成する。そして、上方からアルミナ粒子(平均径16μm、比重4)を懸濁液として投入し、自重で下方に流れ落ちる際の挙動をCCDカメラで撮影し、観察した。なお、奥行き方向にも粒子が分布するため、照明として約5mm幅のシート状のスリット光を用いて、振動子の裏面電極を塗布した部分の鉛直面のみを観察するようにした。また、粒子の挙動を観察するために、CCDカメラのシャッターは1/1000sとした。
【0021】
(2)フィルタリング方法及び結果
振動子に電圧を印加して音場を生成し、上方からアルミナ粒子を投入すると、層状に流れ落ちる様子が観察された。図4は、周波数2.0MHz時の粒子の挙動を撮影した写真である。音波の半波長(0.375mm)相当の、等間隔の層状になって流れ落ちる様子が、確認される。アルミナ粒子の比重は約4であるため、大きな粒子は投入直後に沈降するが、小さい粒子はしばらく水中を浮遊し、やがて沈んでいく。その小さい粒子が音圧の節に捕捉されていると考えられる。理想的な平面波による定在波であれば、均一な音場が生成され、重力の方向には力が生じない。しかし、本実施例では有限寸法の平板音源による定在波であるために、音圧の節の層内に不均一が生じ、このように重力の方向にも力が作用し、粒子が捕捉されたと考えられる。なお、振動子と反射板との距離が10mmであり、近距離音場中で定在波が生成されていると考えられる。
【0022】
次に、流れる粒子を制御するために、FGをスイープモードで制御して音源に加える周波数を変化させることを試みた。振動子は共振周波数で駆動することが望ましいので、共振周波数付近で1割程度の変化をさせることとし、1.9〜2.1MHzの間で変化させた。また、直線的に周波数を連続して変化させた後、初期の周波数に戻し、再度連続して変化させた。こうすることで、一部不連続となるが、連続して周波数を同一方向に変化させ続けることが可能となる。粒子移動の模式図を図7に示す。周波数をf=fmin →fmin +Δf→fmax に連続して変化させることで、音圧の節の間隔が徐々に狭くなり、同時に捕捉されている粒子も(a)→(b)→(c)と移動する。そして、f=fmax となった後、瞬時にf=fmin に戻すと、音圧の節に捕捉されていた粒子は(c)→(d)のように最寄りの音圧の節に移動することになる。同一周波数である(a)と(d)を比較すると明らかなように、この一連の操作で粒子は右の音圧の節に移動していることが分かる。
【0023】
本実施例で行った周波数変化のタイミングは、周波数fを1.9MHzから2.1MHzまで直線的に増加させた後、瞬時に1.9MHzに戻す操作を50ms間隔で繰り返し行った。図5は実験結果の一例を示す写真である。左上のピペットから懸濁液は投入されている。粒子は自重で下方に流れ落ちるのと同時に左から右に移動している様子が分かる。また、この時の周波数は1.9〜2.1MHzの内の幾つであるのかは不明であるが、半波長間隔相当の等間隔の縞状となっているため、音圧の節に捕捉されていることが確認される。最終的には、右端の2〜3本の音圧の節の層に粒子が集まることが実験で確認された。また、逆に周波数を2.1→1.9MHzへと減少させた結果、波長が短くなることにより、右から左に移動している様子が確認された。すなわち、周波数を増加させることで粒子を右に寄せること、及び周波数を減少させることで粒子を左に寄せることができ、懸濁液の濃縮が可能となった。
【0024】
なお、周波数を連続して高速に変化させることは、FGのスイープモードを用いて実現した。これはデジタル回路で構成されるFGであるので、厳密には周波数は200μs毎に段階的に変化している。すなわち、今回50msの間に周波数を1.9→2.1MHzに変化させたので、周波数は200μs毎に0.0008MHzずつ変化している。
【0025】
上記方法において、振動子印加電圧は、約10〜50Vppとした。これは、FGの出力は一定であるが、負荷の変動により変化するためである。振動子と反射板の間隔は、振動子から反射板までの全体を観察し、かつ音圧の節の間隔などを詳細に観察できるように、10mmのデータを用いたが、上記10mmに限らず、20mm、30mmの場合も、同じような結果になった。周波数を変化する時間は、上記では0.05sについて示したが、0.1s、0.2s、0.5s、1.0sの場合についも実験を行ったところ、時間が長くなれば、移動速度が遅くなり、粒子の流れの軌跡は、縦に立った流れになった(図8)。
【0026】
【発明の効果】
以上説明したように、本発明は、超音波を用いた非接触フィルタリング方法及び装置に係るものであり、本発明によれば、1)液体媒質中で微小物体を非接触で捕捉し、音圧の節に沿って流れることを可能とする、2)音圧の節は、周波数を変化させることで移動し、微小物体を流路中の端を通過させることが可能である、3)超音波の周波数を連続的に変化させた後、瞬時に初期値に戻す操作を繰り返し行うことにより微小物体を濃縮することが可能となる、という格別の効果が奏される。
【図面の簡単な説明】
【図1】振動子と反射板を平行に配置した場合の音圧の節の分布の説明図である。
【図2】周波数変化時の音圧の節に捕捉された粒子の移動を示す説明図である。
【図3】フィルタリング装置の一例の説明図である。
【図4】音圧の節の層に捕捉され、層状になって流れ落ちるアルミナ粒子を示す。
【図5】周波数変化により右に移動するアルミナ粒子を示す。
【図6】周波数変化時の音圧の節の移動を示す。
【図7】周波数変化による粒子移動の説明図である。
【図8】周波数速度を変えた場合の粒子の流れの軌跡を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention controls the trajectory of a minute object in a liquid medium flowing in a flow path, and allows ultrasonic waves to be condensed continuously by passing an arbitrary part in the flow path. The present invention relates to a non-contact filtering method and an apparatus thereof.
[0002]
[Prior art]
Conventionally, factory wastewater, household wastewater, and the like contain a large amount of solids. This is a causative agent that pollutes the environment and should be removed as much as possible. However, if the solid content is large, it can be easily filtered using a net-like filter. However, in the case of fine particles, it is difficult to filter this and discharge only the liquid medium. Of course, it is possible to remove finer fine objects using a fine mesh filter, but there are problems such as clogging, and maintenance is difficult. Further, there is a limit to the size that can be removed by the filter.
[0003]
In addition, chemicals and the like are added to the waste water to agglomerate and coagulate the solid content, but a new chemical is released together with the waste water, which is preferable in view of the environmental impact. Absent. In addition, the discharge of wastewater containing harmful chemical substances is prohibited. In the factory, septic tanks are installed, decomposed using microorganisms, etc., detoxified and discharged. However, useful microorganisms are also discharged at that time.
[0004]
In contrast to conventional filtering using a mesh filter or chemicals, those using ultrasonic waves can be used in a medium that propagates sound waves, and the target object has an acoustic impedance that is acoustically different from that of the medium. If it reflects or absorbs, the force by acoustic radiation pressure acts. As for the action range of the force, it is possible to apply the force at a minute interval on the order of half wavelength by forming a standing wave sound field. In addition, regarding the safety of the ultrasonic generator for the human body, since an ultrasonic wave is blocked if an air layer exists between the liquid medium and the human body, it is easy to consider the leakage of the ultrasonic wave.
[0005]
It has long been known that an object that is sufficiently small compared to the wavelength in a standing wave sound field (hereinafter referred to as a micro object) receives a force from the antinode of sound pressure toward a node. Since the nodes and antinodes of the sound pressure are alternately present in the sound wave propagation direction at quarter-wave intervals, the mechanical stable point at which the minute object is captured in the sound propagation direction is limited to a very small region. In addition, with respect to the vertical plane in the sound propagation direction, the force application range is distributed over a relatively wide area corresponding to the transducer area, and the minute object can freely move in the direction in which the medium flows.
[0006]
More specifically, as shown in FIG. 1, a standing wave sound field is placed between the ultrasonic transducer and the reflecting plate by placing the ultrasonic transducer and the reflecting plate in parallel and applying a voltage in water. Is generated. The generated standing wave sound field is limited to a minute region surrounded by the vibrator and the reflector, and in the standing wave sound field, as shown in FIG. A minute object floating alternately in the sound field receives a force from the sound pressure antinode to the node, and is captured by the sound pressure nodes existing at half-wavelength intervals. The standing wave sound field can be easily generated by installing the vibrator and the reflector in parallel.
[0007]
Techniques for manipulating minute objects in a non-contact manner are required in the fields of micromachines and biotechnology, for example. To exert a force in a non-contact, but studies using radiation pressure of electrostatic and laser light is performed a number, it is also possible to use an acoustic release morphism pressure of the ultrasonic waves. In a minute region, in order to avoid contamination with fine dust or the like, it is necessary to carry out in a sealed container if it is in a liquid. Since ultrasonic waves can exert a force from a distance if there is a propagating medium, it is considered that a force can be applied in a non-contact manner by irradiating an ultrasonic wave from the outside into a sealed container.
[0008]
The present inventor has so far worked on the realization of non-contact three-dimensional micromanipulation using ultrasonic acoustic radiation pressure for the purpose of manipulating individual particles floating in water. Clean non-contact micromanipulation technology is also required for body purification. In that case, it is necessary to continuously operate a group of particles flowing in a large amount in the pipeline. The present inventor made a prototype of a rectangular vibrator having a plurality of electrodes for the purpose of concentrating and filtering fine particles flowing in a fluid, and controlling the direction of flow of particles by changing the phase of a voltage applied between the electrodes. However, there was a problem that the moving speed did not follow the movement of the sound field. This is because, in the standing wave field by a plane wave, with respect to the propagation direction of the waves, the force acting in a direction perpendicular is considered weak. In order to apply a powerful force, the force acting from the antinode of the sound pressure toward the node should be used in the propagation direction of the sound wave.
[0009]
[Problems to be solved by the invention]
The inventor of the present invention uses a concave-type vibrator to place a reflector at the focal position of a standing wave sound field, and changes individual frequencies to capture the minute objects captured in the sound pressure node by changing the frequency. Results of an attempt to control the flow direction of particles by moving the particles in the direction of sound wave propagation by continuously changing the frequency while studying the method of moving in one dimension on the axis The present invention has been completed by successfully developing the manipulation of particles flowing in the fluid together with the medium.
That is, the problem to be solved by the present invention is to provide a non-contact filtering method and apparatus for performing a one-dimensional movement operation and concentrating minute objects captured in a node of sound pressure and arranged in layers. There is.
[0010]
[Means for Solving the Problems]
The present invention for solving the above-described problems comprises the following technical means.
(1) A non-contact filtering method using ultrasonic waves. 1) In a flow path filled with a liquid medium, a predetermined interval is maintained between the ultrasonic transducer and the reflector along the flow path. Installed in parallel, drives the ultrasonic transducer with a predetermined electrical signal, radiates the ultrasonic wave with the transducer, the reflected ultrasonic wave is reflected by the reflector and resonates between the transducer and the reflector The sound field of the standing wave is generated without taking into consideration the above, and the minute object dispersed in the liquid medium is captured at the node of the sound pressure of the standing wave field generated in the flow path or the antinode of the sound pressure, and 2 ) The wavelength of the sound wave emitted from the vibrator is controlled by changing the electrical signal applied to the ultrasonic vibrator, and the frequency of the ultrasonic wave applied to the ultrasonic vibrator is continuously increased or decreased from the initial value. , then, a predetermined reflector or transducer side by repeating the operation of returning to the initial value instantaneously Performs moving operation of attracting the position to change the trajectory of the minute object, captured in succession small objects aligned in layers, 3), characterized in that, taken out as a concentrate of micro-material in the medium is moved An ultrasonic non-contact filtering method.
(2) The ultrasonic non-contact filtering method according to (1), wherein the ultrasonic transducer is an elongated rectangle.
(3) The ultrasonic non-contact filtering method according to (2), wherein a standing wave is generated without considering resonance and frequency change is possible.
(4) The ultrasonic non-contact filtering method according to (1), wherein the micro object dispersed in the liquid medium is concentrated by continuously changing the trajectory of the captured object and passing through the flow path.
( 5 ) An apparatus used in the method according to (1), wherein an ultrasonic transducer and a reflector arranged in parallel with a predetermined distance on the wall surface of the flow path of the liquid medium, the ultrasonic vibration means for supplying a predetermined electric signal to the child, means for continuously controlling the frequency of the ultrasonic wave, saw including a micro-material in the above SL medium means for taking as a concentrate, as components, electrical supplies to the transducer By continuously increasing or decreasing the signal frequency and then repeatedly returning to the initial value instantaneously, the ultrasonic sound field is electrically controlled and the position of the node of the sound pressure is controlled. An ultrasonic non-contact filtering device characterized in that the minute objects in the medium collected on the reflecting plate or vibrator side, continuously captured and moved to a predetermined position are taken out as a concentrated liquid .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail.
In the non-contact filtering method according to the present invention, an ultrasonic transducer and a reflector are arranged in parallel at a predetermined distance along a flow path in a liquid medium in which minute objects are dispersed and flowing, and the ultrasonic transducer is arranged in a predetermined manner. The small object in the medium is captured in the sound pressure node in the sound field in the generated standing wave sound field by driving with the electrical signal of Then, it is characterized in that these are concentrated by performing a moving operation in one dimension.
[0012]
Further, the non-contact filtering device according to the present invention provides an electrical signal to the ultrasonic transducer and the reflector, and the plurality of transducers arranged at predetermined intervals on the wall surface of the flow path of the liquid medium in which the minute object is dispersed. Means for continuously controlling the frequency of the ultrasonic wave, and means for taking out a minute object in the medium moved to a predetermined position as a concentrated liquid, using the emitted ultrasonic wave It is characterized in that a minute object in the medium is captured and concentrated in a node of sound pressure in the generated standing wave sound field.
[0013]
Hereinafter, the present invention will be described with reference to the drawings.
FIG. 3 is an explanatory diagram showing the principle and basic device of a non-contact filtering method using ultrasonic waves according to the present invention. An ultrasonic transducer and a reflecting plate are arranged in parallel at predetermined intervals on a wall surface in a flow path in which a large number of minute objects are dispersed and a floating liquid medium flows from top to bottom. When a predetermined electric signal is supplied to the ultrasonic vibrator, the vibrator emits ultrasonic waves, and a standing wave sound field is formed between the reflector and the reflector. A flat rectangular ultrasonic transducer is used as the ultrasonic transducer.
[0014]
In the present invention, as shown in the embodiments described later, a sine wave alternating current having a frequency of about 2.0 MHz is generated by a function generator, amplified by a power amplifier, supplied to an ultrasonic transducer, and formed standing wave sound. When a suspension of alumina particles having an average diameter of 16 μm was injected into the field from above using a pipette, it was confirmed that the alumina particles flowed down along the sound pressure node layer. Note that the nodes of sound pressure are generated at intervals of a half wavelength between the vibrator and the reflector.
[0015]
When the sound speed in water is 1500 m / s, the half wavelength in the case of 2.0 MHz is 0.375 mm. Therefore, the interval between the layers corresponds to the half wavelength, and it is trapped by the sound pressure node and flows down. I can say that. If a particle outlet is prepared under each layer of the sound pressure node, a high-density particle suspension can be collected. However, it is difficult to prepare an outlet for each layer. By the way, by changing the frequency of the electric signal supplied to the vibrator, the ultrasonic sound field can be electrically controlled and the position of the node of the sound pressure can be controlled. When the frequency is changed, the wavelength changes, and the interval between the nodes of the sound pressure changes, so that the captured particles can be moved.
[0016]
Therefore, as shown in the examples described later, next, the frequency of the ultrasonic wave is continuously changed from 1.9 MHz to 2.1 MHz, and thereafter, it is instantaneously returned to the initial value of 1.9 MHz. And produced a sound field. FIG. 5 is a photograph of the behavior of particles when alumina particles are introduced into the sound field from the upper left. It is confirmed that it flows from the upper left to the lower right. Since the particles have a specific gravity of 4, the particles settle down under their own weight in a situation where no force acts. However, since there is a standing wave due to ultrasonic waves, it is trapped in the node of sound pressure and aggregates in layers. Further, as the frequency changes, the interval between the nodes of the sound pressure changes, the node of the sound pressure in the center moves from left to right, and the captured particles also move to the right while sinking. .
[0017]
FIG. 6 shows the movement of the sound pressure node by calculation when the frequency changes. Compared to 1.9 MHz, there are three nodes of sound pressure because the wavelength is shorter at 2.1 MHz. Then, after changing the frequency continuously between 1.9 MHz and 2.1 MHz, the operation of returning from 2.1 MHz to 1.9 MHz instantaneously is performed once, so that three sound pressure nodes are reflected on the reflector. Move towards By repeating this operation at a high speed, all particles can be collected in the vicinity of the reflector, and if a take-out port is provided in the vicinity of the reflector, a high-concentration suspension can be collected. That is, concentration of the suspension can be realized. Conversely, if the frequency is continuously decreased from 2.1 MHz to 1.9 MHz and the operation is instantaneously returned to 2.1 MHz, particles can be collected on the vibrator side contrary to what has been shown so far. .
[0018]
In the present invention, the minute object is applicable to any kind of object as long as it is a sufficiently small object compared to the wavelength in standing wave sound waves. In the present invention, the type, form and installation method of the ultrasonic transducer and reflector, the means for supplying the electrical signal of the transducer, the means for continuously controlling the frequency of the ultrasonic wave, and the minute object in the medium The means for taking out the concentrate as a concentrated solution is not particularly limited, and the specific configuration thereof can be appropriately designed according to the purpose of use. Further, the various conditions in the above method are not particularly limited, and can be arbitrarily changed according to the purpose of use.
[0019]
【Example】
EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.
Example 1
In this example, a suspension of fine particles was put into a sound field, and an attempt was made to concentrate the particles using the acoustic radiation pressure of ultrasonic waves. A rectangular transducer was used to generate a uniform sound field over a long distance along the channel. Then, by emitting ultrasonic waves, generating a standing wave between the reflector and changing the frequency, the captured particles are moved on the sound axis, and the particles passing through the sound field are attracted to one side. Tried.
[0020]
(1) Apparatus and method of operation The vibrator is made of ceramics and has a 40 × 22 mm rectangle, a resonance frequency of 2.0 MHz, and a back electrode of 40 × 6 mm. In addition, a part of the front surface electrode in contact with the medium water was folded back and the lead wires of both electrodes were drawn from the back surface. In order to insulate the back electrode and fix the vibrator, the vibrator was fixed to an acrylic frame with silicon rubber. A sine wave signal of about 2 MHz generated by a function generator (NF circuit design block, 1946, hereinafter abbreviated as FG) is amplified by an amplifier (ENI, 325LA) and applied to the vibrator. A vibrator is fixed in parallel to the glass wall surface (thickness 3 mm) at a distance of 10 mm in a glass water tank filled with water, and a standing wave sound field is generated between the wall surface. Then, alumina particles (average diameter 16 μm, specific gravity 4) were introduced as suspension from above, and the behavior when flowing down under its own weight was photographed with a CCD camera and observed. Since particles are distributed also in the depth direction, only a vertical surface of the portion where the back electrode of the vibrator is applied is observed using a sheet-like slit light having a width of about 5 mm as illumination. In order to observe the behavior of particles, the shutter of the CCD camera was set to 1/1000 s.
[0021]
(2) Filtering method and result When a sound field was generated by applying a voltage to the vibrator and alumina particles were introduced from above, it was observed that the particles flowed down in layers. FIG. 4 is a photograph of the behavior of particles at a frequency of 2.0 MHz. It is confirmed that the sound waves fall down in a layered manner at equal intervals corresponding to the half wavelength (0.375 mm) of the sound wave. Since the specific gravity of the alumina particles is about 4, large particles settle immediately after charging, but small particles float in water for a while and then sink. The small particles are thought to be trapped in the sound pressure node. If the standing wave is an ideal plane wave, a uniform sound field is generated and no force is generated in the direction of gravity. However, in this embodiment, since it is a standing wave by a flat sound source with a finite size, non-uniformity occurs in the layer of the sound pressure node, and thus force acts also in the direction of gravity and particles are trapped. It is thought. Note that the distance between the vibrator and the reflecting plate is 10 mm, and it is considered that a standing wave is generated in the near field.
[0022]
Next, in order to control the flowing particles, an attempt was made to change the frequency applied to the sound source by controlling the FG in the sweep mode. Since it is desirable to drive the vibrator at the resonance frequency, the vibration is changed by about 10% near the resonance frequency, and is changed between 1.9 and 2.1 MHz. Moreover, after continuously changing the frequency linearly, the frequency was returned to the initial frequency and continuously changed again. By doing so, it becomes possible to continue changing the frequency continuously in the same direction, although it becomes partially discontinuous. A schematic diagram of particle movement is shown in FIG. By continuously changing the frequency from f = f min → f min + Δf → f max , the interval between the nodes of the sound pressure is gradually narrowed, and particles captured at the same time are also (a) → (b) → ( c) and move. Then, when f = f max is reached, when f = f min is instantaneously returned, the particles trapped in the sound pressure node move to the nearest sound pressure node as shown in (c) → (d). Will do. As is clear from comparison between (a) and (d) having the same frequency, it can be seen that the particles have moved to the right sound pressure node in this series of operations.
[0023]
Regarding the timing of the frequency change performed in this example, the operation of linearly increasing the frequency f from 1.9 MHz to 2.1 MHz and then instantaneously returning it to 1.9 MHz was repeated at 50 ms intervals. FIG. 5 is a photograph showing an example of the experimental results. Suspension is introduced from the upper left pipette. It can be seen that the particles are moving from left to right at the same time as they flow down under their own weight. Also, it is unclear how many frequencies in this range are from 1.9 to 2.1 MHz, but they are trapped in the sound pressure section because they are striped at equal intervals corresponding to half-wavelength intervals. It is confirmed that Eventually, it was confirmed by experiments that particles gathered in a layer of two or three sound pressure nodes at the right end. On the other hand, as a result of reducing the frequency from 2.1 to 1.9 MHz, it was confirmed that the wavelength was shortened, and the movement from the right to the left was confirmed. That is, the particles can be moved to the right by increasing the frequency, and the particles can be moved to the left by decreasing the frequency, and the suspension can be concentrated.
[0024]
In addition, changing the frequency continuously at high speed was realized using the sweep mode of FG. Since this is an FG composed of a digital circuit, strictly speaking, the frequency changes stepwise every 200 μs. That is, since the frequency is changed from 1.9 to 2.1 MHz during this 50 ms, the frequency changes by 0.0008 MHz every 200 μs.
[0025]
In the above method, the vibrator applied voltage was about 10 to 50 Vpp. This is because the output of the FG is constant, but changes due to load fluctuations. The distance between the vibrator and the reflector is 10 mm so that the entire distance from the vibrator to the reflector can be observed and the distance between the nodes of the sound pressure can be observed in detail, but is not limited to 10 mm. , 20 mm, and 30 mm, similar results were obtained. Although the time for changing the frequency is shown for 0.05 s in the above, the experiment was conducted for 0.1 s, 0.2 s, 0.5 s, and 1.0 s. The particle flow trajectory became a vertical flow (Fig. 8).
[0026]
【The invention's effect】
As described above, the present invention relates to a non-contact filtering method and apparatus using ultrasonic waves. According to the present invention, 1) a micro object is captured in a liquid medium in a non-contact manner, and a sound pressure is obtained. 2) The sound pressure node can be moved by changing the frequency, and the minute object can pass through the end in the flow path. After the frequency is continuously changed, the minute object can be concentrated by repeatedly performing the operation of instantaneously returning the initial value to the initial value.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of the distribution of sound pressure nodes when a vibrator and a reflector are arranged in parallel.
FIG. 2 is an explanatory diagram showing the movement of particles captured in a node of sound pressure when the frequency changes.
FIG. 3 is an explanatory diagram of an example of a filtering device.
FIG. 4 shows alumina particles trapped in a sound pressure node layer and flowing down in layers.
FIG. 5 shows alumina particles that move to the right with frequency changes.
FIG. 6 shows the movement of a node of sound pressure when the frequency changes.
FIG. 7 is an explanatory diagram of particle movement due to frequency change.
FIG. 8 shows a particle flow trajectory when the frequency velocity is changed.

Claims (5)

超音波を用いた非接触フィルタリング方法であって、(1)液体媒質で満たされている流路中に、該流路に沿って超音波振動子と反射板を所定の間隔を保って平行に設置し、超音波振動子を所定の電気信号で駆動して該振動子で超音波を放射し、放射される超音波が反射板で反射して振動子と反射板との間に共鳴を考慮せずに定在波の音場を生成し、流路中に生成される定在波音場の音圧の節もしくは音圧の腹に液体媒質中に分散する微小物体を捕捉し、(2)上記超音波振動子に加える電気信号を変化させることにより振動子から放射される音波の波長を制御し、上記超音波振動子に加える超音波の周波数を初期値から連続的に増加又は減少させ、その後に、瞬時に初期値に戻す操作を繰り返し行うことにより反射板又は振動子側の所定の位置に集めて連続して捕捉した微小物体の軌跡を変化させて層状に整列させた微小物体の移動操作を行い、(3)移動させた上記媒質中の微小物体を濃縮液として取り出すこと、を特徴とする超音波非接触フィルタリング方法。A non-contact filtering method using ultrasonic waves, wherein (1) in a flow path filled with a liquid medium, an ultrasonic transducer and a reflector are parallel to each other along the flow path at a predetermined interval. Installed, drives the ultrasonic transducer with a predetermined electrical signal, radiates ultrasonic waves with the transducer, the reflected ultrasonic waves are reflected by the reflector, and resonance is considered between the transducer and the reflector Without generating a standing wave sound field, and capturing a minute object dispersed in the liquid medium at the node of the sound pressure of the standing wave sound field generated in the flow path or the antinode of the sound pressure, (2) By controlling the wavelength of the sound wave emitted from the vibrator by changing the electrical signal applied to the ultrasonic vibrator , the frequency of the ultrasonic wave applied to the ultrasonic vibrator is continuously increased or decreased from the initial value , then, instantaneously predetermined reflector or transducer side by repeating the operation of returning to the initial value By changing the trajectory of the minute object, captured successively collected on location performs moving operation of the micro-objects aligned in layers, and to retrieve the minute object in the medium is moved (3) as a concentrate An ultrasonic non-contact filtering method. 上記超音波振動子を細長い長方形とすることを特徴とする、請求項1に記載の超音波非接触フィルタリング方法。  2. The ultrasonic non-contact filtering method according to claim 1, wherein the ultrasonic transducer is an elongated rectangle. 共鳴を考慮せずに定在波を生成し、周波数変化を可能とすることを特徴とする、請求項2に記載の超音波非接触フィルタリング方法。  The ultrasonic non-contact filtering method according to claim 2, wherein a standing wave is generated without considering resonance and frequency change is possible. 連続して捕捉物体の軌跡を変化させ、流路中を通過させることにより液体媒質中に分散する微小物体を濃縮する、請求項1に記載の超音波非接触フィルタリング方法。  The ultrasonic non-contact filtering method according to claim 1, wherein the micro object dispersed in the liquid medium is concentrated by continuously changing the trajectory of the captured object and passing through the flow path. 請求項1に記載の方法に使用する装置であって、液体媒質の流路の壁面に所定の間隔を保って平行に配置された超音波振動子と反射板、上記超音波振動子に所定の電気信号を供給する手段、超音波の周波数を連続的に制御する手段、上記媒質中の微小物体を濃縮液として取り出す手段、を構成要素として含み、振動子へ供給する電気信号の周波数を連続的に増加又は減少させ、その後に、瞬時に初期値に戻す操作を繰り返し行うことにより、超音波の音場を電気的に制御し、音圧の節の位置を制御することで反射板又は振動子側に集めて連続的に捕捉して所定の位置に移動させた上記媒質中の微小物体を濃縮液として取り出すようにしたことを特徴とする超音波非接触フィルタリング装置。 An apparatus for use in the method according to claim 1, wherein an ultrasonic transducer and a reflector arranged in parallel with a predetermined interval on a wall surface of the flow path of the liquid medium, It means for supplying an electrical signal, means for continuously controlling the frequency of the ultrasonic wave, means for extracting the minute object in the above SL medium as concentrates, see containing as components, the frequency of the electrical signal supplied to the transducer By continuously increasing or decreasing, and then repeatedly performing the operation of instantaneously returning to the initial value, the ultrasonic sound field is electrically controlled, and the position of the sound pressure node is controlled by controlling the position of the reflector or An ultrasonic non-contact filtering apparatus characterized in that a minute object in the medium collected on the vibrator side, continuously captured and moved to a predetermined position is taken out as a concentrated liquid .
JP2002182052A 2002-06-21 2002-06-21 Non-contact filtering method and apparatus using ultrasonic waves Expired - Lifetime JP4505624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002182052A JP4505624B2 (en) 2002-06-21 2002-06-21 Non-contact filtering method and apparatus using ultrasonic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002182052A JP4505624B2 (en) 2002-06-21 2002-06-21 Non-contact filtering method and apparatus using ultrasonic waves

Publications (2)

Publication Number Publication Date
JP2004024959A JP2004024959A (en) 2004-01-29
JP4505624B2 true JP4505624B2 (en) 2010-07-21

Family

ID=31178717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002182052A Expired - Lifetime JP4505624B2 (en) 2002-06-21 2002-06-21 Non-contact filtering method and apparatus using ultrasonic waves

Country Status (1)

Country Link
JP (1) JP4505624B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0221391D0 (en) * 2002-09-16 2002-10-23 Secr Defence Apparatus for directing particles in a fluid
JP4770251B2 (en) 2005-04-25 2011-09-14 パナソニック株式会社 Component separation device and component separation method using the same
EP2556030A2 (en) * 2010-04-09 2013-02-13 Stichting Wetsus Centre of Excellence for Sustainable Water Technology Purification device and method for purifying a fluid
NL2004530C2 (en) * 2010-04-09 2011-10-11 Stichting Wetsus Ct Excellence Sustainable Water Technology Purification device and method for purifying a fluid.
WO2012017976A1 (en) * 2010-08-02 2012-02-09 Murata Mitsuo Apparatus for continuously separating foreign substance from solution
FR2979256B1 (en) * 2011-08-30 2014-09-26 Centre Nat Rech Scient DEVICE FOR HANDLING OBJECTS BY ACOUSTIC FORCE FIELDS
NL1039053C2 (en) * 2011-09-19 2013-03-21 Stichting Wetsus Ct Excellence Sustainable Water Technology Device and method for a bioreactor, catalysis reactor or crystallizer without internals.
JP2014079748A (en) * 2012-09-26 2014-05-08 Hitachi Ltd Suspension treating apparatus using ultrasonic wave
US9604860B2 (en) 2013-08-22 2017-03-28 Hitachi, Ltd. Suspension processing device
JP6184433B2 (en) * 2015-03-16 2017-08-23 株式会社 サン・テクトロ Prepreg manufacturing equipment
CA2983184A1 (en) * 2015-05-27 2016-12-01 Commonwealth Scientific And Industrial Research Organisation Separation of metal-organic frameworks
EP3341102A1 (en) * 2015-08-28 2018-07-04 Flodesign Sonics Inc. Large scale acoustic separation device
JP6554045B2 (en) * 2016-02-25 2019-07-31 東芝メモリ株式会社 Dust collector and substrate processing system
JP6454818B2 (en) * 2016-06-14 2019-01-16 株式会社日立製作所 Turbid liquid feed separation apparatus, system, and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07501969A (en) * 1990-03-14 1995-03-02 マイクロバイオロジカル・リサーチ・オーソリティー Particle manipulation in ultrasonic fields
JP2700058B2 (en) * 1996-01-23 1998-01-19 工業技術院長 Non-contact micromanipulation method using ultrasonic waves
JP2913031B1 (en) * 1998-03-13 1999-06-28 工業技術院長 Non-contact micromanipulation method and apparatus using two sound sources
JPH11197491A (en) * 1998-01-13 1999-07-27 Hitachi Ltd Method and device for treating fine particle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07501969A (en) * 1990-03-14 1995-03-02 マイクロバイオロジカル・リサーチ・オーソリティー Particle manipulation in ultrasonic fields
JP2700058B2 (en) * 1996-01-23 1998-01-19 工業技術院長 Non-contact micromanipulation method using ultrasonic waves
JPH11197491A (en) * 1998-01-13 1999-07-27 Hitachi Ltd Method and device for treating fine particle
JP2913031B1 (en) * 1998-03-13 1999-06-28 工業技術院長 Non-contact micromanipulation method and apparatus using two sound sources
JPH11262880A (en) * 1998-03-13 1999-09-28 Agency Of Ind Science & Technol Non-contact micromanipulation method and device using two sound sources

Also Published As

Publication number Publication date
JP2004024959A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP4505624B2 (en) Non-contact filtering method and apparatus using ultrasonic waves
US10724029B2 (en) Acoustophoretic separation technology using multi-dimensional standing waves
US9686096B2 (en) Acoustic manipulation of particles in standing wave fields
JP4695144B2 (en) Method and device for separating particles
CN107349687B (en) Acoustophoresis multi-component separation technology platform
KR101442486B1 (en) Apparatus and method for separating impurities from fluid using ultrasound
RU2708048C2 (en) Method for acoustic manipulation of particles in standing wave fields
US9718708B2 (en) Acoustophoretic enhanced system for use in tanks
CN112044720B (en) Non-planar and asymmetric piezoelectric crystals and reflectors
KR102487073B1 (en) Acoustophoretic device with uniform fluid flow
Glynne-Jones et al. Array-controlled ultrasonic manipulation of particles in planar acoustic resonator
US10040011B2 (en) Acoustophoretic multi-component separation technology platform
EP3747523A1 (en) Acoustophoretic separation technology using multi-dimensional standing waves
KR20170063882A (en) Acoustophoretic clarification of particle-laden non-flowing fluids
JP2017515669A (en) Acoustophoretic device with piezoelectric element transducer array
JP2007229557A (en) Continuous separation method and device of floating fine particle
JP6064640B2 (en) Solid-liquid separation method and apparatus
CN108136283B (en) Large-scale acoustic separation device
KR101126149B1 (en) Method and apparatus for the separation of microparticles in fluid by ultrasonic wave
JP2022528345A (en) Devices and methods for separating, filtering, and / or concentrating microparticles and / or nanoparticles.
US20230036073A1 (en) Enhanced acoustic particle processing with seeding particles
Simon et al. Reconfigurable particle separation by dynamic acoustic fields in microfluidic devices
JP2720152B2 (en) Particle handling device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070815

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4505624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term