JPH11197491A - Method and device for treating fine particle - Google Patents

Method and device for treating fine particle

Info

Publication number
JPH11197491A
JPH11197491A JP449198A JP449198A JPH11197491A JP H11197491 A JPH11197491 A JP H11197491A JP 449198 A JP449198 A JP 449198A JP 449198 A JP449198 A JP 449198A JP H11197491 A JPH11197491 A JP H11197491A
Authority
JP
Japan
Prior art keywords
ultrasonic
fluid
fine particles
frequency
sources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP449198A
Other languages
Japanese (ja)
Inventor
Kenji Yasuda
賢二 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP449198A priority Critical patent/JPH11197491A/en
Publication of JPH11197491A publication Critical patent/JPH11197491A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating fine particles in which sample fine particles contained in sample fluid are continuously concentrated while controlling cavitation and to provide a device in which this technique is used. SOLUTION: A sample solution is introduced from a pipe 21 introducing sample fluid containing a fine particle component to a vessel 31. When ultrasonic wave with very slightly different frequency is irradiated respectively from ultrasonic sound sources 11 and 12 controlled by an ultrasonic wave generation control part 13, a node or an antinode of standing wave in the vessel moves in the direction of the ultrasonic sound source 12. Fine particles dispersed in the sample fluid are concentrated in the vicinity of the ultrasonic sound source 12. Two suction pipes 22 and 23 of the sample solution are fitted to the vicinities of the ultrasonic sound sources 11 and 12 in the downstream parts of the flow of sample fluid. Thereby, both the sample flow free from the fine particle component and the sample flow containing the fine particle component are taken out of the respective suction pipes 22 and 23. Accordingly, fine particles contained in fluid are concentrated and separated uncontactedly and continuously.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微粒子処理方法お
よび微粒子処理装置に関し、特に超音波を用いて溶液中
の試料微粒子を濃縮するのに適した微粒子処理方法およ
び微粒子処理装置に関する。
The present invention relates to a particle processing method and a particle processing apparatus, and more particularly to a particle processing method and a particle processing apparatus suitable for concentrating sample particles in a solution using ultrasonic waves.

【0002】[0002]

【従来の技術】超音波を照射して流体中の微粒子を非接
触に捕獲できることは19世紀より知られていた。超音
波の輻射圧を微粒子に作用させたとき、微粒子が受ける
輻射圧については例えば、ジョンル・ブが、ジャーナル・
オブ・アクースティカル・ソサエティー・オブ・アメリカ
第89巻(1991年)2140頁から2143頁(J.
Wu,J. Acoust. Soc. Am. 89 (1991) pp.2140-2143)
に、集束超音波の集束点に直径270μmのポリスチレ
ン球を捕獲することに成功したことを報告している。ま
た、この超音波の輻射圧によって微粒子が捕獲される原
理に関しては、吉岡らがアコースティカ 第5巻(19
55年)167頁から178頁(K. Yosiokaand Y. Kaw
asima, Acustica 5 (1955) pp.167-178)に、定在波、
進行波中で微粒子が受ける超音波輻射圧の完全流体中で
の大きさを計算しており、定在波中に浮遊する微粒子が
受ける超音波輻射圧は、前記微粒子の体積、定在波を形
成する超音波の振動数に比例して大きくなることが示さ
れている。また、発明者らが特開平5―296310号
公報にも報告しているように、流体を流した管中に超音
波を導入して連続的に微粒子をある範囲に集束させる手
法、あるいは、集束させた微粒子を回収する方法も発明
されており、さらに、発明者らによって特開平6−24
1977号公報に報告されているように超音波の輻射圧
と静電場などの他の外力とを組み合わせることで粒径の
異なる微粒子や材質の異なる微粒子を分画回収する微粒
子分画装置も発明されている。
2. Description of the Related Art It has been known since the 19th century that particles in a fluid can be captured without contact by irradiating ultrasonic waves. When the radiation pressure of the ultrasonic wave is applied to the fine particles, the radiation pressure received by the fine particles is described, for example, by Jonle B.
Of Acoustic Society of America
89 (1991), pp. 2140-2143 (J.
Wu, J. Acoust. Soc. Am. 89 (1991) pp.2140-2143)
Report that a 270 μm diameter polystyrene sphere was successfully captured at the focal point of focused ultrasound. Regarding the principle of capturing fine particles by the radiation pressure of ultrasonic waves, Yoshioka et al.
(55) pp. 167-178 (K. Yosiokaand Y. Kaw)
asima, Acustica 5 (1955) pp.167-178), standing waves,
The magnitude of the ultrasonic radiation pressure received by the fine particles in the traveling wave is calculated in perfect fluid, and the ultrasonic radiation pressure received by the fine particles floating in the standing wave is the volume of the fine particles, the standing wave It is shown that it increases in proportion to the frequency of the ultrasonic wave to be formed. Also, as reported by the inventors in Japanese Patent Application Laid-Open No. 5-296310, a method of introducing ultrasonic waves into a tube through which a fluid is flown to continuously focus fine particles in a certain range, or A method of recovering the fine particles that have been made has also been invented.
As reported in Japanese Patent No. 1977, there has also been invented a fine particle fractionating apparatus for fractionating and collecting fine particles having different particle diameters and fine particles of different materials by combining the radiation pressure of ultrasonic waves and other external force such as an electrostatic field. ing.

【0003】定在波において、使用する超音波の周波数
を徐々に変化させると、それに応じて定在波の節の位置
が変化し、それに応じて微粒子が移動することは古くか
ら知られており、実際に超音波の微粒子が分散した流体
中に導入する超音波の周波数を上下に掃引することによ
って定在波の節に捕獲された微粒子を移動、濃縮させる
手段に関してもトーマス・トルトらがジャーナル・オブ・
アクースティカル・ソサエティー・オブ・アメリカ 第9
1巻(1992年)3152頁から3156頁(T. L.
Tolt, J. Acoust. Soc. Am. 91 (1992) pp.3152-3156)
で報告している。さらに、エヴァルト・ヴェネスらも、
流路中に配置した超音波照射源から照射する超音波の周
波数を上昇させることで微粒子を濃縮する手段に関する
特許を米国特許第5、225、089号(Benes et a
l., US Pat. No. 5,225,089, Dateof Patent Jul. 6, 1
993)に報告している。
It has long been known that, when the frequency of the ultrasonic wave used in the standing wave is gradually changed, the position of the node of the standing wave changes accordingly, and the fine particles move accordingly. Thomas Torto et al. Also published a journal on means for moving and concentrating fine particles trapped in nodes of standing waves by sweeping up and down the frequency of ultrasonic waves actually introduced into a fluid in which ultrasonic particles are dispersed. ·of·
Acoustic Society of America 9
1 (1992) 3152-3156 (TL
Tolt, J. Acoust. Soc. Am. 91 (1992) pp.3152-3156)
In the report. In addition, Ewald Venes and others
No. 5,225,089 (Benes et a) issued a patent relating to a means for concentrating fine particles by increasing the frequency of ultrasonic waves emitted from an ultrasonic irradiation source disposed in a flow path.
l., US Pat.No. 5,225,089, Dateof Patent Jul. 6, 1
993).

【0004】さらに、定在波を発生させるために照射す
る対向した一対の超音波の位相を制御することで、定在
波の節の位置を制御することが可能であることも古くか
ら知られており、実際にこの技術を応用して、定在波の
節の位置の移動に対して微粒子がどの程度追従するか観
測することで、微粒子の物理特性を測定する手段に関し
ても、コーネリアス・シュラムが米国特許第4、74
3、361号(C. J. Schram, US Pat. No. 4,743,361,
Date of Patent May 10,1988)に報告している。ま
た、微妙に異なる周波数の超音波を対向して照射したと
き、発生する定在波の節の位置が、その微少な周波数の
違いによって進行することも古くより知られている。
It has long been known that the position of a node of a standing wave can be controlled by controlling the phase of a pair of ultrasonic waves radiated to generate a standing wave. In addition, Cornelius Schramme also measures how to measure the physical properties of fine particles by actually applying this technology and observing how much the fine particles follow the movement of the position of the node of the standing wave. US Patent No. 4,74
No. 3,361 (CJ Schram, US Pat. No. 4,743,361,
Date of Patent May 10, 1988). It has long been known that when ultrasonic waves having slightly different frequencies are radiated opposite to each other, the position of a node of a generated standing wave advances due to the minute frequency difference.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術は、濃縮
させたい試料微粒子を含む溶液中に超音波を導入し、溶
液中に発生した定在波の節あるいは腹に微粒子を濃縮す
る技術であり、溶液中の微粒子は溶液中に形成された定
在波の隣り合った節と節、あるいは腹と腹の間に濃縮さ
れ、この幅は、超音波の波長λの半分、すなわちλ/2
に等しい。従って、限られた容積を持つ容器中では、容
器の幅がλ/2に一致するとき、容器中には、1つの節
あるいは腹が形成され、容器中の微粒子はすべてこの節
あるいは腹に濃縮されるため、濃縮効率は最大となる。
しかし、この場合、微粒子は一つの節を中心に一定の分
布幅を持ち、完全な分離は難しいし、また、流路の幅が
広くなると、それに応じて使用する超音波の周波数を低
くする必要がある。しかし、超音波輻射圧の強度は使用
する超音波周波数に対して線形の関係があるため、使用
する超音波の周波数が低くなると、超音波輻射圧の強度
は弱くなってしまう。また、試料に損傷を与えるキャビ
テーションの発生も、周波数が低くなるにつれて促進さ
れてしまうため、キャビテーション抑制のための配慮が
必要であった。
The above prior art is a technique in which ultrasonic waves are introduced into a solution containing sample fine particles to be concentrated, and the fine particles are concentrated at the nodes or antinodes of the standing wave generated in the solution. The fine particles in the solution are concentrated between the adjacent nodes of the standing wave formed in the solution or between the antinodes, and this width is half of the wavelength λ of the ultrasonic wave, that is, λ / 2.
be equivalent to. Therefore, in a container having a limited volume, when the width of the container is equal to λ / 2, one node or antinode is formed in the container, and all the particles in the container are concentrated in this node or antinode. Therefore, the concentration efficiency is maximized.
However, in this case, the fine particles have a certain distribution width around one node, and it is difficult to completely separate them.In addition, as the width of the flow path becomes wider, the frequency of the ultrasonic wave used must be reduced accordingly. There is. However, since the intensity of the ultrasonic radiation pressure has a linear relationship with the ultrasonic frequency to be used, the intensity of the ultrasonic radiation pressure decreases as the frequency of the ultrasonic wave used decreases. Also, the occurrence of cavitation that damages the sample is promoted as the frequency becomes lower, so that consideration must be given to cavitation suppression.

【0006】本発明は、容器の幅をλ/2とする超音波
の周波数に対して、この周波数より十分に高い周波数の
超音波成分を導入し、キャビテーションを抑制しなが
ら、試料流体中の試料微粒子を連続的に濃縮する微粒子
の処理手法およびこの手法を用いた装置を提供すること
を目的とする。
The present invention introduces an ultrasonic component having a frequency sufficiently higher than the frequency of an ultrasonic wave having a container width of λ / 2, and suppresses cavitation while producing a sample in a sample fluid. It is an object of the present invention to provide a method for treating fine particles that continuously concentrates fine particles and an apparatus using the method.

【0007】[0007]

【課題を解決するための手段】上記目的の、容器の幅を
λ/2とする超音波の周波数に対して、この周波数より
十分に高い周波数の超音波成分を導入して試料流体中の
試料微粒子を連続的に濃縮する微粒子の処理手法を実現
するため、本発明は直方体の容器の対向する一対の超音
波発生源から照射される超音波によって生成される複数
の定在波の節あるいは腹を、前記超音波発生源から照射
する各々の周波数を微少量だけ異ならせることで、試料
流体の進行方向に垂直に、ゆっくり進行させる手段を有
する。また、上記目的の、キャビテーションの発生を抑
制するため、本発明は500kHz以上の周波数の超音波
の周波数を用いる手段を有する。あるいは、試料流体を
超音波を照射する容器に導入する前に、前記流体中の溶
存空気を脱気する手段を有する。
According to the object of the present invention, an ultrasonic component having a frequency sufficiently higher than the frequency of an ultrasonic wave having a container width of λ / 2 is introduced by introducing an ultrasonic component into the sample fluid. In order to realize a method of treating fine particles that continuously concentrates fine particles, the present invention employs a plurality of standing waves generated by ultrasonic waves emitted from a pair of ultrasonic sources facing each other in a rectangular parallelepiped container. Means for slowly moving the sample fluid perpendicularly to the traveling direction of the sample fluid by making each frequency irradiated from the ultrasonic wave source slightly different. Further, in order to suppress the occurrence of cavitation, the present invention has means for using an ultrasonic frequency having a frequency of 500 kHz or more. Alternatively, before introducing the sample fluid into the container for irradiating the ultrasonic waves, a means for degassing dissolved air in the fluid is provided.

【0008】[0008]

【発明の実施の形態】本発明の超音波処理装置の微粒子
濃縮方法および濃縮装置について図1に示した第1の実
施例の模式図を用いて以下に説明する。ただし、図1で
は、容器内の構造を分かりやすくするため、容器上面を
透視している。本装置は、直方体の容器31の向かい合
った2つの面に、互いに照射する超音波の波数ベクトル
の向きが180°反対になるように、1対の超音波音源
11、12が配置されている。また、容器31には、微
粒子成分を含む試料流体を導入する管21から試料溶液
が導入されるようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method and apparatus for concentrating fine particles in an ultrasonic treatment apparatus according to the present invention will be described below with reference to the schematic diagram of the first embodiment shown in FIG. However, in FIG. 1, the upper surface of the container is seen through to make the structure inside the container easier to understand. In the present apparatus, a pair of ultrasonic sound sources 11 and 12 are arranged on two opposing surfaces of a rectangular parallelepiped container 31 so that the directions of the wave vectors of the ultrasonic waves irradiated to each other are 180 ° opposite to each other. Further, the sample solution is introduced into the container 31 from the tube 21 for introducing the sample fluid containing the fine particle component.

【0009】超音波発生制御部13によって制御された
前記超音波音源11、12から各々、
Each of the ultrasonic sound sources 11 and 12 controlled by the ultrasonic wave generation control unit 13

【0010】[0010]

【数1】 (Equation 1)

【0011】[0011]

【数2】 (Equation 2)

【0012】なる超音波が照射されるとき、容器中での
定在波は、
When an ultrasonic wave is irradiated, a standing wave in the container becomes

【0013】[0013]

【数3】 (Equation 3)

【0014】と置くことが出来る。従って、作られた定
在波の節あるいは腹は、超音波音源12の方向に、速さ
[0014] Therefore, the nodes or antinodes of the created standing wave move in the direction of the ultrasonic

【0015】[0015]

【数4】 (Equation 4)

【0016】で進行してゆき、図2の模式図にも示した
ように、超音波音源11、12によって作られた定在波
の節41は矢印51の方向に、進行してゆく。従って、
試料流体中に分散していた微粒子61は、容器31に注
入されると、まず、定在波41に捕獲される。次に、溶
液が容器中を下流に進行して行く過程で、定在波の進行
によって徐々に微粒子61は超音波音源12近傍に濃縮
される。そこで、試料流体の流れの下流に、2つの試料
溶液吸引管22、23をそれぞれ、超音波音源11と1
2の近傍に取り付けることで、微粒子成分を含まない試
料流体と、微粒子成分を含む試料流体とを、それぞれの
吸引管22、23から取り出すことが出来る。
As shown in the schematic diagram of FIG. 2, the node 41 of the standing wave generated by the ultrasonic sound sources 11 and 12 travels in the direction of arrow 51. Therefore,
The fine particles 61 dispersed in the sample fluid are first captured by the standing wave 41 when injected into the container 31. Next, as the solution proceeds downstream in the container, the fine particles 61 are gradually concentrated near the ultrasonic sound source 12 by the progress of the standing wave. Therefore, two sample solution suction pipes 22 and 23 are connected to the ultrasonic sound sources 11 and 1 downstream of the flow of the sample fluid, respectively.
By attaching the sample fluid in the vicinity of 2, a sample fluid containing no fine particle component and a sample fluid containing the fine particle component can be taken out from the respective suction pipes 22 and 23.

【0017】このとき、超音波音源から発生させる超音
波の周波数は、容器の中の定在波を発生させる領域の幅
に比べ十分に短くなる波長となる周波数を用いることが
望ましい。また、試料を損傷する可能性のあるキャビテ
ーションの生成を抑制するために、使用する周波数を5
00kHz以上の周波数で用いればよい。これは、超音波
のキャビテーション域値のピーク圧力Pcが、使用する超
音波の周波数fに対して、
At this time, it is desirable that the frequency of the ultrasonic wave generated from the ultrasonic sound source be a frequency that is sufficiently shorter than the width of the region in the container where the standing wave is generated. In addition, the frequency used should be set to 5 to suppress the generation of cavitation that could damage the sample.
It may be used at a frequency of 00 kHz or more. This is because the peak pressure Pc of the ultrasonic cavitation threshold value is, with respect to the frequency f of the ultrasonic wave used,

【0018】[0018]

【数5】 (Equation 5)

【0019】のような関係があるためである。This is because there is such a relationship.

【0020】図4に、本発明の第2の実施例の模式図を
示す。微粒子を含む試料流体は、まず、脱気ユニット7
1に導入され、流体中の溶存空気成分を取り除く。脱気
ユニット71は真空ポンプ72に接続されており、脱気
ユニット中の真空度を維持するために用いる。つぎに溶
存空気を取り除いた試料流体は、管24を通じて容器3
2中に導入される。容器32に導入された試料流体は、
第1の実施例で示したのと同様な機構によって、微粒子
成分を濃縮することができる。微粒子成分を含まない流
体は、超音波発生源14の面上に吸引穴を持つ管25か
ら吸引し、微粒子成分を含む流体は、超音波発生源15
の面上に吸引穴を持つ管26から吸引する。このように
超音波発生源の面内に吸引部を持つことによって、吸引
部は超音波の進行方向と同じ方向に向かうこととなり、
定在波の節あるいは腹の面に対して法線方向を向くこと
となる。これによって本実施例では流体中の微粒子成分
を最も多く含む部分あるいは微粒子成分を最も含まない
成分を効果的に回収することができる。
FIG. 4 is a schematic diagram of a second embodiment of the present invention. The sample fluid containing fine particles is first supplied to the degassing unit 7
1 to remove dissolved air components in the fluid. The deaeration unit 71 is connected to a vacuum pump 72 and is used to maintain the degree of vacuum in the deaeration unit. Next, the sample fluid from which the dissolved air has been removed is passed through the tube 24 to the container 3.
2 is introduced. The sample fluid introduced into the container 32 is
By the same mechanism as shown in the first embodiment, the fine particle component can be concentrated. The fluid containing no fine particle component is sucked from a tube 25 having a suction hole on the surface of the ultrasonic wave source 14, and the fluid containing the fine particle component is sucked from the ultrasonic wave source 15
Is sucked from a tube 26 having a suction hole on the surface of the tube. By having the suction part in the plane of the ultrasonic wave source in this way, the suction part will be directed in the same direction as the traveling direction of the ultrasonic wave,
It will face the normal direction to the nodal or antinode surface of the standing wave. As a result, in this embodiment, it is possible to effectively collect a portion containing the largest amount of fine particle components or a component containing the least amount of fine particle components in the fluid.

【0021】[0021]

【発明の効果】以上詳述したように、本発明を用いるこ
とによって、流体中の微粒子を非接触にかつ連続的に濃
縮分離することができるという効果を奏する。
As described above in detail, the use of the present invention has an effect that fine particles in a fluid can be concentrated and separated continuously without contact.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の基本構成を示す模式
図。
FIG. 1 is a schematic diagram showing a basic configuration of a first embodiment of the present invention.

【図2】図1で示した装置の上断面図。FIG. 2 is a top sectional view of the device shown in FIG.

【図3】本発明の第1の実施例での向かい合った超音波
発生源から照射される超音波によって試料微粒子が濃縮
される様子を示した模式図。
FIG. 3 is a schematic diagram showing a state in which sample particles are concentrated by ultrasonic waves emitted from opposed ultrasonic wave sources according to the first embodiment of the present invention.

【図4】本発明の第2の実施例の基本構成を示す模式
図。
FIG. 4 is a schematic diagram showing a basic configuration of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11、12、14、15…超音波発生源、13…超音波
発生制御部、21、22、23、24、25、26…
管、31、32…容器、41…定在波の音圧の節、51
…定在波の音圧の節の移動方向、61…微粒子、71…
脱気ユニット、72…真空ポンプ。
11, 12, 14, 15 ... ultrasonic wave generating source, 13 ... ultrasonic wave generating control unit, 21, 22, 23, 24, 25, 26 ...
Pipes, 31, 32: container, 41: node of sound pressure of standing wave, 51
… The moving direction of the node of the sound pressure of the standing wave, 61… fine particles, 71…
Deaeration unit, 72 ... vacuum pump.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】微粒子を含む流体を流す直方体の容器に前
記微粒子を含む流体を導入し、前記容器の中で前記流体
に接し、流体の流れに直交するように配置され、かつ、
互いに向かい合うように配置された一対の超音波発生源
の各々から互いに所定の周波数ずれた周波数の超音波を
発生させる前記各超音波発生源から、発生した超音波の
位相差を経時的に変化させて、前記流体の音場内に発生
した定在波を所定の方向に進行させることで、前記流体
中に分散した微粒子を濃縮させ、前記互いに向かい合う
ように配置された一対の超音波発生源のうちの一方の低
い周波数の超音波を照射する超音波発生源の近傍から前
記微粒子が濃縮された流体成分を取り出し、一対の超音
波発生源のうちの他方の高い周波数の超音波を照射する
超音波発生源の近傍から前記微粒子が希釈された流体成
分を取り出す、ことを特徴とする微粒子処理方法。
1. A fluid containing fine particles is introduced into a rectangular parallelepiped container through which a fluid containing fine particles flows, and is placed in contact with the fluid in the container, so as to be orthogonal to the flow of the fluid, and
From each of the ultrasonic sources that generate ultrasonic waves having a frequency shifted from each other by a predetermined frequency from each of a pair of ultrasonic sources arranged so as to face each other, change the phase difference of the generated ultrasonic waves with time. By advancing the standing wave generated in the sound field of the fluid in a predetermined direction, the fine particles dispersed in the fluid are concentrated, and among the pair of ultrasonic generating sources arranged to face each other, An ultrasonic wave for irradiating the high-frequency ultrasonic wave of the other of the pair of ultrasonic wave sources by taking out a fluid component in which the fine particles are concentrated from the vicinity of an ultrasonic wave source for irradiating one of the low-frequency ultrasonic waves A method for treating fine particles, comprising taking out a fluid component in which the fine particles are diluted from the vicinity of a source.
【請求項2】微粒子を含む流体を流す直方体の容器と、
前記容器に前記流体を導入する管と、前記容の中で前記
流体に接し、流体の流れに直交するように配置され、か
つ、互いに向かい合うように配置された一対の超音波発
生源と、前記超音波発生源の各々から互いに所定の周波
数ずれた周波数の超音波を発生させることで前記各超音
波発生源から発生した超音波の位相差を経時的に変化さ
せ、前記流体の音場内に発生した定在波を所定の方向に
進行させることで、前記流体中に分散した微粒子を濃縮
させる超音波発生制御部と、前記互いに向かい合うよう
に配置された一対の超音波発生源のうちの一方の低い周
波数の超音波を照射する超音波発生源の近傍から前記微
粒子が濃縮された流体成分を取り出す管と、一対の超音
波発生源のうちの他方の高い周波数の超音波を照射する
超音波発生源の近傍から前記微粒子が希釈された流体成
分を取り出す管と、有することを特徴とする微粒子処理
装置。
2. A rectangular parallelepiped container for flowing a fluid containing fine particles,
A tube for introducing the fluid into the container, a pair of ultrasonic sources arranged in contact with the fluid in the container, arranged perpendicular to the flow of the fluid, and arranged to face each other; By generating ultrasonic waves having frequencies shifted from each other by a predetermined frequency from each of the ultrasonic generating sources, the phase difference of the ultrasonic waves generated from each of the ultrasonic generating sources is changed with time, and generated in the sound field of the fluid. By causing the standing wave to travel in a predetermined direction, an ultrasonic generation control unit that concentrates fine particles dispersed in the fluid, and one of a pair of ultrasonic generation sources arranged so as to face each other A tube for extracting a fluid component in which the fine particles are concentrated from the vicinity of an ultrasonic source that emits low-frequency ultrasonic waves, and an ultrasonic generator that emits high-frequency ultrasonic waves of the other of the pair of ultrasonic sources Near the source A tube for taking out a fluid component the fine particles is diluted from particle processing apparatus characterized by having.
【請求項3】前記超音波発生源から発生させる超音波の
周波数が500キロヘルツ以上であることを特徴とする
請求項第2項記載の微粒子処理装置。
3. The particle processing apparatus according to claim 2, wherein the frequency of the ultrasonic wave generated from the ultrasonic wave generation source is 500 kHz or more.
【請求項4】微粒子を含む流体を導入する管の前段に、
前記微粒子を含む流体中の溶存空気を脱気する手段を有
することを特徴とする請求項第2項記載の微粒子処理装
置。
4. A tube for introducing a fluid containing fine particles,
3. The particle processing apparatus according to claim 2, further comprising a unit for degassing dissolved air in the fluid containing the particles.
【請求項5】微粒子を含む流体を流す直方体の容器に前
記流体を導入し、前記容器の中で前記流体に接し、か
つ、互いに向かい合うように配置された一対の超音波発
生源の各々から互いに所定の周波数ずれた周波数の超音
波を発生させることで前記各超音波発生源から、発生し
た超音波の位相差を経時的に変化させて、前記流体の音
場内において発生した定在波を所定の方向に進行させる
ことで、前記流体中に分散した微粒子を濃縮させ、前記
互いに向かい合うように配置された一対の超音波発生源
のうちの一方の低い周波数の超音波を照射する超音波発
生源がある前記直方体の1つの面に配置した吸引口から
前記微粒子が濃縮された流体成分を取り出し、一対の超
音波発生源のうちの他方の高い周波数の超音波を照射す
る超音波発生源がある前記直方体の1つの面に配置した
吸引口から前記微粒子が希釈された流体成分を取り出
す、ことを特徴とする微粒子処理方法。
5. The method according to claim 1, wherein said fluid is introduced into a rectangular parallelepiped container through which a fluid containing fine particles flows, and each of said pair of ultrasonic generators is disposed in contact with said fluid in said container and opposed to each other. By generating an ultrasonic wave having a frequency shifted by a predetermined frequency, a phase difference of the generated ultrasonic wave is changed with time from each of the ultrasonic wave generating sources, and a standing wave generated in the sound field of the fluid is predetermined. By traveling in the direction of the above, the fine particles dispersed in the fluid are concentrated, and an ultrasonic generation source that irradiates one of the pair of ultrasonic generation sources arranged so as to face each other with a low frequency ultrasonic wave. There is an ultrasonic generation source that takes out a fluid component in which the fine particles are concentrated from a suction port arranged on one surface of the rectangular parallelepiped and irradiates the other of the pair of ultrasonic generation sources with high-frequency ultrasonic waves. Taking out fluid component the fine particles are diluted from a suction opening arranged on one side of the cuboid, fine processing method characterized by.
【請求項6】微粒子を含む流体を流す直方体の容器と、
前記容器に前記流体を導入する管と、前記容器の中で前
記流体に接し、かつ、互いに向かい合うように配置され
た一対の超音波発生源と、前記超音波発生源の各々から
互いに所定の周波数ずれた周波数の超音波を発生させる
ことで前記各超音波発生源から発生した超音波の位相差
を経時的に変化させて、前記流体の音場内において発生
した定在波を所定の方向に進行させることで、前記流体
中に分散した微粒子を濃縮させる超音波発生制御部と、
前記互いに向かい合うように配置された一対の超音波発
生源のうちの一方の低い周波数の超音波を照射する超音
波発生源がある前記直方体の1つの面に配置した吸引口
から前記微粒子が濃縮された流体成分を取り出す管と、
一対の超音波発生源のうちの他方の高い周波数の超音波
を照射する超音波発生源がある前記直方体の1つの面に
配置した吸引口から前記微粒子が希釈された流体成分を
取り出す管と、を有することを特徴とする微粒子処理装
置。
6. A rectangular parallelepiped container for flowing a fluid containing fine particles,
A tube for introducing the fluid into the container, a pair of ultrasonic sources arranged in contact with the fluid in the container, and facing each other, and a predetermined frequency from each of the ultrasonic sources; By generating an ultrasonic wave having a shifted frequency, the phase difference of the ultrasonic waves generated from each of the ultrasonic generating sources is changed with time, and the standing wave generated in the sound field of the fluid proceeds in a predetermined direction. By doing so, an ultrasonic generation control unit that concentrates the fine particles dispersed in the fluid,
The fine particles are concentrated from a suction port arranged on one surface of the rectangular parallelepiped, which has an ultrasonic wave source for irradiating an ultrasonic wave of a low frequency of one of a pair of ultrasonic wave sources arranged so as to face each other. A pipe for taking out the fluid component
A tube for taking out the fluid component in which the fine particles are diluted from a suction port arranged on one surface of the rectangular parallelepiped, which has an ultrasonic wave source for irradiating the other high frequency ultrasonic wave of the pair of ultrasonic wave sources, A particle processing apparatus comprising:
【請求項7】前記超音波発生源から発生させる超音波の
周波数が500キロヘルツ以上であることを特徴とする
請求項第6項記載の微粒子処理装置。
7. The particle processing apparatus according to claim 6, wherein the frequency of the ultrasonic wave generated from the ultrasonic wave generation source is 500 kHz or more.
【請求項8】微粒子を含む流体を導入する管の前段に、
前記微粒子を含む流体中の溶存空気を脱気する手段を有
することを特徴とする請求項第6項記載の微粒子処理装
置。
8. A tube for introducing a fluid containing fine particles,
7. The fine particle processing apparatus according to claim 6, further comprising: means for degassing dissolved air in the fluid containing the fine particles.
【請求項9】微粒子を含む流体を流す直方体の容器と、
前記容器の中で前記流体に接し、互いに向かい合うよう
に配置された一対の超音波発生源と、前記超音波発生源
の各々から互いに所定の周波数ずれた周波数の超音波を
発生させて、前記各超音波発生源から発生した超音波の
位相差を経時的に変化させ、前記流体の音場内において
発生した定在波を所定の方向に進行させることで、前記
流体中に分散した微粒子を濃縮させる超音波発生制御部
と、を有することを特徴とした微粒子処理装置。
9. A rectangular parallelepiped container for flowing a fluid containing fine particles,
In contact with the fluid in the container, a pair of ultrasonic sources arranged so as to face each other, from each of the ultrasonic sources to generate ultrasonic waves having a frequency shifted from each other by a predetermined frequency, By changing the phase difference of the ultrasonic waves generated from the ultrasonic generation source with time and causing the standing wave generated in the sound field of the fluid to travel in a predetermined direction, the fine particles dispersed in the fluid are concentrated. A particle processing apparatus comprising: an ultrasonic generation control unit.
【請求項10】容器に微粒子を含む試料流体を導入する
管と、微少に異なる周波数の超音波を照射する第一と第
二の超音波音源と、第一と第二の超音波音源を制御する
超音波発生制御部と、を有し、容器中での定在波の節ま
たは腹が第一の超音波音源の方向に進行し、試料流体中
の微粒子を第一の超音波音源の近傍に濃縮し、試料流体
の流れの下流の、第一の超音波音源の近傍に取り付けら
れた吸引管から微粒子を取り出すことを特徴とした微粒
子処理装置。
10. A tube for introducing a sample fluid containing fine particles into a container, first and second ultrasonic sound sources for irradiating ultrasonic waves of slightly different frequencies, and controlling the first and second ultrasonic sound sources. And a node or antinode of the standing wave in the container travels in the direction of the first ultrasonic sound source, and causes fine particles in the sample fluid to be in the vicinity of the first ultrasonic sound source. A fine particle processing apparatus, wherein the fine particles are taken out from a suction tube attached near the first ultrasonic sound source downstream of the flow of the sample fluid.
JP449198A 1998-01-13 1998-01-13 Method and device for treating fine particle Pending JPH11197491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP449198A JPH11197491A (en) 1998-01-13 1998-01-13 Method and device for treating fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP449198A JPH11197491A (en) 1998-01-13 1998-01-13 Method and device for treating fine particle

Publications (1)

Publication Number Publication Date
JPH11197491A true JPH11197491A (en) 1999-07-27

Family

ID=11585566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP449198A Pending JPH11197491A (en) 1998-01-13 1998-01-13 Method and device for treating fine particle

Country Status (1)

Country Link
JP (1) JPH11197491A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004024959A (en) * 2002-06-21 2004-01-29 National Institute Of Advanced Industrial & Technology Noncontact filtering method and apparatus using supersonic wave
US6929750B2 (en) * 2001-03-09 2005-08-16 Erysave Ab Device and method for separation
JP2005538830A (en) * 2002-09-16 2005-12-22 イギリス国 Device for inducing particles in a fluid
JP2006501994A (en) * 2002-10-10 2006-01-19 イギリス国 Apparatus for moving particles from a first fluid to a second fluid
WO2006115241A1 (en) * 2005-04-25 2006-11-02 Matsushita Electric Industrial Co., Ltd. Component separation device and method of separating component
WO2007074906A1 (en) * 2005-12-28 2007-07-05 Kawamura Institute Of Chemical Research Microfluid device and method of separating substances
JP2007285908A (en) * 2006-04-18 2007-11-01 Matsushita Electric Ind Co Ltd Component separation device and chemical analysis device using it
CN102240189A (en) * 2011-05-20 2011-11-16 南京航空航天大学 Standing wave type ultrasonic dust collector and dustcollection method thereof
CN102283618A (en) * 2011-06-29 2011-12-21 南京航空航天大学 Sandwich standing wave type ultrasonic dust collector and dust collection method thereof
WO2012017976A1 (en) * 2010-08-02 2012-02-09 Murata Mitsuo Apparatus for continuously separating foreign substance from solution
KR101410237B1 (en) * 2011-12-28 2014-06-23 한국건설기술연구원 Purification apparatus for wastewater using standing wave
CN104409126A (en) * 2014-11-25 2015-03-11 中国人民解放军第二炮兵工程大学 Ultrasonic standing wave radioactive wastewater treatment device
JP2016106026A (en) * 2010-04-12 2016-06-16 フローデザイン ソニックス, インコーポレイテッド Ultrasound and acoustophoresis technology for separation of oil and water, with application to produce water
JP2017148747A (en) * 2016-02-25 2017-08-31 東芝メモリ株式会社 Dust collector and substrate processing system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6929750B2 (en) * 2001-03-09 2005-08-16 Erysave Ab Device and method for separation
JP4505624B2 (en) * 2002-06-21 2010-07-21 独立行政法人産業技術総合研究所 Non-contact filtering method and apparatus using ultrasonic waves
JP2004024959A (en) * 2002-06-21 2004-01-29 National Institute Of Advanced Industrial & Technology Noncontact filtering method and apparatus using supersonic wave
JP2005538830A (en) * 2002-09-16 2005-12-22 イギリス国 Device for inducing particles in a fluid
JP2006501994A (en) * 2002-10-10 2006-01-19 イギリス国 Apparatus for moving particles from a first fluid to a second fluid
WO2006115241A1 (en) * 2005-04-25 2006-11-02 Matsushita Electric Industrial Co., Ltd. Component separation device and method of separating component
JP2006297333A (en) * 2005-04-25 2006-11-02 Matsushita Electric Ind Co Ltd Component separation device and component separation method using it
US7968049B2 (en) 2005-04-25 2011-06-28 Panasonic Corporation Component separating device and method of separating component
WO2007074906A1 (en) * 2005-12-28 2007-07-05 Kawamura Institute Of Chemical Research Microfluid device and method of separating substances
JP2007285908A (en) * 2006-04-18 2007-11-01 Matsushita Electric Ind Co Ltd Component separation device and chemical analysis device using it
JP2016106026A (en) * 2010-04-12 2016-06-16 フローデザイン ソニックス, インコーポレイテッド Ultrasound and acoustophoresis technology for separation of oil and water, with application to produce water
WO2012017976A1 (en) * 2010-08-02 2012-02-09 Murata Mitsuo Apparatus for continuously separating foreign substance from solution
CN102240189A (en) * 2011-05-20 2011-11-16 南京航空航天大学 Standing wave type ultrasonic dust collector and dustcollection method thereof
CN102283618A (en) * 2011-06-29 2011-12-21 南京航空航天大学 Sandwich standing wave type ultrasonic dust collector and dust collection method thereof
KR101410237B1 (en) * 2011-12-28 2014-06-23 한국건설기술연구원 Purification apparatus for wastewater using standing wave
CN104409126A (en) * 2014-11-25 2015-03-11 中国人民解放军第二炮兵工程大学 Ultrasonic standing wave radioactive wastewater treatment device
JP2017148747A (en) * 2016-02-25 2017-08-31 東芝メモリ株式会社 Dust collector and substrate processing system
US10290490B2 (en) 2016-02-25 2019-05-14 Toshiba Memory Corporation Dust collecting apparatus, substrate processing system, and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP3487699B2 (en) Ultrasonic treatment method and apparatus
JPH11197491A (en) Method and device for treating fine particle
JP2000024431A (en) Fine particle treating device
US9662686B2 (en) Ultrasonic cleaning method and apparatus
JP2015514516A (en) Acoustophoretic separation of lipids from erythrocytes.
JP2014079748A (en) Suspension treating apparatus using ultrasonic wave
JP5127257B2 (en) Ultrasonic cleaning method
JP6346087B2 (en) Ion generation method
Jiao et al. Role of volatile liquids in debris and hole taper angle reduction during femtosecond laser drilling of silicon
JPH11326155A (en) Cell fractionating device
Lei et al. Two-dimensional concentration of microparticles using bulk acousto-microfluidics
RU2447926C2 (en) Method of coagulating foreign particles in gas flows
JP4505624B2 (en) Non-contact filtering method and apparatus using ultrasonic waves
US8486199B2 (en) Ultrasonic cleaning method and apparatus
JPH1082723A (en) Microparticle processor
Busnaina et al. Ultrasonic and megasonic particle removal
JP2009113004A (en) Cleaning method and cleaning apparatus
KR20110119257A (en) Method and apparatus for the separation of microparticles in fluid by ultrasonic wave
Khmelev et al. Study of ultrasonic coagulation of dispersed particles in the implementation of the standing wave mode
JPH1114533A (en) Particulate shape measuring instrument
YAMASHITA et al. Progress in ultrasonic cleaning research
KR101149356B1 (en) Method and apparatus for the separation of two kinds of microparticles in fluid flow by using the ultrasonic wave
Khmelev et al. Effectiveness increase of ultrasonic cavitational processing of viscous liquid media
JP6011854B2 (en) Ultrasonic micromanipulation method and apparatus using a solid cell having a curved reflecting surface
JP2005288376A (en) Ultrasonic sterilization/decomposition apparatus