JP4505098B2 - Insulating film forming method and film forming apparatus - Google Patents

Insulating film forming method and film forming apparatus Download PDF

Info

Publication number
JP4505098B2
JP4505098B2 JP2000063659A JP2000063659A JP4505098B2 JP 4505098 B2 JP4505098 B2 JP 4505098B2 JP 2000063659 A JP2000063659 A JP 2000063659A JP 2000063659 A JP2000063659 A JP 2000063659A JP 4505098 B2 JP4505098 B2 JP 4505098B2
Authority
JP
Japan
Prior art keywords
insulating film
gas
process chamber
forming
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000063659A
Other languages
Japanese (ja)
Other versions
JP2001250823A (en
Inventor
孝 小松
賢三 長野
康宏 田熊
靖 樋口
毅 佐保田
智 池田
賀文 太田
関  伸彰
久三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2000063659A priority Critical patent/JP4505098B2/en
Publication of JP2001250823A publication Critical patent/JP2001250823A/en
Application granted granted Critical
Publication of JP4505098B2 publication Critical patent/JP4505098B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、薄く、絶縁性の高い高性能な絶縁膜の成膜方法及びそのための成膜装置に関するものである。この成膜方法及び成膜装置は、半導体用ゲート絶縁膜、キャパシター膜、磁気ヘッド用ギャップ層、トンネルGMR(TMR)やSQUID用絶縁層等の分野で利用できる。
【0002】
【従来の技術】
従来の半導体用ゲート絶縁膜、キャパシター膜、磁気ヘッド用ギャップ層、トンネルGMRやSQUID用絶縁層等は、もっぱらスパッタ、熱若しくはプラズマCVD、又は金属層成膜後の自然若しくは加熱による酸化性雰囲気(O2、H2O、空気等)での反応により形成されていた。
【0003】
【発明が解決しようとする課題】
上記成膜分野では、高性能化が進み、現在では20Å程度の極めて薄く、高性能な絶縁膜が必要とされてきている。しかし、従来の成膜方法の中では、金属層の酸化性雰囲気における自然酸化又は加熱酸化により良質の極薄絶縁膜が提供できるものの、反応に必要な時間が24時間前後と長く、全く量産に適さないという問題があった。
【0004】
この発明は、量産に適すると共に、コンタミの少ない、組成制御された、ち密で、欠陥、粒界の極めて少ない、深さ方向に構造制御された、良好な絶縁特性を持つ絶縁膜を成膜する方法及びそのための成膜装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、上記問題を解決するために、絶縁膜を構成する2種以上の元素の各元素を、少なくとも1種のそれら元素を含む気体状分子を交互に基板表面に吸着せしめることによって、交互に原子層レベルで積層させ、次いで反応させて所望の絶縁膜を成膜せしめることに成功し、本発明を完成させるに至ったのである。これはいわゆる分子層エピタキシーに関するものである。
【0006】
この発明の絶縁膜の成膜方法は、次の3つの主な工程より成る。
【0007】
第1の工程は、Al、Si、Ta、又はTiを含む気体状分子を基板表面に供給し、これを吸着させた後、余った分子を排気するものである。
【0008】
第2の工程は、O含む気体状分子基板表面に供給し、これを先の第1の工程で吸着していた分子の上に吸着させた後、余った分子を排気するものである。
第3の工程は、上記の2つの工程後、Arを導入して排気するものである。
【0009】
上記の第1及び第2の工程で吸着した分子間で化学反応が生じ、AlOxy、SiOxy、SiOxz、SiOxyz、TaOxy、TiOxy(0≦x、y、z≦2.5)等が生成される。
【0012】
前記Al、Si、Ta、又はTiを含む気体状分子は、この金属の水素化物、フッ化物、塩化物、臭化物、ヨウ化物、アルコキシド、又はアルキル金属のような金属化合物等であることが望ましい。また、前記O含む気体状分子は、O2、O3、H2O、H22 又はN 2 であることが望ましい。
【0013】
第1、第2及び第3の工程を1サイクルとして、これをくり返すことにより、これらの膜が成長し、そのくり返し回数により所望の膜厚の絶縁膜を得ることができる。
【0014】
必要に応じて、各工程の間又は各サイクルの間に、不活性ガスや環元性ガスを導入した後排気する、いわゆるパージにより、原料活性ガスの排気をより確実なものとするとともに、表面を清浄化することが可能となる。気体状分子の排気時に、パージガスとして用いる不活性ガス又は還元性ガスについては、例えば、不活性ガスとしてHe、Ne、Ar、Xe、Kr、又はN2 ガス等があり、還元ガスとしてH2 等がある。
【0015】
また、基板温度により前記原料ガスの吸着量が変化するので、得られた絶縁膜の組成・構造が変化する。従って、目的とする膜の種類により、適切な基板温度範囲を選択すれば、高い絶縁性を有する所望の絶縁膜が得られる。例えば、Alを含む気体状分子として、Al(CH33、Oを含む分子としてH2Oを用いた場合は、実施例及び参考例に示す如く、基板温度を室温〜300℃、好ましくは室温〜240℃の範囲内に保つことにより良好な絶縁性を得ることができる。
【0016】
本発明の絶縁膜成膜装置は、成膜を行うプロセス室と、該プロセス室内の下方に設けられた基板と、基板温度を調節するための加熱手段と、該プロセス室内に原料ガスを導入するためのガス導入系と、該プロセス室を排気するための高真空排気用ポンプ及び低真空排気用ポンプ並びに排気用リザーバータンクを有する排気系とを有する成膜装置であって、Al、Si、Ta、又はTiを含む気体状分子を該ガス導入系を用いて基板表面に供給し、吸着させた後、該排気系を用いて排気する第1の工程の後に、O含む気体状分子該ガス導入系を用いて該基板表面に供給し、吸着させた後、該排気系を用いて排気する第2の工程を行いその後に該ガス導入系を用いて前記プロセス室内にArを導入した後、該排気系を用いて排気する第3の工程を行い、前記第1〜第3の工程を1つのサイクルとして、このサイクルを複数回行うことによって上記絶縁膜の成膜方法を実施するためのものである。
【0017】
【実施例】
次ぎに、本発明の実施例及び本発明の工程からArを導入して排気する工程を除いた参考例を説明するが、本発明はこれらの実施例及び参考例により制限されるものではない。
【0018】
図1に、以下の実施例及び参考例で絶縁膜を成膜するために用いる成膜装置を示す。図1において、1は成膜を行なうプロセス室、2はプロセス室中に設けられた成膜される基板、3は基板2の温度を調節するための加熱手段であるホットプレートである。バルブ又はマスフローコントローラー4、リザーバータンク5及びマスフローコントローラー6からなるガス導入系を適切に制御することにより、プロセス室1内の圧力を短時間で所定の圧力まで上昇させることが可能である。プロセス室1には基板搬送室7が連結されており、ロボットによりプロセス室1への基板2の出し入れを行なう。また、排気用のリザーバータンク8をプロセス室1に連結して設けてあり、このタンク8を用いることにより高速排気が可能となる。リザーバータンク8内には、コールドトラップを設置してもよい。プロセス室1内の排気は、リザーバータンク8、高真空排気用のポンプ9、低真空用ポンプ10からなる排気系により行われる。図1では、使用ガスの除害設備11が低真空用ポンプ10に接続されているが、この設備は使用する供給ガスの種類によっては不要となる。
【0019】
参考例1
Alを含むガスとしてAl(CH33、Oを含むガスとしてH2Oを用いて絶縁膜を形成する例を示す。その成膜手順は、図2のフローシート中の「成膜プロセス1」に示すようにして行った。
【0020】
すなわち、図2に示すように、前処理として、基板についてのクリーニング、ベーキング等を行った後、基板搬送室7から基板2をプロセス室1へローディングし、ホットプレート3により基板温度を120℃に温調した後、成膜を開始した。ガス導入前のプロセス室1内の圧力は1×10-3Torrであった。
【0021】
まず、第1の工程として、プロセス室1内にAl(CH33を導入し、基板2の表面に吸着させた。導入圧力及び時間は、それぞれ1×10-1Torr、2sec.であった。ガスの導入・吸着後、余ったAl(CH33をリザーバータンク8を通してポンプ10で低真空排気した後、ポンプ9で高真空排気し、約10sec.で5×10-3Torrまで排気した。排気速度が速ければ、リザーバータンク8は不要となる。
【0022】
次に、第2の工程として、H2Oを1×10-1Torrで2sec.間導入し、第1の工程で吸着した分子の上に吸着させた後、上記の場合と同様にして排気した。約50sec.で5×10-3Torrまで排気出来た。
【0023】
以上の工程を100回くり返した後、基板2を取り出し、形成された膜の断面をSEM観察したところ、図3に示す如く、約400Åまで成長しているのがわかった。図3に示されたように、基板の段差部分のヒフク性、いわゆるステップカバレージは、極めて優れているのがわかる。また、得られた膜をオージェ電子分光分析(AES)により分析したところ、組成はAlOx(x=1.4〜1.6)であり、ほぼストイキオメトリーな膜となっており、C等の不純物は検出限界以下であった。
【0024】
次ぎに、形成される膜の絶縁特性を評価するため、上記第1及び第2の工程を50回くり返して、導電性を有するSi基板上に、約200Åの絶縁膜を形成し、この上に、Al電極を1mmφ×5000Å蒸着して、試料を作成した。これについて、V−I特性を評価し、図4にその結果を示す。図4から明らかなように、10-6A/cm2 に達する電界強度で絶縁耐圧を表わすとすると、この場合は5MV/cmとなり、良好な絶縁特性を示していることがわかる。
【0025】
また、基板温度を室温から300℃まで変化させ、室温、70℃、120℃、180℃、240℃及び300℃の各温度において、上記工程を50回くり返し、成膜した膜について、上記と同様に絶縁耐圧の評価をした。その結果を、基板温度と絶縁耐性との関係について図5に、また、基板温度とこの時の膜厚との関係について図6に示す。絶縁性については、基板温度が室温〜240℃の間で3MV/cm以上の良好な特性が得られた。また、膜厚は、室温〜180℃の間でほぼ一定(150Å以上225Å以下)であるが、室温未満では急激に低下し、180℃より高温では、逆に急激に上昇した。
【0026】
実施例
2O導入、吸着、排気の工程の後にArを導入して排気する工程を入れた点を除いて、参考例1の工程をくり返した。すなわち、図2のフローシート中の「成膜プロセス2」に示す手順に従って成膜した。
【0027】
この方法によると、H2O排気時間を短縮することが可能となった。H2Oを1×10-1Torrで2sec.間導入し、吸着させた後、10sec.間排気したところ、5×10-2Torrまで排気できた。次いで、Arを1×10-1Torrで2sec.間導入し、排気したところ、10sec.間で5×10-3Torrまで排気できた。従って、Arを用いることにより、排気時間を約1/2以下にできた。図5から明らかなように、絶縁特性は参考例1の場合と同じであった。
【0028】
参考例2
参考例1において用いたH2Oの代りにO3 を導入して、参考例1の工程をくり返して、参考例1と同様に成膜した。図5から明らかなように、絶縁特性は参考例1の場合と同じであった。
【図面の簡単な説明】
【図1】この発明の成膜装置の実施例及び参考例の模式的側面図。
【図2】この発明の成膜方法の実施例及び参考例を説明するためのフローシート。
【図3】この発明の参考例に基づいて得られた絶縁膜の成膜状態を示す断面図。
【図4】この発明の参考例に基づいて得られた絶縁膜について、V−I特性を示すグラフ。
【図5】この発明の実施例及び参考例に基づいて得られた絶縁膜について、絶縁耐圧の基板温度依存性を示すグラフ。
【図6】この発明の参考例に基づいて得られた絶縁膜について、基板温度と膜厚との関係を示すグラフ。
【符号の説明】
1 プロセス室 2 基板
3 ホットプレート 4、5、6 ガス供給系
7 基板搬送室 8 リザーバータンク
9 高真空ポンプ 10 低真空ポンプ
11 除害装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a thin high-performance insulating film having high insulating properties and a film forming apparatus therefor. This film forming method and film forming apparatus can be used in the fields of semiconductor gate insulating films, capacitor films, magnetic head gap layers, tunnel GMR (TMR), SQUID insulating layers, and the like.
[0002]
[Prior art]
Conventional gate insulating films for semiconductors, capacitor films, magnetic head gap layers, tunnel GMR and SQUID insulating layers, etc. are exclusively oxidized by sputtering, heat or plasma CVD, or natural or heated oxidizing atmosphere after metal layer deposition ( O 2 , H 2 O, air, etc.).
[0003]
[Problems to be solved by the invention]
In the above-mentioned film formation field, higher performance has been advanced, and at present, an extremely thin and high-performance insulating film of about 20 mm has been required. However, among the conventional film formation methods, although a good quality ultra-thin insulating film can be provided by natural oxidation or heat oxidation in an oxidizing atmosphere of the metal layer, the time required for the reaction is as long as about 24 hours, and it is quite mass production. There was a problem that it was not suitable.
[0004]
The present invention is suitable for mass production, and forms an insulating film having good insulation characteristics that is low in contamination, controlled in composition, dense, has few defects and grain boundaries, and is controlled in structure in the depth direction. It is an object to provide a method and a film forming apparatus therefor.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the inventors of the present invention alternately adsorb gaseous molecules containing at least one kind of element on the substrate surface, each element of two or more elements constituting the insulating film. The inventors succeeded in forming a desired insulating film by alternately laminating at the atomic layer level and then reacting to complete the present invention. This relates to so-called molecular layer epitaxy.
[0006]
The insulating film forming method of the present invention comprises the following three main steps.
[0007]
In the first step, gaseous molecules containing Al, Si, Ta, or Ti are supplied to the substrate surface, adsorbed, and then the excess molecules are exhausted.
[0008]
The second step is a gaseous molecule containing O is supplied to the substrate surface, this was allowed to adsorb onto the first step molecules adsorbed in the preceding, in which exhausts the extra molecule .
In the third step, Ar is introduced and exhausted after the above two steps.
[0009]
A chemical reaction occurs between molecules adsorbed in the first and second steps of the, AlO x N y, SiO x N y, SiO x F z, SiO x N y F z, TaO x N y, TiO x N y (0 ≦ x, y, z ≦ 2.5) and the like are generated.
[0012]
The gaseous molecule containing Al, Si, Ta, or Ti is preferably a metal compound such as a hydride, fluoride, chloride, bromide, iodide, alkoxide, or alkyl metal of the metal. The gaseous molecule containing O is preferably O 2 , O 3 , H 2 O, H 2 O 2 or N 2 O.
[0013]
By repeating the first, second and third steps as one cycle, these films grow, and an insulating film having a desired film thickness can be obtained by the number of repetitions.
[0014]
If necessary, during the process or during each cycle, after introducing an inert gas or a cyclic gas and then exhausting, so-called purging, the raw material active gas can be more reliably exhausted, and the surface Can be cleaned. As for the inert gas or reducing gas used as the purge gas when exhausting gaseous molecules, for example, there are He, Ne, Ar, Xe, Kr, or N 2 gas as the inert gas, and H 2 as the reducing gas. There is.
[0015]
Further, since the amount of the source gas adsorbed changes depending on the substrate temperature, the composition and structure of the obtained insulating film change. Therefore, if an appropriate substrate temperature range is selected depending on the type of target film, a desired insulating film having high insulating properties can be obtained. For example, when Al (CH 3 ) 3 is used as the gaseous molecule containing Al, and H 2 O is used as the molecule containing O, the substrate temperature is room temperature to 300 ° C., preferably as shown in Examples and Reference Examples. Good insulation can be obtained by keeping the temperature within the range of room temperature to 240 ° C.
[0016]
The insulating film forming apparatus of the present invention introduces a process chamber for forming a film, a substrate provided below the process chamber, a heating means for adjusting the substrate temperature, and a source gas into the process chamber. A film introduction apparatus having a gas introduction system for exhausting, a high vacuum exhaust pump for exhausting the process chamber, a low vacuum exhaust pump, and an exhaust system having an exhaust reservoir tank, wherein Al, Si, Ta or gaseous molecules containing Ti is supplied to the substrate surface by using the gas introduction system, can be adsorbed, after the first step of evacuated with the exhaust system, the gaseous molecules containing O After supplying and adsorbing to the substrate surface using a gas introduction system, a second step of exhausting using the exhaust system was performed , and then Ar was introduced into the process chamber using the gas introduction system. after, the third to be evacuated with the exhaust system of Perform degree, as the first to third steps one cycle, it is used to implement the method of forming the insulating film by performing this cycle a plurality of times.
[0017]
【Example】
Next, although the reference example except the process which introduce | transduces and exhausts Ar from the Example of this invention and the process of this invention is demonstrated, this invention is not restrict | limited by these Examples and a reference example .
[0018]
FIG. 1 shows a film forming apparatus used for forming an insulating film in the following examples and reference examples . In FIG. 1, reference numeral 1 denotes a process chamber for forming a film, 2 denotes a substrate provided in the process chamber, and 3 denotes a hot plate which is a heating means for adjusting the temperature of the substrate 2. By appropriately controlling the gas introduction system including the valve or mass flow controller 4, the reservoir tank 5, and the mass flow controller 6, the pressure in the process chamber 1 can be increased to a predetermined pressure in a short time. A substrate transfer chamber 7 is connected to the process chamber 1, and the substrate 2 is taken in and out of the process chamber 1 by a robot. Further, an exhaust reservoir tank 8 is connected to the process chamber 1, and by using this tank 8, high-speed exhaust is possible. A cold trap may be installed in the reservoir tank 8. The process chamber 1 is exhausted by an exhaust system including a reservoir tank 8, a high vacuum exhaust pump 9, and a low vacuum pump 10. In FIG. 1, the use gas abatement equipment 11 is connected to the low vacuum pump 10, but this equipment is not necessary depending on the type of supply gas used.
[0019]
Reference example 1
An example in which an insulating film is formed using Al (CH 3 ) 3 as a gas containing Al and H 2 O as a gas containing O is shown. The film formation procedure was performed as shown in “Film formation process 1” in the flow sheet of FIG.
[0020]
That is, as shown in FIG. 2, after the substrate is cleaned and baked as pre-processing, the substrate 2 is loaded from the substrate transfer chamber 7 into the process chamber 1, and the substrate temperature is raised to 120 ° C. by the hot plate 3. After temperature control, film formation was started. The pressure in the process chamber 1 before gas introduction was 1 × 10 −3 Torr.
[0021]
First, as a first step, Al (CH 3 ) 3 was introduced into the process chamber 1 and adsorbed on the surface of the substrate 2. The introduction pressure and time were 1 × 10 −1 Torr, 2 sec. Met. After the introduction and adsorption of the gas, the excess Al (CH 3 ) 3 was evacuated to low vacuum with the pump 10 through the reservoir tank 8 and then evacuated with the pump 9 to about 10 sec. And evacuated to 5 × 10 −3 Torr. If the exhaust speed is high, the reservoir tank 8 becomes unnecessary.
[0022]
Next, as a second step, H 2 O is added at 1 × 10 −1 Torr for 2 sec. Then, after adsorbing on the molecule adsorbed in the first step, the exhaust was exhausted in the same manner as described above. About 50 sec. It was possible to exhaust to 5 × 10 −3 Torr.
[0023]
After repeating the above steps 100 times, the substrate 2 was taken out and the cross section of the formed film was observed by SEM. As a result, as shown in FIG. As shown in FIG. 3, it can be seen that the huffing property of the step portion of the substrate, so-called step coverage, is extremely excellent. Further, when the obtained film was analyzed by Auger electron spectroscopy (AES), the composition was AlO x (x = 1.4 to 1.6), which was a substantially stoichiometric film, such as C The impurities were below the detection limit.
[0024]
Next, in order to evaluate the insulating properties of the formed film, the first and second steps are repeated 50 times to form an insulating film of about 200 mm on a conductive Si substrate. A sample was prepared by vapor-depositing an Al electrode by 1 mmφ × 5000 mm. About this, a VI characteristic was evaluated and the result is shown in FIG. As can be seen from FIG. 4, if the dielectric strength is expressed by the electric field strength reaching 10 −6 A / cm 2 , it is 5 MV / cm in this case, and it is understood that good insulation characteristics are shown.
[0025]
In addition, the substrate temperature was changed from room temperature to 300 ° C., and the above process was repeated 50 times at room temperature, 70 ° C., 120 ° C., 180 ° C., 240 ° C. and 300 ° C. The dielectric strength was evaluated. The results are shown in FIG. 5 for the relationship between the substrate temperature and the insulation resistance, and in FIG. 6 for the relationship between the substrate temperature and the film thickness at this time. As for insulation, good characteristics of 3 MV / cm or more were obtained when the substrate temperature was between room temperature and 240 ° C. Further, the film thickness was substantially constant between 150 ° C. and 180 ° C. (150 ° C. or more and 225 ° C. or less), but rapidly decreased below room temperature, and conversely increased rapidly above 180 ° C.
[0026]
Example
The process of Reference Example 1 was repeated except that a process of introducing and exhausting Ar was added after the process of introducing, adsorbing, and exhausting H 2 O. That is, the film was formed according to the procedure shown in “Film formation process 2” in the flow sheet of FIG.
[0027]
According to this method, the H 2 O exhaust time can be shortened. H 2 O at 1 × 10 −1 Torr for 2 sec. For 10 sec. After exhausting, it was able to exhaust to 5 × 10 −2 Torr. Next, Ar was 2 sec. At 1 × 10 −1 Torr. When introduced and exhausted for 10 sec. It was possible to exhaust to 5 × 10 −3 Torr. Therefore, the exhaust time can be reduced to about ½ or less by using Ar. As is clear from FIG. 5, the insulation characteristics were the same as in Reference Example 1 .
[0028]
Reference example 2
By introducing O 3 instead of H 2 O was used in Reference Example 1, by repeating the Example 1 process, it was formed in the same manner as in Reference Example 1. As is clear from FIG. 5, the insulation characteristics were the same as in Reference Example 1 .
[Brief description of the drawings]
FIG. 1 is a schematic side view of an embodiment and a reference example of a film forming apparatus according to the present invention.
FIG. 2 is a flow sheet for explaining an example and a reference example of the film forming method of the present invention.
FIG. 3 is a cross-sectional view showing a film formation state of an insulating film obtained based on a reference example of the present invention.
FIG. 4 is a graph showing VI characteristics of an insulating film obtained based on a reference example of the present invention.
FIG. 5 is a graph showing the substrate temperature dependence of the withstand voltage for an insulating film obtained based on an example and a reference example of the present invention.
FIG. 6 is a graph showing the relationship between the substrate temperature and the film thickness for an insulating film obtained based on a reference example of the present invention.
[Explanation of symbols]
1 Process chamber 2 Substrate 3 Hot plate 4, 5, 6 Gas supply system 7 Substrate transfer chamber 8 Reservoir tank 9 High vacuum pump 10 Low vacuum pump 11 Detoxifying device

Claims (7)

Al、Si、Ta、又はTiを含む気体状分子を基板表面に供給し、吸着させた後排気する第1の工程の後に、Oを含む気体状分子を該基板表面に供給し、吸着させた後排気する第2の工程を行い、その後にArを導入した後排気する第3の工程を行い、前記第1〜第3の工程を1つのサイクルとして、このサイクルを複数回行うことを特徴とする絶縁膜の成膜方法。  After the first step of supplying gaseous molecules containing Al, Si, Ta, or Ti to the substrate surface, adsorbing, and exhausting, gaseous molecules containing O were supplied to the substrate surface and adsorbed. Performing a second step of post-evacuation, performing a third step of exhausting after introducing Ar after that, and performing the cycle a plurality of times with the first to third steps as one cycle. A method for forming an insulating film. 前記Al、Si、Ta、又はTiを含む気体状分子が、この金属の水素化物、フッ化物、塩化物、臭化物、ヨウ化物、アルコキシド、又はアルキル金属である請求項1記載の絶縁膜の成膜方法。  2. The insulating film according to claim 1, wherein the gaseous molecule containing Al, Si, Ta, or Ti is a hydride, fluoride, chloride, bromide, iodide, alkoxide, or alkyl metal of the metal. Method. 前記Oを含む気体状分子が、O2、O3、H2O、H22又はN2Oである請求項1又は2記載の絶縁膜の成膜方法。The method for forming an insulating film according to claim 1, wherein the gaseous molecule containing O is O 2 , O 3 , H 2 O, H 2 O 2, or N 2 O. 前記基板の温度を室温〜300℃の範囲内に保つことを特徴とする請求項1〜3のいずれかに記載の絶縁膜の成膜方法。  The method for forming an insulating film according to claim 1, wherein the temperature of the substrate is kept within a range of room temperature to 300 ° C. 前記気体状分子の排気時に、パージガスとして不活性ガス又は還元性ガスを用いることを特徴とする請求項1〜4のいずれかに記載の絶縁膜の成膜方法。  The method for forming an insulating film according to claim 1, wherein an inert gas or a reducing gas is used as a purge gas when the gaseous molecules are exhausted. 前記不活性ガスがHe、Ne、Ar、Xe、Kr、又はN2であり、前記還元性ガスがH2である請求項5記載の絶縁膜の成膜方法。Wherein the inert gas is He, Ne, Ar, Xe, Kr, or a N 2, deposition method of the insulating film of the reducing gas according to claim 5 wherein the H 2. 成膜を行うプロセス室と、該プロセス室内の下方に設けられた基板と、基板温度を調節するための加熱手段と、該プロセス室内に原料ガスを導入するためのガス導入系と、該プロセス室を排気するための高真空排気用ポンプ及び低真空排気用ポンプ並びに排気用リザーバータンクを有する排気系とを有する絶縁膜の成膜装置であって、Al、Si、Ta、又はTiを含む気体状分子を該ガス導入系を用いて基板表面に供給し、吸着させた後、該排気系を用いて排気する第1の工程の後に、Oを含む気体状分子を該ガス導入系を用いて該基板表面に供給し、吸着させた後、該排気系を用いて排気する第2の工程を行い、その後に該ガス導入系を用いて前記プロセス室内にArを導入した後、該排気系を用いて排気する第3の工程を行い、前記第1〜第3の工程を1つのサイクルとして、このサイクルを複数回行うことによって請求項1〜6のいずれかに記載の絶縁膜の成膜方法を実施するための成膜装置。A process chamber for forming a film; a substrate provided below the process chamber; heating means for adjusting the substrate temperature; a gas introduction system for introducing a source gas into the process chamber; and the process chamber An insulating film forming apparatus having a high vacuum exhaust pump and a low vacuum exhaust pump for exhausting gas and an exhaust system having an exhaust reservoir tank, and a gaseous state containing Al, Si, Ta, or Ti After the first step of supplying and adsorbing molecules to the substrate surface using the gas introduction system and then evacuating using the exhaust system, gaseous molecules containing O are used to form the gas using the gas introduction system. After supplying and adsorbing to the substrate surface, a second step of exhausting using the exhaust system is performed, and then Ar is introduced into the process chamber using the gas introduction system, and then the exhaust system is used. And performing a third step of exhausting, The ~ third step as one cycle, a film forming apparatus for performing the method for forming the insulating film according to claim 1 by performing this cycle a plurality of times.
JP2000063659A 2000-03-08 2000-03-08 Insulating film forming method and film forming apparatus Expired - Lifetime JP4505098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000063659A JP4505098B2 (en) 2000-03-08 2000-03-08 Insulating film forming method and film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000063659A JP4505098B2 (en) 2000-03-08 2000-03-08 Insulating film forming method and film forming apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010066469A Division JP2010199593A (en) 2010-03-23 2010-03-23 Method of forming insulating film, and film forming device thereof

Publications (2)

Publication Number Publication Date
JP2001250823A JP2001250823A (en) 2001-09-14
JP4505098B2 true JP4505098B2 (en) 2010-07-14

Family

ID=18583489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000063659A Expired - Lifetime JP4505098B2 (en) 2000-03-08 2000-03-08 Insulating film forming method and film forming apparatus

Country Status (1)

Country Link
JP (1) JP4505098B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4492783B2 (en) * 2001-09-12 2010-06-30 日本電気株式会社 Semiconductor device and manufacturing method thereof
DE10392519T5 (en) * 2002-04-19 2005-08-04 Mattson Technology Inc., Fremont A system for depositing a film on a substrate using a low vapor pressure gas precursor
JP5464775B2 (en) * 2004-11-19 2014-04-09 エイエスエム インターナショナル エヌ.ヴェー. Method for producing metal oxide film at low temperature
JP2010199593A (en) * 2010-03-23 2010-09-09 Ulvac Japan Ltd Method of forming insulating film, and film forming device thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179423A (en) * 1988-01-08 1989-07-17 Nec Corp Manufacture of insulating thin film
JPH08288225A (en) * 1995-04-18 1996-11-01 Furontetsuku:Kk Gas introduction pipe device
JP2000054134A (en) * 1998-08-07 2000-02-22 Samsung Electronics Co Ltd Production of thin film using atom-layer vapor deposition
JP2000058543A (en) * 1998-08-10 2000-02-25 Tokyo Electron Ltd Method and device for oxidation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179423A (en) * 1988-01-08 1989-07-17 Nec Corp Manufacture of insulating thin film
JPH08288225A (en) * 1995-04-18 1996-11-01 Furontetsuku:Kk Gas introduction pipe device
JP2000054134A (en) * 1998-08-07 2000-02-22 Samsung Electronics Co Ltd Production of thin film using atom-layer vapor deposition
JP2000058543A (en) * 1998-08-10 2000-02-25 Tokyo Electron Ltd Method and device for oxidation

Also Published As

Publication number Publication date
JP2001250823A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
JP6095825B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP5184357B2 (en) Method for producing vanadium oxide thin film
KR100861851B1 (en) Method and apparatus for forming silicon oxide film
JP5006938B2 (en) Surface treatment apparatus and substrate treatment method thereof
JP5097554B2 (en) Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
TWI496232B (en) Method of manufacturing semiconductor device and method of processing substrate and substrate processing apparatus and recording medium
JP5722595B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP5038659B2 (en) Method for forming tetragonal structure zirconium oxide film and method for manufacturing capacitor having the film
JP5541223B2 (en) Film forming method and film forming apparatus
US20050221625A1 (en) Method for forming tungsten nitride film
JP2006245089A (en) Method for forming thin film
JP4694209B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP4259247B2 (en) Deposition method
WO2011093203A1 (en) Semiconductor device manufacturing method, substrate processing apparatus, and semiconductor device
JP4505098B2 (en) Insulating film forming method and film forming apparatus
JP5006415B2 (en) Substrate cleaning method for removing oxide film
CN113186528A (en) Platinum film and preparation method and application thereof
JP2006216625A (en) Thin-film forming device, thin film, formation method thereof, semiconductor device, and manufacturing method thereof
US20040198029A1 (en) Process for producing thin oxide film and production apparatus
KR100734854B1 (en) Method of manufacturing thin film of vanadiun di-oxide
WO2009128518A1 (en) Capacitor
JP2010074065A (en) Substrate cleaning method for removing oxide film
JP2010199593A (en) Method of forming insulating film, and film forming device thereof
JP6677356B1 (en) Atomic layer deposition method and atomic layer deposition apparatus
US20020197828A1 (en) Method and apparatus for manufacturing a semiconductor device and processing a substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4505098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160430

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term