JP2001250823A - Method and device for forming insulating film - Google Patents

Method and device for forming insulating film

Info

Publication number
JP2001250823A
JP2001250823A JP2000063659A JP2000063659A JP2001250823A JP 2001250823 A JP2001250823 A JP 2001250823A JP 2000063659 A JP2000063659 A JP 2000063659A JP 2000063659 A JP2000063659 A JP 2000063659A JP 2001250823 A JP2001250823 A JP 2001250823A
Authority
JP
Japan
Prior art keywords
insulating film
molecules
substrate
gas
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000063659A
Other languages
Japanese (ja)
Other versions
JP4505098B2 (en
Inventor
Takashi Komatsu
孝 小松
Kenzo Nagano
賢三 長野
Yasuhiro Taguma
康宏 田熊
Yasushi Higuchi
靖 樋口
Takeshi Sahoda
毅 佐保田
Satoshi Ikeda
智 池田
Yoshifumi Ota
賀文 太田
Nobuaki Seki
関  伸彰
Kyuzo Nakamura
久三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2000063659A priority Critical patent/JP4505098B2/en
Publication of JP2001250823A publication Critical patent/JP2001250823A/en
Application granted granted Critical
Publication of JP4505098B2 publication Critical patent/JP4505098B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a less-contaminated, composition-controlled, and compact insulating film which is suitable for mass production, contains extremely few defects and grain boundaries, and has a superior insulation characteristic and the structure of which is controlled in the depth direction. SOLUTION: A method of forming the insulating film includes a step of supplying gaseous molecules containing Al, Si, Ta, or Ti to the surface of a substrate, after the molecules are adsorbed to the surface, discharging remaining molecules and a step of independently or combinedly supplying gaseous molecules containing at least one kind selected from among O, N, and F to the surface of the substrate, and, after the molecules are adsorbed to the molecules adsorbed to the surface of the substrate in the preceding step, discharging remaining molecules so as to form the insulating film by causing chemical reactions between the molecules adsorbed in the steps.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、薄く、絶縁性の
高い高性能な絶縁膜の成膜方法及びそのための成膜装置
に関するものである。この成膜方法及び成膜装置は、半
導体用ゲート絶縁膜、キャパシター膜、磁気ヘッド用ギ
ャップ層、トンネルGMR(TMR)やSQUID用絶
縁層等の分野で利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a thin, high-performance insulating film having high insulation properties and a film forming apparatus therefor. The film forming method and the film forming apparatus can be used in the fields of a gate insulating film for a semiconductor, a capacitor film, a gap layer for a magnetic head, a tunnel GMR (TMR) and an insulating layer for a SQUID.

【0002】[0002]

【従来の技術】従来の半導体用ゲート絶縁膜、キャパシ
ター膜、磁気ヘッド用ギャップ層、トンネルGMRやS
QUID用絶縁層等は、もっぱらスパッタ、熱若しくは
プラズマCVD、又は金属層成膜後の自然若しくは加熱
による酸化性雰囲気(O2、H2O、空気等)での反応に
より形成されていた。
2. Description of the Related Art Conventional gate insulating films for semiconductors, capacitor films, gap layers for magnetic heads, tunnels GMR and S
The insulating layer for QUID and the like has been formed exclusively by sputtering, heat or plasma CVD, or a reaction in an oxidizing atmosphere (O 2 , H 2 O, air, etc.) by natural or heating after forming the metal layer.

【0003】[0003]

【発明が解決しようとする課題】上記成膜分野では、高
性能化が進み、現在では20Å程度の極めて薄く、高性
能な絶縁膜が必要とされてきている。しかし、従来の成
膜方法の中では、金属層の酸化性雰囲気における自然酸
化又は加熱酸化により良質の極薄絶縁膜が提供できるも
のの、反応に必要な時間が24時間前後と長く、全く量
産に適さないという問題があった。
In the field of film formation, the performance has been improved, and at present, an extremely thin and high-performance insulating film of about 20 ° is required. However, in the conventional film forming method, although a high-quality ultra-thin insulating film can be provided by natural oxidation or thermal oxidation in an oxidizing atmosphere of the metal layer, the time required for the reaction is as long as about 24 hours, and the mass production is completely impossible. There was a problem that it was not suitable.

【0004】この発明は、量産に適すると共に、コンタ
ミの少ない、組成制御された、ち密で、欠陥、粒界の極
めて少ない、深さ方向に構造制御された、良好な絶縁特
性を持つ絶縁膜を成膜する方法及びそのための成膜装置
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention provides an insulating film which is suitable for mass production, has a small amount of contamination, has a controlled composition, is dense, has very few defects and grain boundaries, has a structure controlled in the depth direction, and has good insulating characteristics. It is an object to provide a method for forming a film and a film forming apparatus for the method.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記問題
を解決するために、絶縁膜を構成する2種以上の元素の
各元素を、少なくとも1種のそれら元素を含む気体状分
子を交互に基板表面に吸着せしめることによって、交互
に原子層レベルで積層させ、次いで反応させて所望の絶
縁膜を成膜せしめることに成功し、本発明を完成させる
に至ったのである。これはいわゆる分子層エピタキシー
に関するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have proposed to replace each of two or more elements constituting an insulating film with at least one kind of gaseous molecules containing these elements. By alternately adsorbing them on the substrate surface, they were alternately stacked at the atomic layer level, and subsequently reacted to form a desired insulating film, thereby completing the present invention. This concerns so-called molecular layer epitaxy.

【0006】この発明の絶縁膜の成膜方法は、次の2つ
の主な工程より成る。
The method of forming an insulating film according to the present invention comprises the following two main steps.

【0007】第1の工程は、Al、Si、Ta、又はT
iを含む気体状分子を基板表面に供給し、これを吸着さ
せた後、余った分子を排気するものである。
In the first step, Al, Si, Ta, or T
This is to supply gaseous molecules containing i to the surface of the substrate, adsorb them, and then exhaust excess molecules.

【0008】第2の工程は、O、N、及びFから選ばれ
た少なくとも1種を含む気体状分子を単独で又は組み合
わせて基板表面に供給し、これを先の第1の工程で吸着
していた分子の上に吸着させた後、余った分子を排気す
るものである。
In the second step, gaseous molecules containing at least one selected from O, N, and F are supplied to the substrate surface alone or in combination, and the gaseous molecules are adsorbed in the first step. The remaining molecules are exhausted after being adsorbed on the existing molecules.

【0009】上記の第1及び第2の工程で吸着した分子
間で化学反応が生じ、AlOxy、SiOxy、SiO
xz、SiOxyz、TaOxy、TiOxy(0≦
x、y、z≦2.5)等が生成される。
A chemical reaction occurs between the molecules adsorbed in the first and second steps, and AlO x N y , SiO x N y , SiO 2
x F z, SiO x N y F z, TaO x N y, TiO x N y (0 ≦
x, y, z ≦ 2.5) and so on.

【0010】第2の工程は、例えば、複数の気体状分子
を同時に供給しても良いし、又は一種若しくは複数づつ
の気体状分子を、順次に連続して供給しても、若しくは
供給・吸着・反応・排気した後に他を供給・吸着・反応
・排気しても良い。
In the second step, for example, a plurality of gaseous molecules may be supplied simultaneously, or one or more gaseous molecules may be supplied sequentially and continuously, or supplied / adsorbed.・ After reacting / exhausting, the others may be supplied / adsorbed / reacted / exhausted.

【0011】また、第1の工程及び第2の工程の順序は
制限されず、上記のように第1の工程の後に第2の工程
を行っても、その逆であってもよい。
The order of the first step and the second step is not limited, and the second step may be performed after the first step as described above, or vice versa.

【0012】前記Al、Si、Ta、又はTiを含む気
体状分子は、この金属の水素化物、フッ化物、塩化物、
臭化物、ヨウ化物、アルコキシド、又はアルキル金属の
ような金属化合物等であることが望ましい。また、前記
O、N及びFから選ばれた少なくとも1種を含む気体状
分子は、O2、O3、H2O、H22、N2O、N2、N
3、F2、HF、NF3、又はClF3等であることが望
ましい。
The gaseous molecules containing Al, Si, Ta, or Ti are hydrides, fluorides, chlorides,
A metal compound such as bromide, iodide, alkoxide, or alkyl metal is desirable. The gaseous molecules containing at least one selected from the group consisting of O, N and F are O 2 , O 3 , H 2 O, H 2 O 2 , N 2 O, N 2 , N 2
Desirably, it is H 3 , F 2 , HF, NF 3 , or ClF 3 .

【0013】第1及び第2の工程を1サイクルとして、
これをくり返すことにより、これらの膜が成長し、その
くり返し回数により所望の膜厚の絶縁膜を得ることがで
きる。
The first and second steps are defined as one cycle.
By repeating this, these films grow, and an insulating film having a desired film thickness can be obtained depending on the number of times of the repetition.

【0014】必要に応じて、各工程の間又は各サイクル
の間に、不活性ガスや環元性ガスを導入した後排気す
る、いわゆるパージにより、原料活性ガスの排気をより
確実なものとするとともに、表面を清浄化することが可
能となる。気体状分子の排気時に、パージガスとして用
いる不活性ガス又は還元性ガスについては、例えば、不
活性ガスとしてHe、Ne、Ar、Xe、Kr、又はN
2 ガス等があり、還元ガスとしてH2 等がある。
If necessary, between each step or each cycle, an inert gas or a reducing gas is introduced and then exhausted, that is, so-called purging is performed, so that the exhaust of the raw material active gas is made more reliable. At the same time, the surface can be cleaned. As for an inert gas or a reducing gas used as a purge gas when exhausting gaseous molecules, for example, He, Ne, Ar, Xe, Kr, or N is used as an inert gas.
There are 2 gas or the like, there is H 2 or the like as a reducing gas.

【0015】また、基板温度により前記原料ガスの吸着
量が変化するので、得られた絶縁膜の組成・構造が変化
する。従って、目的とする膜の種類により、適切な基板
温度範囲を選択すれば、高い絶縁性を有する所望の絶縁
膜が得られる。例えば、Alを含む気体状分子として、
Al(CH33 、Oを含む分子としてH2Oを用いた場
合は、実施例に示す如く、基板温度を室温〜300℃、
好ましくは室温〜240℃の範囲内に保つことにより良
好な絶縁性を得ることができる。
Further, since the amount of adsorption of the source gas changes depending on the substrate temperature, the composition and structure of the obtained insulating film changes. Therefore, if an appropriate substrate temperature range is selected according to the type of a target film, a desired insulating film having high insulating properties can be obtained. For example, as gaseous molecules containing Al,
When H 2 O is used as a molecule containing Al (CH 3 ) 3 and O, as shown in Examples, the substrate temperature is from room temperature to 300 ° C.
Preferably, by keeping the temperature in the range of room temperature to 240 ° C., good insulating properties can be obtained.

【0016】本発明の絶縁膜成膜装置は、成膜を行うプ
ロセス室と、該プロセス室内の下方に設けられた基板
と、基板温度を調節するための加熱手段と、該プロセス
室内に原料ガスを導入するためのガス導入系と、該プロ
セス室を排気するための高真空排気用ポンプ及び低真空
排気用ポンプ並びに排気用リザーバータンクを有する排
気系とを有する成膜装置であって、Al、Si、Ta、
又はTiを含む気体状分子を該ガス導入系を用いて基板
表面に供給し、吸着させた後、該排気系を用いて排気す
る工程と、O、N及びFから選ばれた少なくとも1種を
含む気体状分子を単独で又は組み合わせて該ガス導入系
を用いて該基板表面に供給し、吸着させた後、該排気系
を用いて排気する工程とによって上記絶縁膜の成膜方法
を実施するためのものである。
According to the present invention, there is provided an insulating film forming apparatus comprising: a process chamber in which a film is formed; a substrate provided below the process chamber; a heating unit for controlling a temperature of the substrate; A film introduction apparatus having a gas introduction system for introducing a gas, and an exhaust system having a high vacuum exhaust pump and a low vacuum exhaust pump for exhausting the process chamber, and an exhaust reservoir tank. Si, Ta,
Or supplying gaseous molecules containing Ti to the substrate surface using the gas introduction system, adsorbing the gaseous molecules, and exhausting the gas using the exhaust system, and removing at least one selected from O, N, and F. Supplying the gaseous molecules containing the gas molecule alone or in combination to the surface of the substrate using the gas introduction system, adsorbing the gas molecules, and exhausting the gas using the exhaust system. It is for.

【0017】[0017]

【実施例】次ぎに、本発明の実施例を説明するが、本発
明はこれらの実施例により制限されるものではない。
EXAMPLES Next, examples of the present invention will be described, but the present invention is not limited by these examples.

【0018】図1に、以下の実施例で絶縁膜を成膜する
ために用いる成膜装置を示す。図1において、1は成膜
を行なうプロセス室、2はプロセス室中に設けられた成
膜される基板、3は基板2の温度を調節するための加熱
手段であるホットプレートである。バルブ又はマスフロ
ーコントローラー4、リザーバータンク5及びマスフロ
ーコントローラー6からなるガス導入系を適切に制御す
ることにより、プロセス室1内の圧力を短時間で所定の
圧力まで上昇させることが可能である。プロセス室1に
は基板搬送室7が連結されており、ロボットによりプロ
セス室1への基板2の出し入れを行なう。また、排気用
のリザーバータンク8をプロセス室1に連結して設けて
あり、このタンク8を用いることにより高速排気が可能
となる。リザーバータンク8内には、コールドトラップ
を設置してもよい。プロセス室1内の排気は、リザーバ
ータンク8、高真空排気用のポンプ9、低真空用ポンプ
10からなる排気系により行われる。図1では、使用ガ
スの除害設備11が低真空用ポンプ10に接続されてい
るが、この設備は使用する供給ガスの種類によっては不
要となる。
FIG. 1 shows a film forming apparatus used for forming an insulating film in the following embodiments. In FIG. 1, reference numeral 1 denotes a process chamber for forming a film, 2 denotes a substrate provided in the process chamber on which a film is formed, and 3 denotes a hot plate which is a heating means for adjusting the temperature of the substrate 2. By appropriately controlling the gas introduction system including the valve or the mass flow controller 4, the reservoir tank 5, and the mass flow controller 6, the pressure in the process chamber 1 can be increased to a predetermined pressure in a short time. The substrate transfer chamber 7 is connected to the process chamber 1, and the substrate 2 is moved into and out of the process chamber 1 by a robot. Further, an exhaust reservoir tank 8 is provided so as to be connected to the process chamber 1, and by using this tank 8, high-speed exhaust is possible. A cold trap may be provided in the reservoir tank 8. The exhaust in the process chamber 1 is performed by an exhaust system including a reservoir tank 8, a pump 9 for high vacuum exhaust, and a pump 10 for low vacuum. In FIG. 1, the gas removal equipment 11 is connected to the low vacuum pump 10, but this equipment is not required depending on the type of supply gas used.

【0019】実施例1 Alを含むガスとしてAl(CH33 、Oを含むガス
としてH2Oを用いて絶縁膜を形成する例を示す。その
成膜手順は、図2のフローシート中の「成膜プロセス
1」に示すようにして行った。
Embodiment 1 An example in which an insulating film is formed using Al (CH 3 ) 3 as a gas containing Al and H 2 O as a gas containing O will be described. The film forming procedure was performed as shown in "film forming process 1" in the flow sheet of FIG.

【0020】すなわち、図2に示すように、前処理とし
て、基板についてのクリーニング、ベーキング等を行っ
た後、基板搬送室7から基板2をプロセス室1へローデ
ィングし、ホットプレート3により基板温度を120℃
に温調した後、成膜を開始した。ガス導入前のプロセス
室1内の圧力は1×10-3Torrであった。
That is, as shown in FIG. 2, after performing cleaning, baking and the like on the substrate as a pretreatment, the substrate 2 is loaded from the substrate transfer chamber 7 into the process chamber 1 and the substrate temperature is reduced by the hot plate 3. 120 ° C
After the temperature was adjusted, the film formation was started. The pressure in the process chamber 1 before gas introduction was 1 × 10 −3 Torr.

【0021】まず、第1の工程として、プロセス室1内
にAl(CH33を導入し、基板2の表面に吸着させ
た。導入圧力及び時間は、それぞれ1×10-1Tor
r、2sec.であった。ガスの導入・吸着後、余った
Al(CH33をリザーバータンク8を通してポンプ1
0で低真空排気した後、ポンプ9で高真空排気し、約1
0sec.で5×10-3Torrまで排気した。排気速
度が速ければ、リザーバータンク8は不要となる。
First, as a first step, Al (CH 3 ) 3 was introduced into the process chamber 1 and was adsorbed on the surface of the substrate 2. The introduction pressure and time are each 1 × 10 −1 Torr
r, 2 sec. Met. After the introduction and adsorption of the gas, the excess Al (CH 3 ) 3 is passed through the reservoir tank 8 to the pump 1.
0, the pump 9 was evacuated to a low vacuum, and the pump 9 was evacuated to a high vacuum.
0 sec. To 5 × 10 −3 Torr. If the pumping speed is high, the reservoir tank 8 becomes unnecessary.

【0022】次に、第2の工程として、H2Oを1×1
-1Torrで2sec.間導入し、第1の工程で吸着
した分子の上に吸着させた後、上記の場合と同様にして
排気した。約50sec.で5×10-3Torrまで排
気出来た。
Next, as a second step, H 2 O is added to 1 × 1
2 sec. At 0 -1 Torr. Then, after adsorbing on the molecules adsorbed in the first step, the gas was exhausted in the same manner as described above. About 50 sec. And exhausted to 5 × 10 −3 Torr.

【0023】以上の工程を100回くり返した後、基板
2を取り出し、形成された膜の断面をSEM観察したと
ころ、図3に示す如く、約400Åまで成長しているの
がわかった。図3に示されたように、基板の段差部分の
ヒフク性、いわゆるステップカバレージは、極めて優れ
ているのがわかる。また、得られた膜をオージェ電子分
光分析(AES)により分析したところ、組成はAlO
x(x=1.4〜1.6)であり、ほぼストイキオメト
リーな膜となっており、C等の不純物は検出限界以下で
あった。
After repeating the above steps 100 times, the substrate 2 was taken out, and the cross section of the formed film was observed by SEM. As shown in FIG. 3, it was found that the film had grown to about 400 °. As shown in FIG. 3, it can be seen that the hyphenation property at the step portion of the substrate, that is, the step coverage is extremely excellent. The obtained film was analyzed by Auger electron spectroscopy (AES).
x (x = 1.4 to 1.6), and the film was almost stoichiometric, and impurities such as C were below the detection limit.

【0024】次ぎに、形成される膜の絶縁特性を評価す
るため、上記第1及び第2の工程を50回くり返して、
導電性を有するSi基板上に、約200Åの絶縁膜を形
成し、この上に、Al電極を1mmφ×5000Å蒸着
して、試料を作成した。これについて、V−I特性を評
価し、図4にその結果を示す。図4から明らかなよう
に、10-6A/cm2 に達する電界強度で絶縁耐圧を表
わすとすると、この場合は5MV/cmとなり、良好な
絶縁特性を示していることがわかる。
Next, in order to evaluate the insulating properties of the film to be formed, the first and second steps were repeated 50 times.
An insulating film of about 200 ° was formed on a conductive Si substrate, and an Al electrode was deposited thereon by 1 mmφ × 5000 ° to prepare a sample. For this, VI characteristics were evaluated, and the results are shown in FIG. As apparent from FIG. 4, when the breakdown voltage is expressed by an electric field strength reaching 10 −6 A / cm 2 , in this case, it is 5 MV / cm, which indicates that good insulation characteristics are exhibited.

【0025】また、基板温度を室温から300℃まで変
化させ、室温、70℃、120℃、180℃、240℃
及び300℃の各温度において、上記工程を50回くり
返し、成膜した膜について、上記と同様に絶縁耐圧の評
価をした。その結果を、基板温度と絶縁耐性との関係に
ついて図5に、また、基板温度とこの時の膜厚との関係
について図6に示す。絶縁性については、基板温度が室
温〜240℃の間で3MV/cm以上の良好な特性が得
られた。また、膜厚は、室温〜180℃の間でほぼ一定
(150Å以上225Å以下)であるが、室温未満では
急激に低下し、180℃より高温では、逆に急激に上昇
した。
Further, the substrate temperature is changed from room temperature to 300 ° C., and room temperature, 70 ° C., 120 ° C., 180 ° C., 240 ° C.
At each temperature of 300 ° C. and 300 ° C., the above process was repeated 50 times, and the formed film was evaluated for dielectric strength in the same manner as described above. FIG. 5 shows the relationship between the substrate temperature and the insulation resistance, and FIG. 6 shows the relationship between the substrate temperature and the film thickness at this time. As for the insulating properties, good characteristics of 3 MV / cm or more were obtained when the substrate temperature was between room temperature and 240 ° C. The film thickness was almost constant (between 150 ° and 225 °) between room temperature and 180 ° C., but decreased sharply below room temperature, and increased sharply above 180 ° C.

【0026】実施例2 実施例1におけるH2O導入、吸着、排気の工程の後に
Arを導入して排気する工程を入れた点を除いて、実施
例1の工程をくり返した。すなわち、図2のフローシー
ト中の「成膜プロセス2」に示す手順に従って成膜し
た。
Example 2 The procedure of Example 1 was repeated, except that a step of introducing and exhausting Ar was added after the steps of introducing, adsorbing, and exhausting H 2 O in Example 1. That is, a film was formed according to the procedure shown in “film formation process 2” in the flow sheet of FIG.

【0027】この方法によると、H2O排気時間を短縮
することが可能となった。H2Oを1×10-1Torr
で2sec.間導入し、吸着させた後、10sec.間
排気したところ、5×10-2Torrまで排気できた。
次いで、Arを1×10-1Torrで2sec.間導入
し、排気したところ、10sec.間で5×10-3To
rrまで排気できた。従って、Arを用いることによ
り、排気時間を約1/2以下にできた。図5から明らか
なように、絶縁特性は実施例1の場合と同じであった。
According to this method, the H 2 O exhaust time can be reduced. H 2 O at 1 × 10 −1 Torr
2 sec. For 10 sec. During the evacuation, the air could be exhausted to 5 × 10 -2 Torr.
Next, Ar was added at 1 × 10 −1 Torr for 2 sec. When the gas was introduced for 10 seconds and exhausted. Between 5 × 10 -3 To
It was able to exhaust to rr. Therefore, by using Ar, the evacuation time could be reduced to about 1/2 or less. As is clear from FIG. 5, the insulation characteristics were the same as in Example 1.

【0028】実施例3 実施例1において用いたH2Oの代りにO3 を導入し
て、実施例1の工程をくり返して、実施例1と同様に成
膜した。図5から明らかなように、絶縁特性は実施例1
の場合と同じであった。
Example 3 O 3 was introduced in place of H 2 O used in Example 1, and the steps of Example 1 were repeated to form a film in the same manner as in Example 1. As is clear from FIG.
Was the same as

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の成膜装置の実施例の模式的側面図。FIG. 1 is a schematic side view of an embodiment of a film forming apparatus according to the present invention.

【図2】この発明の成膜方法の実施例を説明するための
フローシート。
FIG. 2 is a flow sheet for explaining an embodiment of a film forming method according to the present invention.

【図3】この発明の実施例に基づいて得られた絶縁膜の
成膜状態を示す断面図。
FIG. 3 is a cross-sectional view showing a film formation state of an insulating film obtained based on the embodiment of the present invention.

【図4】この発明の実施例に基づいて得られた絶縁膜に
ついて、V−I特性を示すグラフ。
FIG. 4 is a graph showing VI characteristics of an insulating film obtained based on an example of the present invention.

【図5】この発明の実施例に基づいて得られた絶縁膜に
ついて、絶縁耐圧の基板温度依存性を示すグラフ。
FIG. 5 is a graph showing the substrate temperature dependence of the dielectric strength of the insulating film obtained based on the embodiment of the present invention.

【図6】この発明の実施例に基づいて得られた絶縁膜に
ついて、基板温度と膜厚との関係を示すグラフ。
FIG. 6 is a graph showing a relationship between a substrate temperature and a film thickness of an insulating film obtained based on an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 プロセス室 2 基板 3 ホットプレート 4、5、6 ガス
供給系 7 基板搬送室 8 リザーバータ
ンク 9 高真空ポンプ 10 低真空ポンプ 11 除害装置
DESCRIPTION OF SYMBOLS 1 Process room 2 Substrate 3 Hot plate 4, 5, 6 Gas supply system 7 Substrate transfer room 8 Reservoir tank 9 High vacuum pump 10 Low vacuum pump 11 Detoxification device

フロントページの続き (72)発明者 田熊 康宏 千葉県山武郡山武町横田523 日本真空技 術株式会社千葉超材料研究所内 (72)発明者 樋口 靖 千葉県山武郡山武町横田523 日本真空技 術株式会社千葉超材料研究所内 (72)発明者 佐保田 毅 千葉県山武郡山武町横田523 日本真空技 術株式会社千葉超材料研究所内 (72)発明者 池田 智 千葉県山武郡山武町横田523 日本真空技 術株式会社千葉超材料研究所内 (72)発明者 太田 賀文 千葉県山武郡山武町横田523 日本真空技 術株式会社千葉超材料研究所内 (72)発明者 関 伸彰 神奈川県茅ヶ崎市萩園2500番地 日本真空 技術株式会社内 (72)発明者 中村 久三 神奈川県茅ヶ崎市萩園2500番地 日本真空 技術株式会社内 Fターム(参考) 5F045 AA06 AA15 AB31 AB34 AC02 AC08 AC11 AC12 AD04 AD05 AD06 AD07 BB04 BB16 BB17 EB08 EB13 EE14 EG01 EG03 EG05 EG08 EN04 5F058 BA06 BC11 BC20 BE01 BF04 BF24 BF27 BF29 BF30 BF34 BF37 BG02 Continued on the front page (72) Inventor Yasuhiro Taguma 523 Yokota, Yamatake-cho, Yamatake-gun, Chiba Japan Nippon Vacuum Engineering Co., Ltd. (72) Inventor Yasushi Higuchi 523 Yokota, Yamatake-cho, Yamatake-gun, Chiba Japan Nippon Vacuum Technology Co., Ltd. (72) Inventor Takeshi Sahoda 523, Yamatake-cho, Yamatake-gun, Chiba Prefecture Japan Vacuum Engineering Co., Ltd. (72) Inventor Satoshi Ikeda 523 Yokota, Yamatake-cho, Yamatake-gun, Chiba Japan Vacuum Engineering (72) Inventor Kabun Ota 523 Yokota, Yamatake-cho, Sanmu-gun, Chiba Prefecture Japan Vacuum Engineering Co., Ltd. (72) Nobuaki Seki 2500, Hagizono, Chigasaki-shi, Kanagawa Japan Vacuum Technology Co., Ltd. (72) Inventor Hisazo Nakamura 2500 Hagizono, Chigasaki-shi, Kanagawa Japan F-term (reference) 5F045 AA06 AA15 AB31 AB34 AC02 AC08 AC11 AC12 AD04 AD05 AD06 AD07 BB04 BB16 BB17 EB08 EB13 EE14 EG01 EG03 EG05 EG08 EN04 5F058 BA06 BC11 BC20 BE01 BF04 BF24 BF27 BF29 BF30 BF34 BF37 BG02

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Al、Si、Ta、又はTiを含む気体
状分子を基板表面に供給し、吸着させた後排気する工程
と、O、N及びFから選ばれた少なくとも1種を含む気
体状分子を単独で又は組み合わせて該基板表面に供給
し、吸着させた後排気する工程とを含むことを特徴とす
る絶縁膜の成膜方法。
A step of supplying gaseous molecules containing Al, Si, Ta, or Ti to the surface of the substrate, adsorbing the gaseous molecules, and exhausting the gaseous molecules; Supplying the molecules alone or in combination to the surface of the substrate, adsorbing the molecules, and exhausting the molecules.
【請求項2】 前記Al、Si、Ta、又はTiを含む
気体状分子が、この金属の水素化物、フッ化物、塩化
物、臭化物、ヨウ化物、アルコキシド、又はアルキル金
属である請求項1記載の絶縁膜の成膜方法。
2. The method according to claim 1, wherein the gaseous molecule containing Al, Si, Ta, or Ti is a hydride, fluoride, chloride, bromide, iodide, alkoxide, or alkyl metal of the metal. A method for forming an insulating film.
【請求項3】 前記O、N及びFから選ばれた少なくと
も1種を含む気体状分子が、O2、O3、H2O、H
22、N2O、N2、NH3、F2、HF、NF3、又はC
lF3である請求項1又は2記載の絶縁膜の成膜方法。
3. The gaseous molecule containing at least one kind selected from O, N and F is O 2 , O 3 , H 2 O, H
2 O 2 , N 2 O, N 2 , NH 3 , F 2 , HF, NF 3 , or C
The method for forming an insulating film according to claim 1, wherein the method is 1F 3 .
【請求項4】 前記基板の温度を室温〜300℃の範囲
内に保つことを特徴とする請求項1〜3のいずれかに記
載の絶縁膜の成膜方法。
4. The method for forming an insulating film according to claim 1, wherein the temperature of the substrate is kept in a range from room temperature to 300 ° C.
【請求項5】 前記気体状分子の排気時に、パージガス
として不活性ガス又は還元性ガスを用いることを特徴と
する請求項1〜4のいずれかに記載の絶縁膜の成膜方
法。
5. The method for forming an insulating film according to claim 1, wherein an inert gas or a reducing gas is used as a purge gas when the gaseous molecules are exhausted.
【請求項6】 前記不活性ガスがHe、Ne、Ar、X
e、Kr、又はN2であり、前記還元ガスがH2 である
請求項5記載の絶縁膜の成膜方法。
6. The inert gas is He, Ne, Ar, X
e, Kr, or a N 2, deposition method of the insulating film of claim 5, wherein said reducing gas is H 2.
【請求項7】 前記Al、Si、Ta、又はTiを含む
気体状分子を基板表面に供給し、吸着させた後排気する
工程を先に行うことを特徴とする請求項1〜6のいずれ
かに記載の絶縁膜の成膜方法。
7. The method according to claim 1, wherein the step of supplying gaseous molecules containing Al, Si, Ta, or Ti to the surface of the substrate, adsorbing the gaseous molecules, and exhausting the gaseous molecules is performed first. 3. The method for forming an insulating film according to item 1.
【請求項8】 前記O、N及びFから選ばれた少なくと
も1種を含む気体状分子を基板表面に供給し、吸着させ
た後排気する工程を先に行うことを特徴とする請求項1
〜6のいずれかに記載の絶縁膜の成膜方法。
8. The method according to claim 1, wherein the step of supplying gaseous molecules containing at least one selected from O, N and F to the surface of the substrate, adsorbing the gaseous molecules, and exhausting the gaseous molecules is performed first.
7. The method for forming an insulating film according to any one of items 1 to 6.
【請求項9】 成膜を行うプロセス室と、該プロセス室
内の下方に設けられた基板と、基板温度を調節するため
の加熱手段と、該プロセス室内に原料ガスを導入するた
めのガス導入系と、該プロセス室を排気するための高真
空排気用ポンプ及び低真空排気用ポンプ並びに排気用リ
ザーバータンクを有する排気系とを有する絶縁膜の成膜
装置であって、Al、Si、Ta、又はTiを含む気体
状分子を該ガス導入系を用いて基板表面に供給し、吸着
させた後、該排気系を用いて排気する工程と、O、N及
びFから選ばれた少なくとも1種を含む気体状分子を単
独で又は組み合わせて該ガス導入系を用いて該基板表面
に供給し、吸着させた後、該排気系を用いて排気する工
程とによって請求項第1〜8のいずれかに記載の絶縁膜
の成膜方法を実施するための成膜装置。
9. A process chamber for forming a film, a substrate provided below the process chamber, a heating unit for adjusting a temperature of the substrate, and a gas introduction system for introducing a source gas into the process chamber. And an exhaust system having a high-vacuum pump and a low-vacuum pump and an exhaust reservoir tank for evacuating the process chamber, wherein the insulating film is formed of Al, Si, Ta, or Supplying a gaseous molecule containing Ti to the substrate surface using the gas introduction system, adsorbing the gaseous molecule, and exhausting the gas using the exhaust system, and at least one selected from O, N and F Supplying the gaseous molecules alone or in combination to the substrate surface using the gas introduction system, adsorbing the gaseous molecules, and exhausting the gas using the exhaust system. Of the insulating film Deposition equipment for
JP2000063659A 2000-03-08 2000-03-08 Insulating film forming method and film forming apparatus Expired - Lifetime JP4505098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000063659A JP4505098B2 (en) 2000-03-08 2000-03-08 Insulating film forming method and film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000063659A JP4505098B2 (en) 2000-03-08 2000-03-08 Insulating film forming method and film forming apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010066469A Division JP2010199593A (en) 2010-03-23 2010-03-23 Method of forming insulating film, and film forming device thereof

Publications (2)

Publication Number Publication Date
JP2001250823A true JP2001250823A (en) 2001-09-14
JP4505098B2 JP4505098B2 (en) 2010-07-14

Family

ID=18583489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000063659A Expired - Lifetime JP4505098B2 (en) 2000-03-08 2000-03-08 Insulating film forming method and film forming apparatus

Country Status (1)

Country Link
JP (1) JP4505098B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003026019A1 (en) * 2001-09-12 2003-03-27 Nec Corporation Semiconductor device and production method therefor
JP2005523384A (en) * 2002-04-19 2005-08-04 マットソン テクノロジイ インコーポレイテッド System for depositing films on substrates using low vapor pressure gas precursors
JP2006165537A (en) * 2004-11-19 2006-06-22 Asm Internatl Nv Manufacturing method of metal oxide film at low temperature
JP2010199593A (en) * 2010-03-23 2010-09-09 Ulvac Japan Ltd Method of forming insulating film, and film forming device thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179423A (en) * 1988-01-08 1989-07-17 Nec Corp Manufacture of insulating thin film
JPH08288225A (en) * 1995-04-18 1996-11-01 Furontetsuku:Kk Gas introduction pipe device
JP2000054134A (en) * 1998-08-07 2000-02-22 Samsung Electronics Co Ltd Production of thin film using atom-layer vapor deposition
JP2000058543A (en) * 1998-08-10 2000-02-25 Tokyo Electron Ltd Method and device for oxidation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179423A (en) * 1988-01-08 1989-07-17 Nec Corp Manufacture of insulating thin film
JPH08288225A (en) * 1995-04-18 1996-11-01 Furontetsuku:Kk Gas introduction pipe device
JP2000054134A (en) * 1998-08-07 2000-02-22 Samsung Electronics Co Ltd Production of thin film using atom-layer vapor deposition
JP2000058543A (en) * 1998-08-10 2000-02-25 Tokyo Electron Ltd Method and device for oxidation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003026019A1 (en) * 2001-09-12 2003-03-27 Nec Corporation Semiconductor device and production method therefor
US7385265B2 (en) 2001-09-12 2008-06-10 Nec Corporation High dielectric constant MOSFET device
JP2005523384A (en) * 2002-04-19 2005-08-04 マットソン テクノロジイ インコーポレイテッド System for depositing films on substrates using low vapor pressure gas precursors
JP2006165537A (en) * 2004-11-19 2006-06-22 Asm Internatl Nv Manufacturing method of metal oxide film at low temperature
JP2010199593A (en) * 2010-03-23 2010-09-09 Ulvac Japan Ltd Method of forming insulating film, and film forming device thereof

Also Published As

Publication number Publication date
JP4505098B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
CN106591801B (en) Method for depositing dielectric film in groove by PEALD
JP6095825B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
US6124158A (en) Method of reducing carbon contamination of a thin dielectric film by using gaseous organic precursors, inert gas, and ozone to react with carbon contaminants
KR100539274B1 (en) Method for depositing cobalt layer
JP5722595B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP5038659B2 (en) Method for forming tetragonal structure zirconium oxide film and method for manufacturing capacitor having the film
CN1145196C (en) Method of manufacturing semiconductor structure for lowering leackage current density
US8440268B2 (en) Method and apparatus for growing plasma atomic layer
US20050084610A1 (en) Atmospheric pressure molecular layer CVD
TW201408810A (en) Methods for depositing oxygen deficient metal films
US20060014398A1 (en) Method of forming dielectric layer using plasma enhanced atomic layer deposition technique
JP2002164345A (en) Method of depositing film
CN109075072B (en) Cleaning method, semiconductor device manufacturing method, substrate processing apparatus, and program
JP2001250823A (en) Method and device for forming insulating film
KR100425463B1 (en) Method for forming tantalum pentoxide film and dielectric film under activated vapor containing oxygen
JP7109397B2 (en) Deposition method
US20040198029A1 (en) Process for producing thin oxide film and production apparatus
JPH0517877A (en) Method and apparatus for production of oxide thin film
US20160002782A1 (en) Catalytic Atomic Layer Deposition Of Films Comprising SiOC
US8685494B2 (en) ALD method of forming thin film comprising a metal
KR20070023477A (en) Method of manufacturing thin film of vanadium oxide
JP2010199593A (en) Method of forming insulating film, and film forming device thereof
US20020197828A1 (en) Method and apparatus for manufacturing a semiconductor device and processing a substrate
CN111133127A (en) Methods, materials and processes for native oxide removal and dielectric oxide regrowth for better biosensor performance
WO2021060109A1 (en) Film formation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4505098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160430

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term