JP4504271B2 - Method for producing indium oxide-zinc oxide sintered target - Google Patents

Method for producing indium oxide-zinc oxide sintered target Download PDF

Info

Publication number
JP4504271B2
JP4504271B2 JP2005192739A JP2005192739A JP4504271B2 JP 4504271 B2 JP4504271 B2 JP 4504271B2 JP 2005192739 A JP2005192739 A JP 2005192739A JP 2005192739 A JP2005192739 A JP 2005192739A JP 4504271 B2 JP4504271 B2 JP 4504271B2
Authority
JP
Japan
Prior art keywords
powder
zinc oxide
indium oxide
oxide
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005192739A
Other languages
Japanese (ja)
Other versions
JP2007009284A (en
Inventor
一吉 井上
暁 海上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2005192739A priority Critical patent/JP4504271B2/en
Publication of JP2007009284A publication Critical patent/JP2007009284A/en
Application granted granted Critical
Publication of JP4504271B2 publication Critical patent/JP4504271B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、酸化インジウム−酸化亜鉛系焼結体ターゲットの製造方法に関し、特に、大型サイズの焼結体であっても均一でむらがなく、高密度でしかもホワイトスポット等の色むらが少ないものが得られ、歩留りが著しく向上する酸化インジウム−酸化亜鉛系焼結体ターゲットの製造方法に関するものである。   The present invention relates to a method for producing a target of an indium oxide-zinc oxide sintered body, and in particular, even a large size sintered body is uniform and has no unevenness, high density and little color unevenness such as white spots. Is obtained, and the manufacturing method of the indium oxide-zinc oxide based sintered compact target in which the yield is remarkably improved.

現在、液相ディスプレイ装置(LCD)を始めとする表示ディバイスには透明導電膜材料として酸化インジウム−酸化錫(ITO)が広く用いられている。ITO透明導電膜は、通常ITO焼結体ターゲットを用いてスパッタ法で作製されている。このITO膜は、低抵抗で透明性に優れ、エッチング性が良いなど優れた材料であるが、エッチングに強酸が必要であったり、TFT−LCDに用いた場合、金属電極との間で電池反応を起こしたり、耐湿性が低いという問題を有していた。
この耐湿性を改善し、かつITOと同等の導電性と透明性を有する材料として酸化インジウム−酸化亜鉛系の材料の焼結体ターゲットおよびその製造方法が特許文献1に提案されている。この特許文献1に開示されている焼結体の製造方法は比較的小さい物品を対象としているが、実際の工業生産で用いられる焼結体ターゲットの大きさはこれよりはるかに大きい。このような従来の製造方法で大型サイズ、例えば5インチ×15インチ以上の焼結体を作製した場合、十分に高密度な焼結体(相対密度95%以上)が得られない、又は、焼結体の周辺部と中央部で色むらが発生する、などの問題が残されている。特に色むらのあるターゲットをスパッタに用いると、得られる膜の抵抗値にばらつきが生じるため、実際には焼結体の外側部分を研削して色むら部分を取り除いてからターゲットとして使用しているのが現状である。
この問題を改善し、かつITOと同等の導電性と透明性を有する材料として酸化インジウム−酸化亜鉛系の材料の焼結体ターゲット及びその製造方法が特許文献2に提案されている。特許文献2に開示されている焼結体の製造方法は、原料の酸化亜鉛を400〜800℃で仮焼して、粉砕して使用するものであるが、この場合には、焼結体ターゲットの体表面にホワイトスポット(白色斑点)と呼ばれる色むらが発生する、などの問題が残されている。特にホワイトスポットと呼ばれる色むらのあるターゲットをスパッタに用いると、スパッタリング途中でアーキングなどの異常放電を起こして成膜出来なくなるなどの問題が発生する場合がある。ここで、ホワイトスポットとは、周辺部より色が薄く、0.5〜5mmφ程度の直径を有しており、この部分の抵抗値は周囲の抵抗値より大きい場合がある。
特開平6−234565号公報 特開平9−111444号公報
Currently, indium oxide-tin oxide (ITO) is widely used as a transparent conductive film material for display devices such as liquid phase display devices (LCD). The ITO transparent conductive film is usually produced by sputtering using an ITO sintered body target. This ITO film is an excellent material such as low resistance, excellent transparency, and good etching properties. However, when strong acid is required for etching or when it is used for TFT-LCD, battery reaction with metal electrodes And has a problem of low moisture resistance.
Patent Document 1 proposes a sintered body target of an indium oxide-zinc oxide based material as a material having improved moisture resistance and having the same conductivity and transparency as ITO, and a method for producing the same. The method for manufacturing a sintered body disclosed in Patent Document 1 targets relatively small articles, but the size of a sintered body target used in actual industrial production is much larger than this. When a sintered body having a large size, for example, 5 inches × 15 inches or more is produced by such a conventional manufacturing method, a sufficiently high density sintered body (relative density of 95% or more) cannot be obtained or sintered. Problems remain such as uneven color in the periphery and center of the ligature. In particular, if a target with uneven color is used for sputtering, the resistance value of the resulting film will vary, so in practice, the outer part of the sintered body is ground to remove the uneven color part and then used as the target. is the current situation.
Patent Document 2 proposes a sintered body target of an indium oxide-zinc oxide based material as a material that improves this problem and has the same conductivity and transparency as ITO, and a manufacturing method thereof. The method for producing a sintered body disclosed in Patent Document 2 is a method in which the raw material zinc oxide is calcined at 400 to 800 ° C. and pulverized for use. In this case, the sintered body target is used. Problems such as color unevenness called white spots (white spots) remain on the body surface. In particular, when an uneven color target called a white spot is used for sputtering, an abnormal discharge such as arcing may occur during the sputtering, which may cause a problem that the film cannot be formed. Here, the white spot is lighter in color than the peripheral part and has a diameter of about 0.5 to 5 mmφ, and the resistance value of this part may be larger than the surrounding resistance value.
JP-A-6-234565 JP-A-9-111444

本発明は、前記の課題を解決するためになされたもので、大型サイズの焼結体を作製した場合でも相対密度95%以上の高密度のものが得られ、かつ焼結体ターゲット表面のホワイトスポットと呼ばれる色むらの発生を抑制した酸化インジウム−酸化亜鉛系焼結体ターゲットの製造方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems. Even when a large-sized sintered body is produced, a high-density one having a relative density of 95% or more is obtained, and the surface of the sintered body target is white. It aims at providing the manufacturing method of the indium oxide zinc oxide type sintered compact target which suppressed generation | occurrence | production of the color nonuniformity called a spot.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、出発原料として酸化インジウム−酸化亜鉛粉末を用い、以下の方法にて、酸化インジウム−酸化亜鉛系焼結体ターゲットの製造することにより前記の目的を達成することを見出し本発明を完成したものである。   As a result of intensive studies to achieve the above object, the inventors of the present invention used an indium oxide-zinc oxide powder as a starting material and manufactured an indium oxide-zinc oxide based sintered target by the following method. As a result, the inventors have found that the above object can be achieved and completed the present invention.

すなわち、本発明は、以下の内容を特徴とするものである。
(1)酸化インジウム粉末と酸化亜鉛粉末の混合粉末(酸化インジウム−酸化亜鉛粉末を400℃〜800℃で仮焼し、得られた酸化インジウムと酸化亜鉛が結合した粉末(酸化インジウム−酸化亜鉛仮焼粉末をプレス成形後、酸素雰囲気下で1250℃〜1450℃で焼結する酸化インジウム−酸化亜鉛系焼結体ターゲットの製造方法。
(2)酸化インジウム−酸化亜鉛粉末を400℃〜800℃で仮焼し、得られた酸化インジウム−酸化亜鉛仮焼粉末を粉砕処理した後に酸化インジウム粉末を混合、又は得られた酸化インジウム−酸化亜鉛仮焼粉末に酸化インジウム粉末を混合した後に粉砕処理し、この混合粉末をプレス成形後、酸素雰囲気下で1250℃〜1450℃で焼結する酸化インジウム−酸化亜鉛系焼結体ターゲットの製造方法。
(3)前記酸化インジウム−酸化亜鉛仮焼粉末のBET表面積が4〜10m2/gである前記(1)又は(2)に記載の酸化インジウム−酸化亜鉛系焼結体ターゲットの製造方法。
前記酸化インジウム−酸化亜鉛仮焼粉末中の酸化インジウム含有量が20〜95重量%である前記(1)又は(2)に記載の酸化インジウム−酸化亜鉛系焼結体ターゲットの製造方法。
That is, the present invention is characterized by the following contents.
(1) A mixed powder of indium oxide powder and zinc oxide powder ( indium oxide-zinc oxide powder ) is calcined at 400 ° C. to 800 ° C., and the obtained powder indium oxide and zinc oxide combined ( indium oxide-zinc oxide) after press forming a calcined powder), indium oxide sintered at 1250 ° C. to 1450 ° C. in an oxygen atmosphere - zinc oxide-based sintered body target manufacturing method.
(2) Indium oxide-zinc oxide powder is calcined at 400 ° C. to 800 ° C., and the obtained indium oxide-zinc oxide calcined powder is pulverized and then mixed with indium oxide powder , or obtained indium oxide-oxidation A method for producing an indium oxide-zinc oxide sintered body target in which indium oxide powder is mixed with calcined zinc powder and then pulverized, and the mixed powder is press-molded and sintered at 1250 ° C. to 1450 ° C. in an oxygen atmosphere. .
(3) The method for producing an indium oxide-zinc oxide based sintered target according to (1) or (2), wherein the indium oxide-zinc oxide calcined powder has a BET surface area of 4 to 10 m 2 / g.
(4) the indium oxide - method of manufacturing a zinc oxide-based sintered body target - indium oxide according to the indium oxide content of the zinc oxide calcined powder is 20 to 95% by weight (1) or (2) .

本発明の酸化インジウム−酸化亜鉛系焼結体ターゲットの製造方法よると、大型サイズの焼結体を作製した場合でもであっても均一で色むらがなく、相対密度95%以上の高密度のものが得られ、かつ焼結体ターゲット表面のホワイトスポット等の色むらの発生を抑制できる。   According to the method for producing an indium oxide-zinc oxide based sintered body target of the present invention, even when a large size sintered body is produced, there is no color unevenness and a relative density of 95% or more is high. Can be obtained, and color unevenness such as white spots on the surface of the sintered compact target can be suppressed.

以下、本発明の製造方法を詳細に説明する。
本発明の酸化インジウム−酸化亜鉛系焼結体ターゲットの製造方法は、酸化インジウム(In23)−酸化亜鉛(ZnO)粉末を400℃〜800℃で仮焼し、得られた酸化インジウム−酸化亜鉛仮焼粉末をプレス成形後、1250℃〜1450℃で焼結する。
Hereinafter, the production method of the present invention will be described in detail.
The indium oxide-zinc oxide based sintered body target manufacturing method of the present invention is obtained by calcining indium oxide (In 2 O 3 ) -zinc oxide (ZnO) powder at 400 ° C. to 800 ° C. After the zinc oxide calcined powder is press-molded, it is sintered at 1250 ° C to 1450 ° C.

本発明においては、まず、酸化インジウム−酸化亜鉛粉末を仮焼する。酸化亜鉛粉末のみを仮焼した場合、次工程の粉砕工程で、粉砕できない粉が混入したり、二次粒子が成長したりした原料粉末が混入した場合、ターゲット表面にホワイトスポット(白色斑点)と呼ばれる色むらが出来易くなる。
酸化インジウム−酸化亜鉛粉末を仮焼することにより、粉末の混合性が良くなり次工程での粉砕が容易になったり、酸化亜鉛が完全に酸化されて亜酸化体が除かれ、亜鉛が昇華しにくくなる。仮焼温度は通常400〜800℃、好ましくは400〜600℃である。仮焼温度が800℃以上と高くなると酸化インジウムと酸化亜鉛の反応が起こり粒子の凝結が強くなり、その後の粉砕を行う場合に粉砕がしにくくなる。仮焼時間は2時間以上が好ましい。
In the present invention, first, indium oxide-zinc oxide powder is calcined. When only zinc oxide powder is calcined, in the next pulverization process, when powder that cannot be pulverized or raw material powder that has grown secondary particles is mixed, white spots (white spots) on the target surface Color unevenness called becomes easy to be made.
By calcining the indium oxide-zinc oxide powder, the powder mixability is improved and pulverization in the next process is facilitated, or the zinc oxide is completely oxidized to remove the suboxide and the zinc is sublimated. It becomes difficult. The calcination temperature is usually 400 to 800 ° C, preferably 400 to 600 ° C. When the calcining temperature is as high as 800 ° C. or higher, the reaction between indium oxide and zinc oxide occurs, and the particles are strongly condensed. When the subsequent pulverization is performed, the pulverization becomes difficult. The calcining time is preferably 2 hours or more.

また、本発明においては、仮焼粉砕後の酸化インジウム−酸化亜鉛はBET表面積が4〜10m2/gの範囲であればホワイトスポットが効果的に抑制でき、BET表面積が6〜8m2/gであるとさらに好ましい。
さらに、酸化インジウム−酸化亜鉛仮焼粉末中の酸化インジウム含有量が20〜95重量%であると、高密度化(相対密度で95%以上。ここで、相対密度は、酸化インジウム、酸化亜鉛の真密度を重量配分して求めた理論密度を100%とした相対値である。)及びホワイトスポット等の色むら抑制の効果が特に著しく表われる。
In the present invention, indium oxide after calcination milling - White spot so long as zinc oxide BET surface area of 4~10m 2 / g can be effectively suppressed, a BET surface area of 6-8 m 2 / g Is more preferable.
Furthermore, when the content of indium oxide in the indium oxide-zinc oxide calcined powder is 20 to 95% by weight, the density is increased (relative density is 95% or more. Here, the relative density is indium oxide or zinc oxide. This is a relative value with the theoretical density obtained by weight distribution of the true density as 100%.) And the effect of suppressing color unevenness such as white spots is particularly remarkable.

仮焼後、得られた酸化インジウム−酸化亜鉛仮焼粉末を、プレス成形する。プレス成形の条件としては、特に制限されないが、例えば、冷間静水圧(CIP)等の手段によりプレス成形を行えばよい。   After the calcination, the obtained indium oxide-zinc oxide calcination powder is press-molded. The conditions for press molding are not particularly limited, but for example, press molding may be performed by means such as cold isostatic pressure (CIP).

プレス成形後、得られた成型体を1250℃〜1450℃の温度で焼結する。この焼結を行う際に、雰囲気を酸素雰囲気にしておくことにより十分な高密度(相対密度95%以上)を得ることを確実にすることができ、特に800℃〜焼結温度(1250℃〜1450℃)の間の酸素濃度が重要である。焼結温度が1250℃未満では焼結体は高密度とはならず、ターゲット表面にホワイトスポットが発生したり、色むらが発生したりすることがある。また、1450℃を越えるとZnOが昇華して組成むらや組成ずれが生じる。焼結時間は2時間以上が好ましい。
また、高温になると酸化インジウム−酸化亜鉛の酸化物が酸素を遊離する場合があり、酸素雰囲気下で焼結を行うことによりこの酸素の遊離を抑えることが出来る。
その後、得られた焼結体は平面研削による面出し加工及び色むら部分除去のための外周部切断の機械加工を経て製品としてのターゲットが得られる。
After the press molding, the obtained molded body is sintered at a temperature of 1250 ° C to 1450 ° C. When performing this sintering, it is possible to ensure that a sufficiently high density (relative density of 95% or more) is obtained by keeping the atmosphere in an oxygen atmosphere, and in particular, 800 ° C. to sintering temperature (1250 ° C. to The oxygen concentration between 1450 ° C.) is important. When the sintering temperature is less than 1250 ° C., the sintered body does not have a high density, and white spots may be generated on the target surface or color unevenness may occur. On the other hand, when the temperature exceeds 1450 ° C., ZnO is sublimated, resulting in uneven composition and compositional deviation. The sintering time is preferably 2 hours or more.
In addition, indium oxide-zinc oxide oxide may liberate oxygen at high temperatures, and the liberation of oxygen can be suppressed by sintering in an oxygen atmosphere.
Thereafter, the obtained sintered body is subjected to surface processing by surface grinding and machining of the outer peripheral portion for removing the uneven color portion to obtain a target as a product.

また、本発明は、上記方法において、酸化インジウム−酸化亜鉛粉末を仮焼した後、得られた酸化インジウム−酸化亜鉛仮焼粉末を粉砕処理した後に酸化インジウム(In23)粉末を混合、又は得られた酸化インジウム−酸化亜鉛仮焼粉末に酸化インジウム粉末を混合した後に粉砕処理する工程を有していても、ホワイトスポット等の色むら抑制の他、前記と同様の効果が得られ好ましい。
酸化インジウム−酸化亜鉛仮焼粉末の粉砕、及び酸化インジウム粉末の混合方法としては、特に限定されず、ボールミル等の公知の方法によればよく、粉砕と混合を同時に行ってもよく、別々に行ってもよい。混合後の酸化インジウムと酸化亜鉛との混合割合は特に限定されないが、20:80〜95:5であると好ましい。また、これらの粉末の混合中又は粉砕混合後に、必要に応じてポリビニルアルコール(PVA)水溶液等のバインダーを添加してもよい。
また、前記粉砕・混合工程を行う場合にも、酸化インジウム−酸化亜鉛仮焼粉末中の酸化インジウム含有量が20〜95重量%であると、高密度化(相対密度で95%以上)及びホワイトスポット等の色むら抑制の効果が特に著しく表われる。
Further, in the above method, the present invention, after calcining the indium oxide-zinc oxide powder in the above method, pulverizing the obtained indium oxide-zinc oxide calcined powder, and then mixing indium oxide (In 2 O 3 ) powder, Alternatively, even if the obtained indium oxide-zinc oxide calcined powder has a step of pulverizing after mixing indium oxide powder, the same effect as described above is obtained in addition to suppressing color unevenness such as white spots. .
The method for pulverizing the indium oxide-zinc oxide calcined powder and the method for mixing the indium oxide powder is not particularly limited, and may be a known method such as a ball mill, and the pulverization and mixing may be performed simultaneously or separately. May be. The mixing ratio of indium oxide and zinc oxide after mixing is not particularly limited, but is preferably 20:80 to 95: 5. Moreover, you may add binders, such as polyvinyl alcohol (PVA) aqueous solution, as needed during the mixing of these powders, or after grinding | pulverization mixing.
Further, when the pulverization / mixing step is performed, if the indium oxide content in the indium oxide-zinc oxide calcined powder is 20 to 95% by weight, the density is increased (relative density is 95% or more) and white. The effect of suppressing color unevenness such as spots is particularly remarkable.

次に、実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
実施例1〜4及び比較例1〜2
表1に記載した酸化インジウム−酸化亜鉛粉末の混合比及び仮焼温度で2時間仮焼後、得られた酸化インジウム−酸化亜鉛仮焼粉末のBET表面積を測定した。その後、仮焼粉末をジルコニア(ZrO2)ボールを用いたボールミルで乾式で24時間混合した。次いで、この混合物にバインダーとしてPVA水溶液を加え、6インチ×20インチ×16mm厚サイズの平板状に圧力800kgf/cm2で金型を用いてプレス成形した。得られた成形体を焼結時間8時間、大気圧中で酸素を導入しながら表1に記載の焼結温度で焼成し焼結体を得た。
なお、比較例1及び2については、仮焼を行わなかった。
得られた焼結体の相対密度を測定し、ホワイトスポット(白色斑点)の判定については、研削加工により所定の厚みまで表面研削後、目視にて径0.5mmφ以上のホワイトスポットの数を数えた。それらの結果を表1に示す。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Examples 1-4 and Comparative Examples 1-2
After calcining for 2 hours at the indium oxide-zinc oxide powder mixing ratio and calcining temperature described in Table 1, the BET surface area of the obtained indium oxide-zinc oxide calcined powder was measured. Thereafter, the calcined powder was mixed in a dry manner in a ball mill using zirconia (ZrO 2 ) balls for 24 hours. Next, an aqueous PVA solution was added as a binder to this mixture, and press-molded into a flat plate having a size of 6 inches × 20 inches × 16 mm using a mold at a pressure of 800 kgf / cm 2 . The obtained compact was fired at the sintering temperature shown in Table 1 while introducing oxygen at atmospheric pressure for a sintering time of 8 hours to obtain a sintered body.
In Comparative Examples 1 and 2, no calcination was performed.
The relative density of the obtained sintered body is measured, and for the determination of white spots (white spots), the number of white spots having a diameter of 0.5 mmφ or more is visually counted after surface grinding to a predetermined thickness by grinding. It was. The results are shown in Table 1.

Figure 0004504271
Figure 0004504271

表1に示すように、実施例1〜4の焼結体はいずれも相対密度が高く、ホワイトスポットも発生していないのに対し、仮焼を行わなかった比較例1〜2では、高密度が得られる場合もあるがホワイトスポットの多いものであった。   As shown in Table 1, all of the sintered bodies of Examples 1 to 4 have a high relative density and no white spots are generated. In some cases, there were many white spots.

実施例5〜8及び比較例3〜5
表2に記載した酸化インジウム−酸化亜鉛粉末を表2に記載の仮焼温度で2時間仮焼後、得られた酸化インジウム−酸化亜鉛仮焼粉末のBET表面積を測定した。その後、得られた仮焼粉末に酸化インジウム粉末を加えて表2に記載の酸化インジウム(In23)量となるように混合し、ジルコニア(ZrO2)ボールを用いたボールミルで乾式で24時間混合した。次いで、この混合物にバインダーとしてPVA水溶液を加え、湿式粉砕を行い、スプレードライヤーにて造粒した後、8インチ×20インチ×18mm厚サイズの平板状に圧力800kgf/cm2で金型を用いてプレス成形した。得られた成形体を焼結時間8時間、大気中で表2に記載の焼結温度で焼成し、焼結体を得た。
なお、比較例3及び4については、出発原料として酸化インジウム−酸化亜鉛粉末の代わりに酸化亜鉛粉末を用い、比較例5では仮焼した酸化インジウム及び酸化亜鉛粉末を用いず、仮焼していない粉末のみを用いた。
得られた焼結体の相対密度を測定し、ホワイトスポット(白色斑点)の判定については、研削加工により所定の厚みまで表面研削後、目視にて径0.5mmφ以上のホワイトスポットの数を数えた。それらの結果を表2に示す。
Examples 5-8 and Comparative Examples 3-5
The indium oxide-zinc oxide powder described in Table 2 was calcined at the calcining temperature described in Table 2 for 2 hours, and then the BET surface area of the obtained indium oxide-zinc oxide calcined powder was measured. Thereafter, indium oxide powder is added to the obtained calcined powder and mixed so that the amount of indium oxide (In 2 O 3 ) shown in Table 2 is reached, and then dried in a ball mill using zirconia (ZrO 2 ) balls. Mixed for hours. Next, an aqueous PVA solution is added to this mixture as a binder, wet pulverized, granulated with a spray dryer, and then formed into a flat plate having a size of 8 inches x 20 inches x 18 mm using a mold at a pressure of 800 kgf / cm 2. Press molded. The obtained molded body was fired at a sintering temperature shown in Table 2 in the atmosphere for 8 hours with a sintering time to obtain a sintered body.
In Comparative Examples 3 and 4, zinc oxide powder was used as a starting material instead of indium oxide-zinc oxide powder, and in Comparative Example 5, calcined indium oxide and zinc oxide powder were not used and calcined. Only powder was used.
The relative density of the obtained sintered body is measured, and for the determination of white spots (white spots), the number of white spots having a diameter of 0.5 mmφ or more is visually counted after surface grinding to a predetermined thickness by grinding. It was. The results are shown in Table 2.

Figure 0004504271
Figure 0004504271

表2に示すように、実施例5〜8の焼結体はいずれも相対密度が高く、ホワイトスポットも発生していないのに対し、一方、酸化亜鉛のみを仮焼した比較例3ではホワイトスポットが発生し、比較例2では密度も低くホワイトスポットの多いものしか得られていない。一段焼結の比較例3では、高密度のものも得られるが、ホワイトスポットの多いものであった。   As shown in Table 2, all of the sintered bodies of Examples 5 to 8 have a high relative density and no white spots are generated. On the other hand, in Comparative Example 3 in which only zinc oxide was calcined, white spots were used. In Comparative Example 2, only a low density and a large number of white spots were obtained. In Comparative Example 3 of single-stage sintering, a high-density one was obtained, but there were many white spots.

以上詳細に説明したように、本発明の酸化インジウム−酸化亜鉛系焼結体ターゲットの製造方法よると、大型サイズの焼結体を作製した場合でも均一でむらがなく、相対密度95%以上の高密度のものが得られ、かつ焼結体ターゲット表面のホワイトスポット等の色むらの発生を抑制でき、歩留りが著しく向上するため実用性の高い製造方法である。

As described above in detail, according to the method for producing an indium oxide-zinc oxide based sintered body target of the present invention, even when a large size sintered body is produced, there is no unevenness, and the relative density is 95% or more. This is a highly practical manufacturing method because a high-density product can be obtained and the occurrence of uneven color such as white spots on the surface of the sintered compact target can be suppressed, and the yield is significantly improved.

Claims (4)

酸化インジウム粉末と酸化亜鉛粉末の混合粉末を400℃〜800℃で仮焼し、得られた酸化インジウム酸化亜鉛が結合した粉末をプレス成形後、酸素雰囲気下で1250℃〜1450℃で焼結する酸化インジウム−酸化亜鉛系焼結体ターゲットの製造方法。 Indium oxide powder and mixed powder of zinc oxide powder was calcined at 400 ° C. to 800 ° C., after powder indium zinc oxide obtained is bound press-molded, sintered at 1250 ° C. to 1450 ° C. in an oxygen atmosphere A method for producing an indium oxide-zinc oxide based sintered body target. 酸化インジウム粉末と酸化亜鉛粉末の混合粉末を400℃〜800℃で仮焼し、得られた酸化インジウム酸化亜鉛が結合した粉末を粉砕処理した後に酸化インジウム粉末を混合、又は得られた酸化インジウム酸化亜鉛が結合した粉末に酸化インジウム粉末を混合した後に粉砕処理し、この混合粉末をプレス成形後、酸素雰囲気下で1250℃〜1450℃で焼結する酸化インジウム−酸化亜鉛系焼結体ターゲットの製造方法。 The mixed powder of indium oxide powder and zinc oxide powder was calcined at 400 ° C. to 800 ° C., mixed with indium oxide powder after the indium oxide and zinc oxide obtained was pulverized to powder bonded, or the resulting indium oxide An indium oxide-zinc oxide-based sintered body target is prepared by mixing indium oxide powder with powder in which zinc oxide and zinc oxide are combined and then pulverizing and sintering the mixed powder at 1250 ° C. to 1450 ° C. in an oxygen atmosphere. Manufacturing method. 前記酸化インジウム酸化亜鉛が結合した粉末のBET表面積が4〜10m2/gである請求項1又は2に記載の酸化インジウム−酸化亜鉛系焼結体ターゲットの製造方法。 Method for producing a zinc oxide-based sintered body target - indium oxide according BET surface area of the powder of zinc oxide and the indium oxide is bonded to claim 1 or 2 which is 4~10m 2 / g. 前記酸化インジウム酸化亜鉛が結合した粉末中の酸化インジウム含有量が20〜95重量%である請求項1又は2に記載の酸化インジウム−酸化亜鉛系焼結体ターゲットの製造方法。 Method for producing a zinc oxide-based sintered body target - indium oxide according to claim 1 or 2 indium oxide content in the powder of zinc oxide and the indium oxide is bonded is 20 to 95 wt%.
JP2005192739A 2005-06-30 2005-06-30 Method for producing indium oxide-zinc oxide sintered target Active JP4504271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005192739A JP4504271B2 (en) 2005-06-30 2005-06-30 Method for producing indium oxide-zinc oxide sintered target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005192739A JP4504271B2 (en) 2005-06-30 2005-06-30 Method for producing indium oxide-zinc oxide sintered target

Publications (2)

Publication Number Publication Date
JP2007009284A JP2007009284A (en) 2007-01-18
JP4504271B2 true JP4504271B2 (en) 2010-07-14

Family

ID=37748163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005192739A Active JP4504271B2 (en) 2005-06-30 2005-06-30 Method for producing indium oxide-zinc oxide sintered target

Country Status (1)

Country Link
JP (1) JP4504271B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7420873B1 (en) 2022-07-04 2024-01-23 ユシロ化学工業株式会社 Washing tub detergent and washing tub cleaning method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5497479B2 (en) * 2010-02-26 2014-05-21 太平洋セメント株式会社 Sputtering target
CN102191465A (en) * 2010-03-18 2011-09-21 中国科学院福建物质结构研究所 Indium-doped zinc oxide target material and preparation method of transparent conducting film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236711A (en) * 1992-12-15 1994-08-23 Idemitsu Kosan Co Ltd Conductive material and manufacture thereof
JPH06234565A (en) * 1992-12-15 1994-08-23 Idemitsu Kosan Co Ltd Target and its production
JPH06236710A (en) * 1992-12-15 1994-08-23 Idemitsu Kosan Co Ltd Conductive material and manufacture and manufacture thereof
JPH09111444A (en) * 1995-10-13 1997-04-28 Mitsui Mining & Smelting Co Ltd Production of indium oxide-zinc oxide based sintered body target
JP2001011613A (en) * 1999-06-29 2001-01-16 Mitsui Mining & Smelting Co Ltd Production of sputtering target containing zinc oxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236711A (en) * 1992-12-15 1994-08-23 Idemitsu Kosan Co Ltd Conductive material and manufacture thereof
JPH06234565A (en) * 1992-12-15 1994-08-23 Idemitsu Kosan Co Ltd Target and its production
JPH06236710A (en) * 1992-12-15 1994-08-23 Idemitsu Kosan Co Ltd Conductive material and manufacture and manufacture thereof
JPH09111444A (en) * 1995-10-13 1997-04-28 Mitsui Mining & Smelting Co Ltd Production of indium oxide-zinc oxide based sintered body target
JP2001011613A (en) * 1999-06-29 2001-01-16 Mitsui Mining & Smelting Co Ltd Production of sputtering target containing zinc oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7420873B1 (en) 2022-07-04 2024-01-23 ユシロ化学工業株式会社 Washing tub detergent and washing tub cleaning method

Also Published As

Publication number Publication date
JP2007009284A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
KR101956506B1 (en) Indium zinc oxide (izo) based sputtering target, and method for producing same
EP2301904B1 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film
JPH0971860A (en) Target and its production
JP2001011613A (en) Production of sputtering target containing zinc oxide
KR20140079384A (en) Zn-Si-O SYSTEM OXIDE SINTERED BODY, METHOD FOR PRODUCING SAME, AND TRANSPARENT CONDUCTIVE FILM
JP6078189B1 (en) IZO sintered compact sputtering target and manufacturing method thereof
JP4504271B2 (en) Method for producing indium oxide-zinc oxide sintered target
KR101945145B1 (en) Oxide sintered compact
EP2463400B1 (en) Method for producing a tablet for vapor deposition
KR20150038539A (en) Composite oxide sintered body and transparent conductive oxide film
JP4508079B2 (en) Manufacturing method of sputtering target
CN104039737B (en) Stannic oxide matter refractory body and manufacture method thereof
WO2010021274A1 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target, and method for producing thin film
KR102375637B1 (en) Oxide sintered compact and sputtering target
JP2009184876A (en) Gzo sintered body, and method for producing the same
JP2007138198A (en) Magnesium oxide sintered compact for vapor deposition
JP3734540B2 (en) Manufacturing method of indium oxide-zinc oxide based sintered compact target
JP3632781B2 (en) Oxide sintered body
JP6155919B2 (en) Composite oxide sintered body and oxide transparent conductive film
JP4483470B2 (en) Method for producing sputtering target containing indium oxide
JP2003160861A (en) METHOD FOR MANUFACTURING Mg-CONTAINING ITO SPUTTERING TARGET
KR102188415B1 (en) Sputtering target
JP5967016B2 (en) Vapor deposition tablet and manufacturing method thereof
JP5115249B2 (en) Vapor deposition material and method for forming a vapor deposition film using the vapor deposition material
JP6133531B1 (en) Oxide sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

R150 Certificate of patent or registration of utility model

Ref document number: 4504271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150430

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250